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Abstract
In this paper, we discuss the Anthroponotic Cutaneous Leishmania transmission. In
addition, we develop a mathematical model for the Anthroponotic Cutaneous
Leishmania transmission and consider its qualitative behavior. We derive the
threshold number R0 of the model using the next generation method. In the
disease-free case, we carry out the local and global stability under the condition
R0 < 1. Moreover, we derive the global stability at the disease-free equilibrium point
by utilizing the Castillo-Chavez method. On the other hand, at the endemic
equilibrium point, we show the local and global stability to be held under specific
conditions and R0 > 1. We also establish the global stability at the endemic
equilibrium point with the help of a geometrical approach, which is a generalization
of Lyapunov theory, by using a second additive compound matrix. Finally, we take
into account the sensitivity analysis of the threshold number with other parameters.
We also discuss several graphs of important parameters.

Keywords: Compound matrix; Sensitivity analysis; Geometric approach; Stability
analysis

1 Introduction
Leishmaniasis is the sixth most common disease affecting public health worldwide. It is
a vector borne disease transmitted among mammalian hosts by the female sand fly. Most
common animals carrying the Leishmania parasite are rodents, dogs, cattles, and foxes,
this parasite primarily affecting the skin. Leishmaniasis cannot be transmitted from person
to person through touch, blood transfusion, congenitally from mother to baby, infected
needles and syringes, and so on. Different lab tests are performed to diagnose this parasite;
for example, blood test for antibodies against the parasite, urine tests, and polymerase
chain reaction (PCR) test can identify parasite based on its genetic fingerprint, and smear
test identifies the parasite through a microscope.

The transmission of parasites is carried out by the species of genera Phelobotomus type.
The sand flies are the main transmitter of these parasites. The habitat of these flies enjoys
a wide range, from desert to tropical rain forest. Not only these but also several hosts in
which dogs, chickens, humans, mammals, livestock, and vertebrates are considered to be
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the main hosts [1]. The color of these sand flies is sandy, and normally they are 2–3-mm
long. The latent period of this sand fly is considered to be between three and seven days
[2]. From the ground level, the sandflies attain 2.51 m (8.3 ft) as their maximum height
[3]. The incidental transference risk of blood-borne pathogens of humans is reduced by
the use of animal blood and is considered to be cheaper than the conservation of animals
and their preparation for feeding sandfly [4]. The fecundity of species is badly affected
by the extreme temperatures [5]. Some recent studies on Cutaneous Leishmaniasis epi-
demic models are described in [6–12]. Mathematical modeling is one of powerful tools to
describe the dynamical behavior of different diseases [13–18].

Grouping and grading: Computational modeling of Leishmaniasis is developed to verify
the prevalence and clearance of diseases in an endemic region. Patients are divided into
two group’s based on the disease grading. Group one includes patients from grades I–III,
and group two includes grades IV–V. Grading of CL lesions is categorized on the basis of
their clinical presentations. Specifically, the size (i.e., mean diameter) and shape of each
CL lesion are assessed and subsequently used to classify the lesions on a numeric scale,
from grade 1 (i.e., papule with mild overlying fine scales of size ≤1 cm), grade 2 (≤1 cm)
nodule formation, grade 3 (<2 cm) vesicle formation or ulceration, grade 4 (2–4 cm) vesi-
cle formation and ulceration with rolled edges, and grade 5 (>4 cm) vesicle formation,
ulceration, and superadded infection.

1.1 Types of leishmaniasis
I. Mucocutaneous Leishmaniasis (MCL) is a less common form of Leishmaniasis, which is
the partial or complete destruction of mucous membranes in the nose, throat, or mouth.
It is either CL skin lesion to mucosa membrane or carried by direct bite of a sand fly on
mucus membranes.

II. Visceral Leishmaniasis (VL) is the most lethal disease, which appears from days to
year after a bite of an infected sand fly. This disease affects the internal organ like the liver,
spleen, and bone marrow. Patients are symptomatically present with enlargement of the
spleen and liver, weight loss, and episodes of fever. In Pakistan, both MCL and VL are rare.

III. Cutaneous Leishmaniasis (CL) is an ulcer appearance on the skin, which is usually
developed in a couple of days after a bite of the sand fly. If the immunity of the patient
is strong enough, then mostly these sores may heal spontaneously within a few days. Ac-
cording to the World Health Organization (WHO), 1–1.5 million new cases of CL are
reported every year worldwide. Pakistan is one of the countries where the incident of CL
is increasing yearly, and its main reason is poverty, negligible planning for vector control,
inadequate medical facilities, armed conflicts, and mass migration of humans and cattle.

1.2 Treatment methods
Standard drugs: Meglumine antimoniate and sodium stibogluconate are used as a first-line
conventional treatment worldwide to treat CL. These drugs are used oral and injectable.
Besides their hard administration, it offers many side effects, and drugs are costly as well.

Conventional treatment: Some conventional domestic methods help in healing in CL
wound: applying garlic water on the lesion, cleaning wound repeatedly with antiseptics,
and placing a hot stone on wound have been reported by people.

Photodynamic therapy: Photodynamic therapy (PDT), the use of light of specific wave-
length and energy, is a rapidly evolving therapeutic option for the treatment of CL. The
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FDA has approved indications of PDT for various skin diseases, actinic keratosis, basal cell
carcinoma, superficial squamous cell carcinoma, psoriasis, acne vulgaris, and sarcoidosis,
verruca Vulgaris, and condyloma acuminatum. Treatment protocols of PDT are easy, pa-
tients’ comfort and lesion response to PDT make this the best option to treat CL.

Treatment protocols: Herein we present a number of cases of CL lesions at different sites
of the body treated with PDT from Pakistan. These lesions had been diagnosed clinically as
cutaneous Leishmaniasis (CL). The patients had received treatment (i.e., pentavalent anti-
moniate) with no satisfactory outcome. Clinical assessment showed that the patients had
developed resistance to pentavalent antimoniate. The patients were planned for photody-
namic therapy (PDT). Written and informed consent was obtained from the patient. To
perform PDT, the lesions and the adjacent skin were cleaned and scrubbed to remove the
necrotic layer and exudates dried up. The photosensitizer, methyl aminolevulinate (MAL),
was applied locally on the lesions under an adhesive covering, followed by an incubation
period of 3 hours for the absorption of the photosensitizer. After the incubation period,
the cream was removed, and the lesion was washed with normal saline. The lesion was
irradiated with red laser light (wavelength 635 nm); a light energy dose of 75 J/cm2 was
delivered as per the institutional protocol. The patient received three sessions of PDT; the
first two sessions were repeated at two weeks intervals, whereas the third session was given
at one-month intervals. The patient showed a complete response to PDT, being followed
up regularly, and has remained disease-free for over two years.

2 Model formulation
Mathematical modeling of epidemic diseases has been widely studied by researchers [19–
21]. The model is a modified version of Khan et al. [22], in which the total population
N(t) is partitioned into the following subpopulations. These classes are classified into
four human population subclasses Sh(t), Eh(t), I1h(t), I2h(t), and Rh(t), denoting the sus-
ceptible, exposed, infected people from grades I–III, infected people in grades IV and
V, and recovered people. The three vector population subclasses Sv(t), Ev(t), and Iv(t)
represent susceptible, exposed, and infected vectors; the total human population is rep-
resented by Nh(t) = Sh(t) + Eh(t) + I1h(t) + I2h(t) + Rh(t). Total total vector population is
Nv(t) = Sv(t) + Ev(t) + Iv(t).

