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Abstract
The following discrete initial value problem

xn+1 = xn(x
2
n–1 – 2) – x1, n ∈N,

x0 = 2 and x1 = 5/2, appeared at an international competition. It is known that the
problem can be solved in closed form. Here we discuss the solvability of a more
general initial value problem which includes the former one. We show that, in a sense,
there are not so many solvable discrete initial value problems related to this one,
showing its specificity, which is a bit surprising result.
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1 Introduction
Throughout the paper we use the standard notations N, N0, Z, R, R+, R–, C for the sets
of natural numbers, nonnegative integers, integers, real numbers, positive real numbers,
negative real numbers, and complex numbers, respectively. If m, n ∈ Z are such that m ≤ n,
then the notation j = m, n is used instead of writing m ≤ j ≤ n.

Solvability of recursive relations/difference equations has been studied for a long time
(see, for example, [3–11, 13–18, 20–39] and the related references therein).

The following recursive relation

xn+1 = a1xn + a2xn–1, n ∈N, (1)

where a1, a2 ∈R are such that

a2 �= 0 and a2
1 �= –4a2, (2)
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is one of the first which was solved in closed form. Namely, the following closed-form
formula

xn =
(x1 – λ2x0)λn

1 + (λ1x0 – x1)λn
2

λ1 – λ2
, n ∈N0, (3)

where λ1 and λ2 are the roots of the associated polynomial

Q2(λ) = λ2 – a1λ – a2, (4)

was proved in [7] (see also [8]).
Note that the posed conditions on the coefficients a1 and a2 in (2) ensure that the zeros

of polynomial Q2 are different. Formula (3) was obtained for the first time by using the
method of generating functions.

More closed-form formulas of this type, including those when the corresponding asso-
ciated polynomials have multiple zeros, can be found in [9]. The method of looking for
solutions to recursive relation (1) in the form of a geometric progression, that is,

xn = λn, n ∈N0,

for some λ ∈R, was proposed in [5], whereas the method of decomposing linear operators
for getting their solutions was proposed in [14]. By using any of the above-mentioned
methods, formula (3) can be obtained. As a basic one, the formula is widely used in many
areas of mathematics and science. It will be also used in this note for a few times.

For some other early results on solvability of linear and nonlinear difference equations
and systems of difference equations, see also [13] and [15]. Some presentations of solvabil-
ity theory, their applications, as well as other topics related to the equations and systems,
can be found, for example, in the books [6, 10, 11, 16–18, 20, 39]. For some recent results
in this and related topics such as finding and using invariants of difference equations and
systems, see, for example, [3, 4, 21–38]. It should be noticed that solvability of linear differ-
ence equations and systems of difference equations implies solvability of many nonlinear
solvable ones (see, for example, [4, 24, 27–34, 36–38] and the related references therein).
The main point in these papers is that the problem of solving nonlinear difference equa-
tions and systems therein is transferred to the problem of solving some linear ones.

If a difference equation or system of difference equations has a form of a known trigono-
metric formula this could be a sign that a closed-form formula for its general solution
exists. Of course, this principle can be also used in the cases when a difference equation
or system has a form of a trigonometric formula which is not so known (there are many
trigonometric formulas and it is clearly impossible to know all of them). This is an old idea
for guessing solvability of a difference equation or a system (see, for example, [6]). In fact,
it essentially appeared in paper [15] by Laplace. We have had recently such a situation
in [27, 32, 37, 38], where the so-called hyperbolic-cotangent classes of difference equa-
tions and systems were studied, and in [35], where the solvability of a class of the so-called
hyperbolic-cosine-type difference equations was studied.

1.1 An IMO problem and its official solution
The following problem was posed at the 18th International Mathematical Olympiad in
1976 (see, for example, [1] and [19]):
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Problem 1 Let un, n ∈N0 be a sequence defined by

u0 = 2, u1 =
5
2

, (5)

un+1 = un
(
u2

n–1 – 2
)

– u1, n ∈N. (6)

Show that

[un] = 2
2n–(–1)n

3 , n ∈N0,

where [x] denotes the greatest integer not exceeding number x.