The model is given as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSh
dt = �h – 2abIv(t)Sh(t)

Sh(t)+Iv(t) – μhSh(t),
dEh
dt = 2abIv(t)Sh(t)

Sh(t)+Iv(t) – (k1 + θ + μh)Eh(t),
dI1h
dt = k1Eh(t) – (β + μh + k2)I1h(t),

dI2h
dt = k2I1h(t) – (μh + θ1)I2h(t),

dRh
dt = θEh(t) + βIh(t) + θ1I2h(t) – μhRh(t),

dSv
dt = �v – acI1h(t)Sv(t) – adI2h(t)Sv(t) – μvSv(t),

dEv
dt = acI1h(t)Sv(t) + adI2h(t)Sv(t) – (μv + k3)Ev(t),

dIv
dt = k3Ev(t) – μvIv(t),

(1)

with

Sh(t), Eh(t), I1h(t), I2h(t), Rh(t), Sv(t), Ev(t), Iv(t) ≥ 0. (2)
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2.1 Basic properties of the model
The total-population dynamics is represented by

dNh(t)
dt

= �h – μhNh(t), (3)

dNv(t)
dt

= �v – μvNv(t). (4)

The feasible region (biological) � is

� =
{

(Sh, Eh, I1h, I2h, Rh, Sv, Ev, Iv) ∈R
�
+ , Nv ≤ �v

μv
; Nh ≤ �h

μh

}

. (5)

From Eqs. (2) and (3) we obtain

Nh → �h

μh
, Nv → �v

μv
as t → ∞, (6)

which shows that the model is well posed and � is a positively invariant domain.

Lemma 1 The orthant R7
+ is invariant positively for system (1).

Proof Let X = (Sh, Eh, I1h, I2h, Rh, Sv, Ev, Iv, )T and assume that a11 = μh + 2ab(Iv)2

(Sh+Iv)2 , a21 =
2abI2

v
(Sh+Iv)2 , a22 = (k1 + θ + μh), a18 = –2ab(Sh)2

(Sh+Iv)2 , a28 = –2ab(Sh)2

(Sh+Iv)2 , a66 = acI1h + adI2h + μv, and
a76 = acI1h + adI2h.

System (1) is expressed in the form

dX
dt

= LX + B, (7)

where

L =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–a11 0 0 0 0 0 0 a18

a21 –a22 0 0 0 0 0 a28

0 k1 –(β + k2 + μh) 0 0 0 0 0
0 0 k2 –(θ1 + μh) 0 0 0 0
0 θ β θ1 –μh 0 0 0
0 0 –acSv –adSv 0 –a66 0 0
0 0 acSv adSv 0 a76 –(μv + k2) 0
0 0 0 0 0 0 k3 –μv

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(8)

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2abSh – 2abSh

0
0
0

2acSv – 2acSv

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (9)
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Here we see that L is the Metzler matrix as it has nonnegative entries on its of-diagonal
and B ≥ 0. Hence we conclude that system (1) is positively invariant in R8

+. �

Lemma 2 If solutions of system (1) exist, then they are positive under the initial conditions
(2) for all t > 0.

Proof Let us assume that the solutions exist in I for all t ∈ I ⊂ [0,∞). Consider the second
equation of (1). Its solution has the following form:

Eh(t) = Eh(0) exp
{

–(k1 + θ + μh)t
}

+ exp
{

–(k1 + θ + μh)t
}

×
∫ t

0

2abIv(x)Sh(x)
Sh(x) + Iv(x)

exp
{

(k1 + θ + μh)x
}

dx.
(10)

We also take the third equation, and its solution has the following form:

I1h(t) = I1h(0) exp
{

–(β + k2 + μh)t
}

+ exp
{

–(β + k2 + μh)t
}

×
∫ t

0
k1Eh(y) exp

{
(β + k2 + μh)y

}
dy.

(11)

We can clearly see from the above solutions that these are strictly positive. In the same
fashion, we can show that Sh, Rh, Sv, Ev, I2h, and Iv possess nonnegative solutions. �

2.2 Basic reproductive number R0

The disease-free equilibrium point of system (1) is

E0 =
(
S0

h, E0
h, I0

1h, I0
2h, R0

h, S0
v , E0

v , I0
v
)

=
(

�h

μh
, 0, 0, 0, 0,

�v

μv
, 0, 0

)

. (12)

Let (Eh, I1h, I2h, Ev, Iv) be our infected compartment. Then from system (1) we have:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dEh
dt = 2abIv(t)Sh(t)

Sh(t)+Iv(t) – (k1 + θ + μh)Eh(t),
dI1h
dt = k1Eh(t) – (β + μh + k2)I1h(t),

dI2h
dt = k2I1h(t) – (μh + θ1)I2h(t),

dEv
dt = acI1h(t)Sv(t) + adI2h(t)Sv(t) – (μv + k3)Ev(t),

dIv
dt = k3Ev(t) – μvIv(t).

(13)

Using the next generation matrix approach [23, 24], the Jacobian matrix J for this system
at the disease-free equilibrium point is given by

J
(
E0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–(k1 + θ + μh) 0 0 0 2ab
k1 –(β + k2 + μh) 0 0 0
0 k2 –(μh + θ1) 0 0
0 ac�v

μv
ad�v
μv

–(μv + k3) 0
0 0 0 k3 –μv

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Now decomposing the matrix J in terms of F and V as J = F – V , we get

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 2ab
0 0 0 0 0
0 0 0 0 0
0 ac�v

μv
ad�v
μv

0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

–V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(k1 + θ + μh) 0 0 0 0
–k1 (β + k2 + μh) 0 0 0

0 –k2 (μh + θ1) 0 0
0 0 0 (μv + k3) 0
0 0 0 –k3 μv

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

–V –1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
(k1+θ+μh) 0 0 0 0

k2
(β+k2+μh)(k1+θ+μh)

1
(β+k2+μh) 0 0 0

k2
2

(β+k2+μh)(θ+k1+μh)(μh+θ1)
k2

(μh+θ1)(K2+β+μh)
1

μh+θ1
0 0

0 0 0 1
(μv+k3) 0

0 0 0 1
k3μv+μ2

v

1
μv

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Now

–FV –1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 2ab
μv(μv+k3)

2ab
μv

0 0 0 0 0
0 0 0 0 0
Ā B̄ ad�v

μv(μh+θ1) 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where
⎧
⎨

⎩

Ā = ac�vk2
μv(β+k2+μh)(k1+θ+μh) + ad�vk2

2
μv(β+k2+μh)(θ+k1+μh)(μh+θ1) ,

B̄ = ac�v
μv(β+k2+μh) + ad�vk2

μv(μh+θ1)(β+k2+μh) .
(14)

The characteristics equation of [–FV –1] becomes

–λ3
(

λ2 – Ā
2ab

μv(k3 + μv)

)

= 0. (15)

The dominant eigenvalue gives us R0, that is,

basic reproduction number =

√(
2a2b�vk2(c(μh + θ1) + dk2)

μ2
v(β + k2 + μh)(k1 + θ + μh)(μv + k3)(μh + θ1)

)

.

3 Local stability
In this section, we establish the local stability of system (1) in this section at the disease-
free point E0 and endemic equilibrium point E∗.
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3.1 Geometric interpretation of stability
For the DFE, the local stability implies that if there is a small perturbation of the system
(e.g., a small number of infected individuals is introduced into the population), then after
some time, the system will return to the DFE. However, a big perturbation may be able to
drive the system to a different behavior, for example, convergence to the EE. If the stability
of the DFE is global, then no matter the size of the perturbation, the disease will not be
able to persist in the population.

On the other hand, the local stability of an equilibrium point means that if you put the
system somewhere nearby the point, then it will move itself to the equilibrium point in
some time. The global stability means that the system will come to the equilibrium point
from any possible starting point (i.e., there is no “nearby” condition). Even in more physical
interpretation, it could be like this: If DFE or EE is locally stable, then all epidemiological
situations not-so-much different from the given stable equilibrium will (with time) evolve
to (or transform into) the equilibrium point. Also, this means that the equilibria are stable
to small perturbations: if you push the situation a bit out from the equilibrium point, then
the situation will return back on its own (from the physicist’s point of view, this means
that the equilibrium may be a stable situation in real life because the real world always
is somewhat noisy). The global stability of an equilibrium point in this case maybe de-
scribed as “the inevitable fate of the epidemic process regardless of its starting situation”.
However, a caveat should be put that this “inevitability” holds as long as the world strictly
follows the underlying mathematical model of the epidemic process. For still even more
lay (or medical) audience, all these things may be easily interpreted in terms of “adding or
removing a small number of infectious people”, but we believe it would make the central
idea less clear.

3.2 At disease free equilibrium point
Theorem 3.1 System (1) at disease-free equilibrium point E0 is locally asymptotically sta-
ble if R0 < 1.

Proof For system (1), the Jacobian matrix at E0 is given by

J |0| =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–μh 0 0 0 0 0 0 –2ab
0 –(k1 + θ + μh) 0 0 0 0 0 2ab
0 k1 –(β + k2 + μh) 0 0 0 0 0
0 0 k2 –(μh + θ1) 0 0 0 0
0 θ β θ1 –μh 0 0 0
0 0 – ac�v

μv
– ad�v

μv
0 –μv 0 0

0 0 ac�v
μv

ad�v
μv

0 0 –(μv + k2) 0
0 0 0 0 0 0 k3 –μv

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We can clearly see that three eigenvalues are negative, namely, λ1 = –μh, λ2 = –μh, and
λ3 = –μv. For the rest of eigenvalues, we consider the following reduced matrix:

J |0|
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–(k1 + θ + μh) 0 0 0 2ab
k1 –(β + k2 + μh) 0 0 0
0 k2 –(μh + θ1) 0 0
0 ac�v

μv
ad�v
μv

–(μv + k2) 0
0 0 0 k3 –μv

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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After simplification, we get:

J |0|
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–L11 0 0 0 2ab
0 –L22 0 0 2abk1

0 0 –L33 0 2abk1k2

0 0 0 –L44 L45

0 0 0 0 –L55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

L11 = (k1 + θ + μh), L22 = (k1 + θ + μh)(k2 + β + μh),

L33 = (k1 + θ + μh)(k2 + β + μh)(θ1 + μh),

L44 = (k1 + θ + μh)2(k2 + β + μh)2(θ1 + μh)(μv + k2),

L55 =
2abk1k2k3ad�v

μv
(k1 + θ + μh)(k2 + β + μh)

+
2abk1k2ac�v

μv
L33 – μv(μv + k2)L33L22,

L45 =
2abk1k2ad�v

μv
(k1 + θ + μh)(k2 + β + μh) +

2abk1ac�v

μv
L33.

The eigenvalues of J |0|
2 take the following form:

λ4 = –(k1 + θ + μh) < 0, λ5 = –(k1 + θ + μh)(k2 + β + μh) < 0,

λ6 = –(k1 + θ + μh)(k2 + β + μh)(θ1 + μh) < 0,

λ7 = –(k1 + θ + μh)2(k2 + β + μh)2(θ1 + μh)(μv + k2) < 0,

and

λ8 =
2abk1k2k2ad�v

μv
(k1 + θ + μh)(k2 + β + μh)

+
2abk1k2ac�v

μv
(k1 + θ + μh)(k2 + β + μh)(θ1 + μh)

– μv(μv + k2)(k1 + θ + μh)2(k2 + β + μh)2(θ1 + μh) < 0.

The last eigenvalue also has the negative real part since

(
2a2b�vk2(c(μh + θ1) + dk2)

μ2
v(β + k2 + μh)(k1 + θ + μh)(μv + k3)(μh + θ1)

)

< 1

implies that

√(
2a2b�vk2(c(μh + θ1) + dk2)

μ2
v(β + k2 + μh)(k1 + θ + μh)(μv + k3)(μh + θ1)

)

< 1.

Thus under the condition R0 < 1, the real part of all eigenvalues are negative. Hence, for
R0 < 1, system (1) is locally asymptotically stable. �
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3.3 At endemic equilibrium point
We rearrange system (1) to get S∗

h , E∗
h , I∗

2h, R∗
h, S∗

v , E∗
v , and I∗

v in terms of I∗
1h:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗
h = �hk1–(k1+θ+μh)(β+k2+μh)I∗1h

k1μh
,

S∗
v = �v(θ1+μh)

(ac(θ1+μh)–adk2)I∗1h+μv(θ1+μh) ,

I∗
2h = k1I∗1h

(θ1+μh) , E∗
h = (k2+β+μh)I∗1h

k1
,

E∗
v = (ac(θ1+μh)+adk2)I∗1hS∗

v
(μv+k3)(θ1+μh) , I∗

v = k3E∗
v

μv

R∗
h = (θ (θ1+μh)(β+k2+μh)+βk1(θ1+μh)+k1k2θ1)I∗1h

μhk1(θ1+μh) .

(16)

Theorem 3.2 If R0 ∈ (1,
√

(S∗
h+I∗h )2+2abI∗v
(μv+θ1)S∗2

h
), then the endemic equilibrium E∗ of system (1) is

locally asymptotically stable.

Proof. For system (1), the Jacobian matrix at E∗ is given by

J |∗| =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–a11 0 0 0 0 0 0 –2ab(S∗
h)2

(S∗
h+I∗v )2

2ab(I∗v )2

(S∗
h+I∗v )2 –a22 0 0 0 0 0 2ab(S∗

h)2

(S∗
h+I∗v )2

0 k1 –(β + k2 + μh) 0 0 0 0 0
0 0 k2 –(θ1 + μh) 0 0 0 0
0 θ β θ1 –μh 0 0 0
0 0 –acS∗

v –adS∗
v 0 –a66 0 0

0 0 acS∗
v adS∗

v 0 a76 –(μv + k2) 0
0 0 0 0 0 0 k3 –μv

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(17)

where a11 = μh + 2ab(I∗v )2

(S∗
h+I∗v )2 , a22 = (k1 + θ + μh), a66 = acI∗

1h + adI∗
2h + μv, and a76 = acI∗

1h +
adI∗

2h.
Clearly, one eigenvalue of the Jacobian matrix J |∗| of model (1) around the disease present

equilibrium point E∗ is negative, that is, λ1 = –μh < 0. For the remaining seven eigenvalues,
we take the following reduced matrix:

J |∗|
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–a11 0 0 0 0 0 –2ab(S∗
h)2

(S∗
h+I∗v )2

2ab(I∗v )2

(S∗
h+I∗v )2 –a22 0 0 0 0 2ab(S∗

h)2

(S∗
h+I∗v )2

0 k1 –(β + k2 + μh) 0 0 0 0
0 0 k2 –(θ1 + μh) 0 0 0
0 0 –acS∗

v –adS∗
v –a66 0 0

0 0 acS∗
v adS∗

v a76 –(μv + k2) 0
0 0 0 0 0 k3 –μv

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(18)



Khan et al. Advances in Difference Equations         (2021) 2021:86 Page 10 of 27

After simplification we get:

J |∗|
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–Z11 0 0 0 0 0 –�

0 –Z22 0 0 0 0 �1

0 0 –Z33 0 0 0 �1k1

0 0 0 –Z44 0 0 �1k1k2

0 0 0 0 –Z55 –(μv + k2) 0
0 0 0 0 0 –Z66 �2

0 0 0 0 0 0 –Z77

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (19)

where

Z11 =
(

μh +
2ab(I∗

v )2

(S∗
h + I∗

v )2

)

, Z22 = (k1 + θ + μh)
(

μh +
2ab(I∗

v )2

(S∗
h + I∗

v )2

)

,

Z33 = (β + k2 + μh)(k1 + θ + μh)
(

μh +
2ab(I∗

v )2

(S∗
h + I∗

v )2

)