In [1] and [19], it is suggested calculation of the first several members of the sequence
(un)n∈N0 . The idea is to guess the following closed-form formula:

un = 2
2n–(–1)n

3 + 2– 2n–(–1)n
3 , n ∈N0,

which is then proved by induction, and from which the problem is easily solved, bearing
in mind that the sequence

2
2n–(–1)n

3 = 2
∑n–1

j=0 2j(–1)n–j–1
, n ∈N0,

consists of natural numbers, whereas each member of the sequence

2– 2n–(–1)n
3 , n ∈N,

belongs to the interval (0, 1).
This solution, although natural for high-school students, looked a bit artificial for us.

One of the reasons for this was the fact that behind existence of a closed-form formula for
solutions to nonlinear difference equations and systems of difference equations usually
lies a method, along with some tricks, for solving them (as we have already mentioned
many nonlinear difference equations are transformed to linear solvable ones by suitable
changes of variables), and in the case of initial value problem (5)–(6) we have a closed-
form formula for the problem. For these reasons we have tried to find a more natural
and constructive/analytic method for solving the problem. We have found such a solution
at the beginning of the 1980s. The solution is now also well known. In fact, we solved a
slightly generalized initial value problem by using the method which we present for the
completeness and as a motivation for the study in the note.

1.2 Second solution
Consider the following initial value problem:

xn+1 = xn
(
x2

n–1 – 2
)

– x1, (7)

where x0 ∈R,

|x0| = 2 and x1 = a +
1
a

(8)

for some a ∈ C \ {0}.
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First, it is good to calculate the first several members of the sequence (xn)n∈N0 to see if
something can be concluded about the solution form from such obtained expressions. By
some simple calculations, we have

x2 = x1
(
x2

0 – 2
)

– x1 =
(

a +
1
a

)(
x2

0 – 3
)

= a +
1
a

, (9)

x3 = x2
(
x2

1 – 2
)

– x1 =
(

a +
1
a

)(
a2 +

1
a2

)
–

(
a +

1
a

)
= a3 +

1
a3 , (10)

x4 = x3
(
x2

2 – 2
)

– x1 =
(

a3 +
1
a3

)(
a2 +

1
a2

)
–

(
a +

1
a

)
= a5 +

1
a5 , (11)

x5 = x4
(
x2

3 – 2
)

– x1 =
(

a5 +
1
a5

)(
a6 +

1
a6

)
–

(
a +

1
a

)
= a11 +

1
a11 , (12)

x6 = x5
(
x2

4 – 2
)

– x1 =
(

a11 +
1

a11

)(
a10 +

1
a10

)
–

(
a +

1
a

)
= a21 +

1
a21 . (13)

Formulas (9)–(13) strikingly suggest that the solution to the initial value problem has the
following form:

xn = abn +
1

abn
(14)

for n ∈N0.
By using (14) in (7), we have

abn+1 +
1

abn+1
=

(
abn +

1
abn

)(
a2bn–1 +

1
a2bn–1

)
– x1

= abn+2bn–1 +
1

abn+2bn–1
+ abn–2bn–1 +

1
abn–2bn–1

– x1 (15)

for n ∈N.
From (9)–(13) and (15) it is natural to assume that the sequence (bn)n∈N0 satisfies the

following relation:

bn+1 = bn + 2bn–1, n ∈N. (16)

Since, when x0 = 2, we have b0 = 0 and b1 = 1, and the roots of the characteristic polyno-
mial

P̃2(λ) = λ2 – λ – 2

associated with equation (16) are λ1 = 2 and λ2 = –1, by using de Moivre formula (3), we
have

bn =
2n – (–1)n

3
, n ∈N0. (17)

On the other hand, from (17) we have

bn – 2bn–1 =
(2n – (–1)n) – 2(2n–1 – (–1)n–1)

3
= (–1)n–1, n ∈N. (18)
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Relation (18) is a surprising and very useful fact since it leads to the following unexpected
relation:

abn–2bn–1 +
1

abn–2bn–1
= a(–1)n–1

+ a(–1)n
= x1, n ∈N. (19)

Now, from (15) and (19) we see that (14) is the solution to initial value problem (7)–
(8), where bn is defined in (17), that is, we have the following closed-form formula for the
initial value problem:

xn = a
2n–(–1)n

3 + a– 2n–(–1)n
3 , n ∈N0. (20)

Note also that if x0 = –2, then (20) holds, but for n ∈N. So, we have proved a bit more than
what is requested in the problem. Namely, we have proved that the following result holds.