,

Z44 = (β + k2 + μh)(k1 + θ + μh)
(

μh +
2ab(I∗

v )2

(S∗
h + I∗

v )2

)

(θ1 + μh), Z55 = μv,

Z66 = (μv + k2)(β + k2 + μh)2(k1 + θ + μh)2
(

μh +
2ab(I∗

v )2

(S∗
h + I∗

v )2

)2

× [
acI∗

1h + adI∗
1h + (μv + k2)

]
,

Z77 =
(

k3(μv + k2)(β + k2 + μh)(k1 + θ + μh)k1

(

μh +
2ab(I∗

v )2

(S∗
h + I∗

v )2

))[

μh
2ac(I∗

h )2

(S∗
v + I∗

h )2

]

– μv(μv + k2)(β + k2 + μh)2(k1 + θ + μh)2
(

μh +
2ab(I∗

v )2

(S∗
h + I∗

v )2

)2

× [
acI∗

1h + adI∗
1h + (μv + k2)

]
,

� = –
2ab(S∗

h)2

(S∗
h + I∗

v )2 , �1 =
2ab(S∗

h)2

(S∗
h + I∗

v )2

(

μh +
2ab(I∗

v )2

(S∗
h + I∗

v )2

)

–
2ab(S∗

h)2

(S∗
h + I∗

v )2
2ab(I∗

v )2

(S∗
h + I∗

v )2 ,

�2 =
(

(μv + k2)(β + k2 + μh)
(

μh +
2ab(I∗

v )2

(S∗
h + I∗

v )2

)

(k1 + θ + μh)k1
2ab(S∗

h)2

(S∗
h + I∗

v )2

×
(

μh +
2ab(I∗

v )2

(S∗
h + I∗

v )2 +
2ab(I∗

v )2

(S∗
h + I∗

v )2

))
[
acS∗

v + adS∗
v
]
.

The eigenvalues of J |∗|
2 take the following forms:

λ2 = –
(

μh +
2ab(I∗

v )2

(S∗
h + I∗

v )2

)

< 0, λ3 = –(k1 + θ + μh)
(

μh +
2ab(I∗

v )2

(S∗
h + I∗

v )2

)

< 0,

λ4 = –(β + k2 + μh)(k1 + θ + μh)
(

μh +
2ab(I∗

v )2

(S∗
h + I∗

v )2

)

< 0,

λ5 = –(β + k2 + μh)(k1 + θ + μh)
(

μh +
2ab(I∗

v )2

(S∗
h + I∗

v )2

)

(θ1 + μh), λ6 = –μv,
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λ7 = –(μv + k3)(β + k2 + μh)2(k1 + θ + μh)2
(

μh +
2ab(I∗

v )2

(S∗
h + I∗

v )2

)2

× [
acI∗

1h + adI∗
1h + (μv + k3)

]
< 0,

and

λ8 =
(

k3(μv + k3)(β + k2 + μh)(k1 + θ + μh)k1

(

μh +
2ab(I∗

v )2

(S∗
h + I∗

v )2

))[

μh
2ac(I∗

h )2

(S∗
v + I∗

h )2

]

– μv(μv + k2)(β + k2 + μh)2(k1 + θ + μh)2
(

μh +
2ab(I∗

v )2

(S∗
h + I∗

v )2

)2

× [
acI∗

1h + adI∗
1h + (μv + k3)

]
< 0

iff 1 < R0 <

√(
(S∗

h + I∗
h )2 + 2abI∗

v

(μv + θ1)S∗2
h

)

.

4 Global asymptotic stability
Here we discuss the global stability analysis of model (1) for both disease-free and endemic
equilibria. We use the method of Castillo-Chavez et al. [25] to establish the global stability
for disease-free equilibrium, whereas for the global stability of endemic equilibrium, we
use the generalization of Lyapunov theory [26].

4.1 At disease-free equilibrium point
For model (1), the global stability at the disease-free point is achieved by taking into ac-
count the Castillo-Chavez approach [25]. The method is summarized by the reduction of
the proposed model (1) to the following two subsystems:

dχ1

dt
= G(χ1,χ2),

dχ2

dt
= H(χ1,χ2). (20)

In system (20), χ1 and χ2 represent the numbers of uninfected and infected individuals,
respectively, that is, χ1 = (Sh, Sv, Rh) ∈ R3 and χ2 = (I1h, I2h, Iv, Eh, Ev) ∈ R4. The disease-free
equilibrium is denoted by E0 and defines as E0 = (χ0

1 , 0). Thus the existence of the global
stability at the disease-free equilibrium point depends on the following two conditions:

1. If dχ1
dt = G(χ1, 0), then χ0

1 is globally asymptotically stable.
2. H(χ1,χ2) = Bχ2 – H̄(χ1,χ2), where H̄(χ1,χ2) ≥ 0 for (χ1,χ2) ∈ �.

At the second condition, B = Dχ2 H(χ0
1 , 0) is an M-matrix with positive off-diagonal en-

tries, and � is the feasible region.

Lemma 3 ([25]) For R0 < 1, the equilibrium point E0 = (χ0
1 , 0) of system (1) is globally

asymptotically stable if the above conditions are satisfied.

Theorem 4.1 If R0 < 1, then the proposed model (1) is globally asymptotically stable at the
disease-free equilibrium E0 and unstable otherwise.
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Proof Let χ1 = (Sh, Sv, Rh) and χ2 = (I1h, I2h, Iv, Eh, Ev), and define E0 = (χ0
1 , 0), where

χ0
1 =

(
�h

μh
,
�v

μv

)

. (21)

By using model system (1) we have

dχ1

dt
= G(χ1,χ2),

dχ1

dt
=

⎛

⎜
⎝

�h – 2abIv(t)Sh(t)
Sh(t)+Iv(t) – μhSh(t)

θEh(t) + βI1h(t) + θ1I2h(t) – μhRh(t)
�v – acI1h(t)Sv(t) – adI2h(t)Sv(t) – μvSv(t)

⎞

⎟
⎠ . (22)

For Sh = S0
h, Sv = S0

v , and G(χ1, 0) = 0, we get

G(χ1, 0) =

(
�h – μhSh

�v – μvSv

)

. (23)

Thus from equation (23) we have that χ1 → χ0
1 as t → ∞. So χ1 = χ0

1 is globally asymp-
totically stable.

Now

Bχ2 – H̄(χ1,χ2)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–(k1 + θ + μh) 0 0 0 2ab
k1 –(β + k2 + μh) 0 0 0
0 k2 –(μh + θ1) 0 0
0 acS0

v adS0
v –(μv + k3) 0

0 0 0 k3 –μv

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Eh

I1h

I2h

Ev

Iv

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

–

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2ab – 2abIvSh
Sh+Iv

0
0

acS0
v + adS0

v – (acI1hSv + adI2hSv)
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (24)

As the total population is bounded by S0
h and S0

v , that is Sh ≤ S0
h and Sv ≤ S0

v , so 2ab ≥
2abIvSh

Sh+Iv
and acS0

v + acS0
v ≥ (acI1hSv + adI2hSv), which implies that H̄(χ1,χ2) ≥ 0. Clearly, B is

an M-matrix, and hence both the conditions are proved, so by Lemma 1 the disease-free
equilibrium point E0 is stable globally asymptotically. �

4.2 Endemic equilibrium (global stability)
“For the global stability of (1) at the endemic equilibrium E∗, we use the geometrical ap-
proach [26]. Thus we investigate the sufficient condition through which the E∗ is globally
asymptotically stable. Therefore consider the differential equation

ẋ = f (x), (25)
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where the open set U ⊂ Rn is simply connected, and f : U → Rn is a function such that f ∈
C1(U). Assuming that f (x∗) = 0 is the solution of equation (25), for x(t, x0), the following
are true:

3. There exist a compact absorbing set K ∈ U .
4. System (25) has a unique equilibrium.

The solution x∗ is said to be globally asymptotically stable in U if it is locally asymptoti-
cally stable and all trajectories in U converge to the equilibrium x∗. For n ≥ 2, a condition
satisfied for f , which precludes the existence of nonconstant periodic solution of equation
(25), is known as the Bendixson criterion. The classical Bendixson criterion div f (x) < 0
for n = 2 is robust under C1 [26]. Furthermore, a point x0 ∈ U is wandering for equation
(25) if there exist a neighborhood N of x0 and τ > 0 such that N ∩ x(t, N) is empty for all
t > τ . Thus the following global stability principle established for autonomous system in
any finite dimension.

Lemma 4 If the conditions (3)–(4) and Bendixson criterion are satisfied for equation (25)
(i.e., robust under C1 local perturbation of f at all nonequilibrium nonwandering point for
equation (25)), then x∗ is globally asymptotically stable in U , provided that it is stable.

Define a matrix-valued function P on U by

P(x) =
(

n
1

)

×
(

n
1

)

. (26)

Further, assume that P–1 exists and is continuous for x ∈ K . Now define the quantity

q̄ = lim sup
t→∞

1
t

∫ t

0

[
μ

(
B
(
x(s, x0)

))]
ds, (27)

where J [2] is the second additive compound matrix of J , that is, J(x) = Uf (x) and B = Pf P–1 +
PJ [2]P–1. Let 
(B) be the Lozinski measure of the matrix B with respect to the norm ‖ · ‖
in Rn [27] defined by


(B) = lim
x→0

|I + Bx| – 1
x

. (28)

Hence if q̄ < 0, then the presence of any orbit gives rise to a simple closed rectifiable curve
such as a periodic orbit and heterocyclic cycle.

Lemma 5 Let U be simply connected, and let conditions (3)–(4) be satisfied. Then the
unique equilibrium x∗ of equation (25) is globally asymptotically stable in U if q̄ < 0.

Now we apply the above techniques to prove the global stability of model (1) at the
endemic equilibrium. We have the following stability.

Theorem 4.2 If 2b(I∗v )2

(S∗
h+I∗v )2 > Eh(cI∗1h+dI∗2h)

Sh
, (cI∗

1h + dI∗
2h) > 2bEv(I∗v )2

Sv(S∗
h+I∗v )2 , and R0 > 1, then model (29)

is globally asymptotically stable at the endemic equilibrium E∗ and unstable otherwise.
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Proof To prove the global asymptotic stability of the proposed model (1) at the endemic
equilibrium E∗, let us consider the subsystem of (1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dSh
dt = �h – ab( 2Iv(t)Sh(t)

Sh(t)+Iv(t) ) – μhSh(t),
dEh
dt = ab( 2Iv(t)Sh(t)

Sh(t)+Iv(t) ) – (k1 + θ + μh)Eh(t),
dSv
dt = �v – acI1h(t)Sv(t) – adI2h(t)Sv(t) – μvSv(t),

dEv
dt = acI1h(t)Sv(t) + adI2h(t)Sv(t) – (μv + k3)Ev(t).

(29)

Let us start with the Jacobian matrix of system (29)

J =

⎛

⎜
⎜
⎜
⎝

j11 j12 j13 j14

j21 j22 j23 j24

j31 j32 j33 j34

j41 j42 j43 j44

⎞

⎟
⎟
⎟
⎠

.

The third additive compound matrix is given by

J |3| =

⎛

⎜
⎜
⎜
⎝

j11 + j22 + j33 j34 –j24 j14

j43 j11 + j22 + j44 j23 –j13

–j42 j32 j11 + j33 + j44 j12

j41 –j31 j21 j22 + j33 + j44

⎞

⎟
⎟
⎟
⎠

. (30)

Let J be the Jacobian matrix of system (29) given by

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

–(μh + 2ab(I∗v )2

(S∗
h+I∗v )2 ) 0 0 0

2ab(I∗v )2

(S∗
h+I∗v )2 –(k1 + θ + μh) 0 0

0 0 –(μv + acI∗
1h + adI∗

2h) 0
0 0 (acI∗

1h + adI∗
2h) –(μv + k3)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

The third additive compound matrix of J is denoted by J |3| and defined as

J |3| =

⎛

⎜
⎜
⎜
⎜
⎝

A11 0 0 0
(acI∗

1h + adI∗
2h) A22 0 0

0 0 A33 0
0 0 2ab(I∗v )2

(S∗
h+I∗v )2 A44

⎞

⎟
⎟
⎟
⎟
⎠

, (31)

where

A11 = j11 + j22 + j33

= –
(

2ab(I∗
v )2

(S∗
h + I∗

v )2 + k1 + θ + 2μh + μv + acI∗
1h + adI∗

2h

)

,

A22 = j11 + j22 + j44

= –
(

2ab(I∗
v )2

(S∗
h + I∗

v )2 + μv + k3 + k1 + θ + 2μh

)

,
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A33 = j11 + j33 + j44

= –
(

2ab(I∗
v )2

(S∗
h + I∗

v )2 + μh + acI∗
1h + adI∗

2h + 2μv + k3

)

,

A44 = j22 + j33 + j44

= –
(
k + θ + μh + acI∗

1h + adI∗
2h + 2μv + k3

)
.

Let us choose a function p(χ ) = p(Sh, Eh, Sv, Ev) so that p(χ ) = diag{Sh, Eh, Sv, Ev}, which
implies that p–1(χ ) = diag{ 1

Sh
, 1

Eh
, 1

Sv
, 1

Ev
}. The time derivative of p(χ ) yields that Pf (χ ) =

diag{Ṡh, Ėh, Ṡv, Ėv}.
A direct computation shows that B = Pf P–1 + PJ |3|P–1, which becomes

Pf P–1 = diag

{
Ṡh

Sv
,

Ėh

Eh
,

Ṡv

Sv
,

Ėv

Ev

}

,

PJ |3|P–1 =

⎛

⎜
⎜
⎜
⎜
⎝

A11 0 0 0
Eh
Sh

(acI∗
1h + adI∗

2h) A22 0 0
0 0 A33 0
0 0 2ab(I∗v )2

(S∗
h+I∗v )2

Ev
Sv

A44

⎞

⎟
⎟
⎟
⎟
⎠

, (32)

so that B = Pf P–1 + PJ |3|P–1,

B =

⎛

⎜
⎜
⎜
⎝

a11 0 0 0
a21 a22 0 0
0 0 a33 0
0 0 a43 a44

⎞

⎟
⎟
⎟
⎠

, (33)

where

a11 =
Ṡh

Sh
–

(
2ab(I∗

v )2

(S∗
h + I∗

v )2 + k1 + θ + 2μh + μv + acI∗
1h + adI∗

2h

)

,

a21 =
Eh

Sh

(
acI∗

1h + adI∗
2h

)
, a22 =

Ėh

Eh
–

(
2ab(I∗

v )2

(S∗
h + I∗

v )2 + μv + k3 + k1 + θ + 2μh

)

,

a43 =
2ab(I∗

v )2

(S∗
h + I∗

v )2
Ev

Sv
, a33 =

Ṡv

Sv
–

(
2ab(I∗

v )2

(S∗
h + I∗

v )2 + μh + acI∗
1h + adI∗

2h + 2μv + k3

)

,

a44 =
Ėv

Ev
–

(
k! + θ + μh + acI∗

1h + adI∗
2h + 2μv + k3

)
.