Proposition 1 Let the sequence (xn)n∈N0 be the solution to equation (7) satisfying the initial
conditions in (8), where a ∈C\ {0}. Then the sequence is given by closed-form formula (20).

1.3 A sequence of polynomials
Here we define a sequence of polynomials whose special cases frequently appear in the
literature, although many mathematicians could not be aware of it (for example, in solving
polynomial equations with symmetric coefficients [2, 12]). Let Pm(t), where m ∈ N, be a
polynomial satisfying the following relation:

Pm

(
z +

1
z

)
= zm +

1
zm , z �= 0. (21)

It is shown that the sequence can be also defined by the initial values

P1(t) = t,

P2(t) = t2 – 2,
(22)

and the recursive relation

Pm+1(t) – tPm(t) + Pm–1(t) = 0, m ≥ 2, (23)

(see, e.g., [35]).
Since relation (23) is a homogeneous linear difference equation of second order, which

for each fixed t is with constant coefficients, we have that initial value problem (22)–(23)
is a standard one. Hence, it can be also solved by using de Moivre formula (3), from which
a closed-form formula for the initial value problem is obtained. The formula is not used
here, because of that it is omitted. The interested reader can find the formula, for example,
in [35].

1.4 Aim of this note
It is a natural problem to see if initial value problem (7)–(8) is a special case of another one,
for which it is also possible to find a solution in closed form. This note is devoted to the
problem. In the next section we give an answer to the problem, which is a bit surprising.



Stević Advances in Difference Equations         (2021) 2021:90 Page 6 of 13

Namely, we show that, in a sense, there are not so many solvable initial value problems
related to (7)–(8), and that they essentially belong to a natural class containing the problem
from the 18th International Mathematical Olympiad.

2 An extension of initial value problem (7)–(8)
In view of the second solution of Problem 1 and the fact that equation (7) can be written
in the form

xn+1 = P1(xn)P2(xn–1) – a – a–1, n ∈N,

it is quite natural to study solvability of initial value problems for the following extension
to the equation:

xn+1 = Pk(xn)Pl(xn–1) – ac – a–c, n ∈N, (24)

where k, l ∈ N, c ∈ R, a ∈ C \ {0}, and polynomials Pk and Pl are two members of the
sequence of polynomials defined by (22) and (23).

Hence, it is of some interest to find the difference equations of the form in (24) for which
the corresponding initial value problems have solutions of the form given in (14).

First note that from (14) and (21) we have

Ps(xn) = asbn +
1

asbn
, n ∈ N0, (25)

for each s ∈N.
Employing (25) in (24) it follows that

abn+1 + a–bn+1

=
(
akbn + a–kbn

)(
albn–1 + a–lbn–1

)
– ac – a–c

= akbn+lbn–1 + a–(kbn+lbn–1) + akbn–lbn–1 + a–(kbn–lbn–1) – ac – a–c (26)

for n ∈N.
Following the main idea from the second solution of Problem 1, we choose a sequence

(bn)n∈N0 so that the following linear recursive relation of second order holds:

bn+1 = kbn + lbn–1 (27)

for every n ∈ N, as well as one of the following four linear recursive relations of the first
order:

kbn – lbn–1 = c, (28)

kbn – lbn–1 = –c, (29)

kbn – lbn–1 = c(–1)n, (30)

kbn – lbn–1 = c(–1)n–1 (31)

for n ∈N.
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Let

P2(λ) = λ2 – kλ – l,

and p and q be its roots, that is,

p =
k +

√
k2 + 4l
2

and

q =
k –

√
k2 + 4l
2

.

Note that k2 + 4l ≥ 5 > 0, since k, l ∈N, from which it follows that p, q ∈R, and that

pq = –l ≤ –1. (32)

Moreover, p ∈R+, whereas q ∈R–, since k <
√

k2 + 4l for k, l ∈N. Since

p + q = k ∈N and p – q =
√

k2 + 4l ≥ √
5,

we also have

p ≥ 1 +
√

5
2

and p > |q|. (33)

By de Moivre formula, we have

bn =
(b1 – qb0)pn + (pb0 – b1)qn

p – q
, n ∈N0. (34)

Now, we want to check which of the sequences in (34) satisfy one of the relations in
(28)–(31).

We have four cases to be considered.
Case 1. Relation (28) holds. Then, by using (34) in (28), we have that it must be

(b1 – qb0)(kp – l)pn–1 + (pb0 – b1)(kq – l)qn–1 = c(p – q), n ∈ N. (35)

Relation (35) means that the sequence

αn := (b1 – qb0)(kp – l)pn–1 + (pb0 – b1)(kq – l)qn–1, n ∈N, (36)

is constant.
Assume

(b1 – qb0)(kp – l) �= 0 �= (pb0 – b1)(kq – l). (37)



Stević Advances in Difference Equations         (2021) 2021:90 Page 8 of 13

Then, by dividing both sides of relation (35) by pn–1, we have that it must be

(b1 – qb0)(kp – l) + (pb0 – b1)(kq – l)
(

q
p

)n–1

=
c(p – q)

pn–1 , n ∈N. (38)

By letting n → +∞ in (38) and using (33), we get

(b1 – qb0)(kp – l) = 0. (39)

However, (39) contradicts one of the assumptions in (37), from which it follows that (35)
cannot hold in this case.

Now assume

(b1 – qb0)(kp – l) �= 0 = (pb0 – b1)(kq – l). (40)

Then we have

αn = (b1 – qb0)(kp – l)pn–1, n ∈N. (41)

From (32) and (40), we have

(b1 – qb0)(kp – l)p �= 0, (42)

from which it follows that αn �= 0 for every n ∈ N. On the other hand, since (33) holds, it
follows that αn cannot be a constant sequence (moreover, from (33) and (41) it follows that
the sequence must be unbounded), and consequently (35) also cannot hold in this case.

Now assume

(b1 – qb0)(kp – l) = 0 �= (pb0 – b1)(kq – l). (43)

Then we have

αn = (pb0 – b1)(kq – l)qn–1, n ∈N. (44)

From (32) and (43), we have

(pb0 – b1)(kq – l)q �= 0, (45)

from which it follows that αn �= 0 for every n ∈ N. On the other hand, since q < 0, we have
that the subsequence (α2n)n∈N consists of negative (or positive) numbers only, whereas the
subsequence (α2n–1)n∈N consists of positive (or negative) numbers only, which implies that
it cannot be constant, and consequently (35) also cannot hold in this case.

Now assume

(b1 – qb0)(kp – l) = (pb0 – b1)(kq – l) = 0, (46)
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then from (35) and since p �= q, we would have c = 0 and bn = 0, n ∈ N, so consequently
xn = 2 for every n ∈N, a case which is not much interesting.

Hence, (35) can hold only for a trivial solution in the case when (46) holds.
Case 2. Relation (29) holds. This case is essentially the same as the case when (28) holds,

since it is obtained by replacing c by –c. Hence, from the previous consideration, we see
that

(b1 – qb0)(kp – l)pn–1 + (pb0 – b1)(kq – l)qn–1 = c(q – p), n ∈ N,

also cannot hold, except for a trivial solution in the case when (46) holds.
Case 3. Relation (30) holds. By using formula (34) in (30), we obtain

(b1 – qb0)(kp – l)pn–1 + (pb0 – b1)(kq – l)qn–1 = c(p – q)(–1)n (47)

for n ∈N.
Assume that (37) holds. Then, by dividing both sides of relation (47) by pn–1, we have

that it must be

(b1 – qb0)(kp – l) + (pb0 – b1)(kq – l)
(

q
p

)n–1

=
c(p – q)(–1)n

pn–1 (48)

for n ∈N.
By letting n → +∞ in (48) and using (33), we get

(b1 – qb0)(kp – l) = 0. (49)

However, (49) contradicts one of the assumptions in (37), from which it follows that (47)
cannot hold in this case.