Consequently,

h1(t) = a11 +
4∑

j=2

|a1j|,

h1(t) =
Ṡh

Sh
–

(
2ab(I∗

v )2

(S∗
h + I∗

v )2 + k1 + θ + 2μh + μv + acI∗
1h + adI∗

2h

)

≤ Ṡh

Sh
– (2μh + k1 + θ + μv),
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and if 2b(I∗v )2

(S∗
h+I∗v )2 > Eh(cI∗1h+dI∗2h)

Sh
, then

h2(t) = a22 +
4∑

j=1 and j �=2

|a2j|,

h2(t) =
Ėh

Eh
– (μv + k3 + k1 + θ + 2μh) –

2ab(I∗
v )2

(S∗
h + I∗

v )2 +
Eh

Sh

(
acI∗

1h + adI∗
2h

)

=
Ėh

Eh
– (μv + k3 + k1 + θ + 2μh) – a

(
2b(I∗

v )2

(S∗
h + I∗

v )2 –
Eh(cI∗

1h + dI∗
2h)

Sh

)

≤ Ėh

Eh
– (μv + k3 + k1 + θ + 2μh),

Similarly,

h3(t) = a33 +
4∑

j=1 and j �=3

|a3j|,

h3(t) =
Ṡv

Sv
–

(
2ab(I∗

v )2

(S∗
h + I∗

v )2 + μh + acI∗
1h + adI∗

2h + 2μv + k3

)

≤ Ṡv

Sv
– (μh + 2μv + k3)

and if (cI∗
1h + dI∗

2h) > 2bEv(I∗v )2

Sv(S∗
h+I∗v )2 , then

h4(t) = a44 +
3∑

j=1

|a4j|,

h4(t) =
Ėv

Ev
– (k1 + θ + μh + 2μv + k3) –

(
acI∗

1h + adI∗
2h

)
+

2ab(I∗
v )2

(S∗
h + I∗

v )2
Ev

Sv

=
Ėv

Ev
– (k1 + θ + μh + 2μv + k3) – a

(
(
cI∗

1h + dI∗
2h

)
–

2bEv(I∗
v )2

Sv(S∗
h + I∗

v )2

)

≤ Ėv

Ev
– (k1 + θ + μh + 2μv + k3).

Let (b1, b2, b3, b4) be a vector in R4. The Lozinski measure μ(B) is defined as μ(B) = hi,
i = 1, 2, 3, 4. The integration of the Lozinski measure μ(B) and taking the limits as t → ∞
lead to the following equations:

lim sup
t→∞

1
t

∫ t

0
h1(t) dt ≤ 1

t
log

Sh(t)
Sh(0)

– (2μh + k1 + θ + μv)

< –(2μh + k1 + θ + μv),

lim sup
t→∞

1
t

∫ t

0
h2(t) dt ≤ 1

t
log

Eh(t)
Eh(0)

– (μh + μv + k3 + k1 + θ + μh)

< –(2μh + μv + k3 + k1 + θ ),
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lim sup
t→∞

1
t

∫ t

0
h3(t) dt ≤ 1

t
log

Sv(t)
Sv(0)

– (μh + 2μv + k3)

< –(μh + 2μv + k3),

lim sup
t→∞

1
t

∫ t

0
h4(t) dt ≤ 1

t
log

Ev(t)
Ev(0)

– (k1 + θ + μh + 2μv + k3)

< –(k1 + θ + μh + 2μv + k3).

Thus combining these four inequalities, we get the following equation:

q̄ = lim sup
t→∞

1
t

∫ t

0
μ(B) dt < 0.

The system containing the first four equations of model (1) is globally asymptotically
stable around its interior equilibrium (S∗

h, E∗
h, S∗

v , E∗
v ). Now consider the subsystem of model

(1)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dI1h
dt = k1Eh(t) – (β + μh + k2)I1h(t),

dI2h
dt = k2I1h(t) – (μh + θ1)I2h(t),

dRh
dt = θEh(t) + βI1h(t) + θ1I2h(t) – μhRh(t),

dIv
dt = k3Ev(t) – μvIv(t).

(34)

Now rewrite the system in the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dI1h
dt + (β + μh + k2)I1h(t) = k1E∗

h(t),
dI2h
dt + (μh + θ1)I2h(t) = k2I∗

1h(t),
dRh
dt + μhRh(t) = θE∗

h(t) + βI∗
1h(t) + θ1I∗

2h(t),
dIv
dt + μvIv(t) = k3E∗

v (t).

(35)

The integrating factors for the system are et(β+k2+μh), et(μh+θ1), et(μh), and et(μv).
Using the integrating factors, we solve the system. So for large time t, that is, t → ∞,

I1h → I∗
1h, I2h → I∗

2h, Rh → R∗
h, and Iv → I∗

v , which means that the endemic equilibrium
point E∗ is globally asymptotically stable. �

5 Sensitivity analysis
Determining the parameters that are helpful in decreasing the spread of infectious disease
is carried out by sensitivity analysis. Forward sensitivity analysis is considered a vital com-
ponent of disease modeling although its computation becomes tedious for complex bio-
logical models. Sensitivity analysis of R0 has received much attention from the ecologists
and epidemiologists. The behavior of the R0 with some suitable values of the parameters
are shown in Fig. 1.

Definition 1 The normalized forward sensitivity index of R0 that depends differentiably
on a parameter ω is defined as

Sω =
ω

R0

∂R0

∂ω
. (36)
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Figure 1 Sensitivity analysis of different parameters
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Table 1 Sensitivity indices of the reproduction number R0 against mentioned parameters

Parameter S. Index Value

a Sa 1.000000000
θ Sθ –0.004792332271
c Sc 0.5000000001
μh Sμh –0.3685739184
β Sβ –0.2272727272
�v S�v 0.0
d Sd 1.000000000

Parameter S. Index Value

b Sb 0.4999999999
k1 Sk1 0.1006389778
k2 Sk2 0.01754385961
μv Sμv –0.5175438600
�h S�h 0.0
θ1 Sθ1 0.0254635451
k3 Sk3 0.4999999999

Three methods are normally used to calculate the sensitivity indices: (i) by direct dif-
ferentiation, (ii) by a Latin hypercube sampling method, and (iii) by linearizing system (1)
and then solving the obtained set of linear algebraic equations. We will apply the direct dif-
ferentiation method as it gives analytical expressions for the indices. The indices not only
show us the influence of various aspects associated with the spreading of infectious dis-
ease but also gives us important information regarding the comparative change between
R0 and different parameters. Consequently, it helps in developing the control strategies.
Table 1 shows that the parameters a, b, k1, c, k2, θ1, d, and k3 have a positive influence
on the reproduction number R0; for example, the growth or decay of these parameters,
say, by 10% will increase or decrease the reproduction number by 10%, 4.9%, 1.0%, 5.0%,
0.17%, 0.25%, 10%, and 4.9%, respectively. On the other hand, the indices for parameters
θ , μh, μv, and β illustrate that increasing their values by 10% will decrease the values of
reproduction number R0 by 0.04%, 3.6%, 5.1%, and 2.2%, respectively. Note that �h and �v

have no impact on the reproduction number.

6 Optimal control
By using these control variables our control problem becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSh
dt = �h – 2(1–u1(t))abIv(t)Sh(t)

Sh(t)+Iv(t) – μhSh(t),
dEh
dt = 2(1–u1(t))abIv(t)Sh(t)

Sh(t)+Iv(t) – (k1 + θ + μh)Eh(t),
dI1h
dt = k1Eh(t) – (u2(t) + β + μh + k2)I1h(t),

dI2h
dt = k2I1h(t) – (u2(t) + μh + θ1)I2h(t),

dRh
dt = θEh(t) + (β + u2(t))I1h(t) + (θ1 + u2(t))I2h(t) – μhRh(t),

dSv
dt = �v – (1 – u1(t))acI1h(t)Sv(t) – (1 – u1(t))adI2h(t)Sv(t)

– (u3(t) + μv)Sv(t),
dEv
dt = (1 – u1(t))acI1h(t)Sv(t) + (1 – u1(t))adI2h(t)Sv(t)

– (u3(t) + μv + k3)Ev(t),
dIv
dt = k3Ev(t) – (u3(t) + μv)Iv(t).

(37)

The goal of our optimal control strategies is minimizing the infectious and exposed human
population, the vector population, sandfly biting rate, and the cost of implementing the
control by using possible minimal control variables u1(t), u2(t), and u3(t). To do this, we



Khan et al. Advances in Difference Equations         (2021) 2021:86 Page 20 of 27

use the bounded Lebesgue-measurable control to construct the objective functional

J(u1, u2, u3) =
∫ 1

0

(

g1Eh(t) + g2I1h(t) + g3I2h(t) + g4
(
Sv(t) + Ev(t) + Iv(t)

)

+
1
2
(
d1u2

1(t) + d2u2
2(t) + d3u2

3(t)
)
)

dt
(38)

subject to system (37).
In the objective functional, g1, g2, g3, and g4 represent the weight constants of the ex-

posed, infectious human, and of vector population, respectively, d1, d2, and d3 are weight
constants of human self-protection, human treatment, and vector control, respectively.
The terms (1/2)d1u2

1(t), (1/2)d2u2
2(t), and (1/2)d3u2

3(t) describe the costs of disease inter-
ventions. The cost associated with the first control strategy u1(t) comes from the cost of
sandfly repellent lotions, electric mats, and mosquito bed nets. The cost associated with
the second control strategy u2(t) is the cost of expensive medication of human class. The
cost associated with the third control strategy u3(t) can arise from applying different types
chemical pesticides to kill sand flies at any stage of their life. We have assumed the costs as
proportional to the square of the corresponding control function. We aim to find control
functions such that

J
(
u∗

1, u∗
2, u∗

3
)

= min
{

J(u1, u2, u3), (u1, u2, u3) ∈ D
}

subject to system (4). The control set D is defined as

D =
{

(u1, u2, u3) | ui(t) is Lebesgue measurable on [0, 1], 0 ≤ ui(t) < 1, i = 1, 2, 3
}

.

6.1 Existence of the control problem
For the existence of the control problem, we consider the control system (37) with initial
conditions at t = 0. In case of bounded Lebesgue-measurable controls and nonnegative
initial conditions, there exists a nonnegative bounded solution of the state system [28,
29]. For optimal solution of the system, we first find the Lagrangian and Hamiltonian. We
define the Lagrangian of the control problem (37) as

L(t) = g1Eh(t) + g2I1h(t) + g3I2h(t) + g4Nv(t) +
1
2
(
d1u2

1(t) + d2u2
2(t) + d3u2

3(t)
)
, (39)

where Nv(t) = Sv(t) + Ev(t) + Iv(t).
We define the Hamiltonian H to find the minimal value of the Lagrangian as follows:

H(t) = g1Eh(t) + g2I1h(t) + g3I2h(t) + g4Nv(t) +
1
2
[
d1u2

1(t) + d2u2
2(t) + d3u2

3(t)
]

+
[

λ1(t)
(

�h –
2(1 – u1(t))abIv(t)Sh(t)

Sh(t) + Iv(t)
– μhSh(t)

)]

+
[

λ2(t)
(

2(1 – u1(t))abIv(t)Sh(t)
Sh(t) + Iv(t)

– (k1 + θ + μh)Eh(t)
)]

+
[
λ3(t)

(
k1Eh(t) –

(
u2(t) + β + μh + k2

)
I1h(t)

)]

+
[
λ4(t)

(
k2I1h(t) –

(
u2(t) + μh + θ1

)
I2h(t)

)]

+
[
λ5(t)

(
θEh(t) +

(
β + u2(t)

)
I1h(t) +

(
θ1 + u2(t)

)
I2h(t) – μhRh(t)

)]
(40)
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+
[
λ6(t)

(
�v –

(
1 – u1(t)

)
acI1h(t)Sv(t) –

(
1 – u1(t)

)
adI2h(t)Sv(t)

–
(
u3(t) + μv

)
Sv(t)

)]

+
[
λ7(t)

((
1 – u1(t)

)
acI1h(t)Sv(t) +

(
1 – u1(t)

)
adI2h(t)Sv(t)

–
(
u3(t) + μv + k3

)
Ev(t)

)]

+
[
λ8(t)

(
k3Ev(t) –

(
u3(t) + μv

)
Iv(t)

)]
.

Theorem 6.1 There exists an optimal control u∗ = (u∗
1, u∗

2, u∗
3) ∈ D such that J(u1, u2, u3) =

min(u1,u2,u3)∈D J(u1, u2, u3) subject to system (37) and initial conditions at t = 0.

Proof The control variables and the state variables are nonnegative. So we use the result
in [28, 29] for the existence of an optimal control. The necessary convexity of the objec-
tive functional in u1, u2, and u3 is satisfied here. Also, by definition the set of the control
variables (u1, u2, u3) ∈ D is convex and closed. The compactness, which we need for the
existence of an optimal control, is confirmed by the boundedness of the optimal system.
Also, the integrand in the functional (38), g1Eh(t) + g2I1h(t) + g3I2h(t) + g4Nv(t) + 1

2 (d1u2
1(t) +

d2u2
2(t) + d3u2

3(t)), is convex on the control set D. We can find a constant η > 1 and positive
numbers ξ1 and ξ2 such that J(u1, u2, u3) ≥ ξ1(|u1|2, |u2|2, |u3|2)

η
2 – ξ2, as the state variables

are bounded. This completes the proof of the existence of an optimal control.
For optimal solution, we apply Pontryagin’s maximum principle [30] as follows. If

(x(t), u(t)) is an optimal solution of an optimal control problem, then there exists a non-
trivial vector function λ(t) = (λ1(t),λ2(t), . . . ,λn(t)) satisfying the following:

dx(t)
dt

=
∂H(t, x, u,λ)

∂λ
,

0 =
∂H(t, x, u,λ)

∂u
,

λ′(t) = –
∂H(t, x, u,λ)

∂x
.

We apply the necessary conditions to the Hamiltonian H in system (40). �

Theorem 6.2 Let S∗
h , E∗

h , I∗
h , R∗

h, S∗
v , E∗

v , and I∗
v be optimal state solutions with associated op-

timal control variables (u∗
1, u∗

2, u∗
3) for the optimal control problem system (37)–(38). Then

there exist adjoint variables λi, i = 1, 2, . . . , 8, satisfying
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dλ1(t)
dt = λ1(t) 2(1–u1(t))abI∗2

v (t)
(S∗

h(t)+I∗v (t))2 – λ2(t) 2(1–u1(t))abI∗2
v (t)

(S∗
h(t)+I∗v (t))2 – λ1(t)μh,

dλ2(t)
dt = λ2(t)(k1 + θ + μh) – λ3(t)k1 – λ5(t)θ – g1,

dλ3(t)
dt = (λ6 – λ7)(1 – u1(t))acS∗

v – λ4k2 + λ3(u2(t) + β + μh + k2)

– λ5(β + u2(t)) – g2,
dλ4(t)

dt = (λ6 – λ7)(1 – u1(t))adS∗
v + λ4(u2(t) + μh + θ1) – λ5(θ1 + u2(t)) – g3,

dλ5(t)
dt = λ5μh,

dλ6(t)
dt = (λ6 – λ7)(1 – u1(t))acI∗

1h(t) + (λ6 – λ7)(1 – u1(t))adI∗
2h(t)

+ λ6(u3(t) + μv) – g4,
dλ7(t)

dt = λ7(u3(t) + μv + k3) – λ8k3 – g3,
dλ8(t)

dt = λ1(t) 2(1–u1(t))abS∗2
h (t)

(S∗
h(t)+I∗v (t))2 – λ2(t) 2(1–u1(t))abS∗2

h (t)
(S∗

h(t)+I∗v (t))2 + (u3(t) + μv)λ8 – g4.

(41)
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We have the transversality conditions

λi(T) = 0, i = 1, 2, 3, . . . , 8, (42)

for the control set ui, and hence we have

∂H
∂ui

= 0, i = 1, 2, 3.

By the optimality condition we have

∂H
∂u1

∣
∣
∣
∣
u1=u∗

1

= 0,

that is,

∂H
∂u1

= d1u1 + (λ1 – λ2)
2abI∗

v (t)S∗
h(t)

(S∗
h(t) + I∗

v (t))
+ (λ6 – λ7)acI∗

1h(t)S∗
v + (λ6 – λ7)adI∗

2h(t)S∗
v .

Similarly,

∂H
∂u1

∣
∣
∣
∣
u1=u∗

1

= d1u∗
1 + (λ1 – λ2)

2abI∗
v (t)S∗

h(t)
(S∗

h(t) + I∗
v (t))

+ (λ6 – λ7)acI∗
1h(t)S∗

v

+ (λ6 – λ7)adI∗
2h(t)S∗

v = 0,

or

u∗
1 =

(λ2 – λ1) 2abI∗v (t)S∗
h(t)

(S∗
h(t)+I∗v (t)) + (λ7 – λ6)acI∗

1h(t)S∗
v + (λ7 – λ6)adI∗

2h(t)S∗
v

d1
.

Also,

∂H
∂u2

∣
∣
∣
∣
u2=u∗

2

= 0,

that is,

∂H
∂u2

= d2u∗
2 +

(
λ5 – λ3I∗

1h
)

+
(
λ5 – λ4I∗

2h
)

= 0,

or

u∗
2 =

(λ3 – λ5I∗
1h) + (λ4 – λ5I∗

2h)
d2

,

and

∂H
∂u3

∣
∣
∣
∣
u3=u∗

3

= 0,
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that is,

∂H
∂u3

= d3u∗
3 – λ7E∗

v (t) – λ8I∗
v (t) = 0,

or

u∗
3 =

λ7E∗
v (t) + λ8I∗

v (t)
d3

.

Now using an appropriate variation argument and taking the bounds into account, we
obtain

u∗
1(t) = max

{

min

{ (λ2 – λ1) 2abI∗v (t)S∗
h(t)

(S∗
h(t)+I∗v (t)) + (λ7 – λ6)acI∗

1h(t)S∗
v + (λ7 – λ6)adI∗

2h(t)S∗
v

d1
, 1

}

,

0
}

,

u∗
2(t) = max

{

min

{
(λ3 – λ5I∗

1h) + (λ4 – λ5I∗
2h

d2
), 1

}

, 0
}

,

u∗
3(t) = max

{

min

{
λ7E∗

v (t) + λ8I∗
v (t)

d3
, 1

}

, 0
}

.

(43)

These are optimal, as required.

Proof To find adjoint equations and the transversality conditions, we use Eq. (37). Dif-
ferentiating the Hamiltonian H with respect to each state variable, we obtain system (41).
Solving the equations ∂H

∂u1
= 0, ∂H

∂u2
= 0, and ∂H

∂u3
= 0 on the interior of the control set and us-

ing the optimality conditions and the property of the control space D, we derive Eqs. (43).
The optimal control and the state are found by solving the optimality system (38), the ad-
joint system dλi

dt , initial and boundary conditions (42), and equations of the optimal control
(43). Since the second derivatives of the Lagrangian with respect to u1, u2, and u3 are pos-
itive, the optimal problem is minimum at the controls u∗

1, u∗
2, and u∗

3. By substituting the
values of u∗

1, u∗
2, and u∗

3 into the control system (40) we get the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS∗
h

dt = �h – 2(1–u∗
1(t))abI∗v (t)S∗

h(t)
S∗

h(t)+I∗v (t) – μhS∗
h(t),

dE∗
h

dt = 2(1–u∗
1(t))abI∗v (t)S∗

h(t)
S∗

h(t)+I∗v (t) – (k1 + θ + μh)E∗
h(t),

dI∗1h
dt = k1E∗

h(t) – (u∗
2(t) + β + μh + k2)I∗

1h(t),
dI∗2h
dt = k2I∗

1h(t) – (u∗
2(t) + μh + θ1)I∗

2h(t),
dR∗

h
dt = θE∗

h(t) + (β + u∗
2(t))I∗

1h(t) + (θ1 + u∗
2(t))I∗

2h(t) – μhR∗
h(t),

dS∗
v

dt = �v – (1 – u∗
1(t))acI∗

1h(t)S∗
v (t) – (1 – u∗

1(t))adI2h(t)S∗
v (t)

– (u∗
3(t) + μv)S∗

v (t),
dE∗

v
dt = (1 – u∗

1(t))acI∗
1h(t)S∗

v (t) + (1 – u∗
1(t))adI∗

2h(t)S∗
v (t)

– (u∗
3(t) + μv + k3)E∗

v (t),
dI∗v
dt = k3E∗

v (t) – (u∗
3(t) + μv)I∗

v (t),

(44)
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Figure 2 Plots of different classes showing the difference between “with control” and “without control”
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Figure 2 Continued

with

H∗(t) = g1E∗
h(t) + g2I∗

1h(t) + g3I∗
2h(t) + g4N∗

v (t) +
1
2
[
d1u∗

12 (t) + d2u∗
22 (t) + d3u∗

32 (t)
]

+
[

λ1(t)
(

�h –
2(1 – u1(t))abI∗

v (t)S∗
h(t)

S∗
h(t) + I∗

v (t)
– μhS∗

h(t)
)]

+
[

λ2(t)
(

2(1 – u∗
1(t))abI∗

v (t)S∗
h(t)

S∗
h(t) + I∗

v (t)
– (k1 + θ + μh)E∗

h(t)
)]

+
[
λ3(t)

(
k1E∗

h(t) –
(
u∗

2(t) + β + μh + k2
)
I∗

1h(t)
)]

+
[
λ4(t)

(
k2I∗

1h(t) –
(
u∗

2(t) + μh + θ1
)
I∗

2h(t)
)]

+
[
λ5(t)

(
θE∗

h(t) +
(
β + u∗

2(t)
)
I∗

1h(t) +
(
θ1 + u∗

2(t)
)
I∗

2h(t) – μhR∗
h(t)

)]
(45)

+
[
λ6(t)

(
�v –

(
1 – u∗

1(t)
)
acI∗

1h(t)S∗
v (t) –

(
1 – u∗

1(t)
)
adI∗

2h(t)S∗
v (t)

–
(
u3(t) + μv

)
S∗

v (t)
)]

+
[
λ7(t)

((
1 – u∗

1(t)
)
acI1h(t)S∗

v (t) +
(
1 – u∗

1(t)
)
adI∗

2h(t)S∗
v (t)

–
(
u∗

3(t) + μv + k3
)
E∗

v (t)
)]

+
[
λ8(t)

(
k3E∗

v (t) –
(
u∗

3(t) + μv
)
I∗

v (t)
)]

. �

The profile of each of the state variables with and without control have been depicted in
Fig. 2.

7 Conclusions
We study a five-grade Anthroponotic Cutaneous Leishmania epidemic model with har-
monic mean type incidence rate. For endemic stability analysis, we consider a generaliza-
tion of the Lyapunov method, called the geometrical approach, in which a second additive
compound matrix is taken into account. The feasibility of our result is verified by numer-
ical simulations. Extending our work, we can use a harmonic mean type incidence rate to
reformulate a visceral model for the leishmaniasis epidemic. We can also check its stabil-
ity analysis, parameter sensitivity, bifurcation analysis, and optimal control. It is strongly
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recommended that proper record keeping and documentation systems for leishmaniasis
be initiated by health authorities at the local, provincial, and national levels and be well
maintained to identify leishmaniasis outbreaks so that control measures can be started
well in time. Further, IDP camps must be monitored regularly to minimize the risk that
nonendemic areas will be exposed to the disease by infected IDPs.
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