Now assume that (40) holds. Then we have that it must be

(b1 – qb0)(kp – l)pn–1 = c(p – q)(–1)n, n ∈ N,

which is only possible if

p = –1 and (b1 – qb0)(kp – l) = c(q – p). (50)

But since p > 0, the first equality in (50) is not possible, and consequently (47) also cannot
hold in this case.

Now assume that (43) holds. Then, we have that it must be

(pb0 – b1)(kq – l)qn–1 = c(q – p)(–1)n–1, n ∈N, (51)

which is only possible if

q = –1 and (pb0 – b1)(kq – l) = c(q – p). (52)

Bearing in mind (43), we see that there are two subcases to be considered.
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Subcase q = –1, b0 = –b1. From (51) we have

(pb0 – b1)(k + l)(–1)n = c(p – q)(–1)n,

from which, along with the conditions q = –1, b1 = –b0, it follows that

b0(k + l) = c.

Since q �= p and p = k + 1 = l, we obtain

c = b0(2k + 1) = b0(2p – 1). (53)

Hence, in this case equation (24) becomes

xn+1 = Pk(xn)Pk+1(xn–1) – ac – a–c (54)

for n ∈N, where c is given by (53).
Since b1 = –b0, it is easy to see that x0 = x1. From (54) with n = 1, since b1 = –b0, and by

using (53), we obtain

x2 = Pk(x1)Pk+1(x0) – ac – a–c

=
(
akb1 + a–kb1

)(
a(k+1)b0 + a–(k+1)b0

)
– ac – a–c

=
(
akb0 + a–kb0

)(
a(k+1)b0 + a–(k+1)b0

)
– ac – a–c

= a(2k+1)b0 + a–(2k+1)b0 + ab0 + a–b0 – ac – a–c

= ab0 + a–b0 . (55)

From x0 = x1 and (55), we have x0 = x1 = x2. From this, by using (54) and the method of
induction, it is proved that

xn = x0 = ab0 + a–b0 = a
c

2k+1 + a– c
2k+1 , n ∈N, (56)

an equilibrium solution, which is not much interesting.
Subcase q = –1, b1 �= –b0, kp = l. Since p = k + 1, from kp = l and l = p, we get k = 1 and

p = l = 2. From (51) we have

(
(k + 1)b0 – b1

)
(k + l)(–1)n = c(p – q)(–1)n,

and consequently

c = b0(k + 1) – b1 = 2b0 – b1. (57)

Hence, in this case equation (24) becomes

xn+1 = P1(xn)P2(xn–1) – a2b0–b1 – ab1–2b0 , (58)
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and its solution is given by

xn = a
(b0+b1)2n–(b1–2b0)(–1)n

3 + a– (b0+b1)2n–(b1–2b0)(–1)n
3 (59)

for n ∈N0.
Now assume that (46) holds. Then, from (35) and since p �= q, we would have c = 0 and

bn = 0, n ∈N, so consequently xn = 2 for every n ∈N, a case which is not much interesting.
Case 4. Relation (31) holds. By using formula (34) in (31), we obtain

(b1 – qb0)(kp – l)pn–1 + (pb0 – b1)(kq – l)qn–1 = c(p – q)(–1)n–1, n ∈N,

which is, in fact, (47) where c is replaced by –c.
Hence, from the previous analysis, we see that (24) is solvable only if

k = 1, l = 2, and c = –(2b0 – b1) = b1 – 2b0.

In this case equation (24) becomes (58), and its solution is given by (59).
From all the above mentioned we see that out of all the equations in (24), only the equa-

tions with k = 1, l = 2, and c = ±(2b0 – b1) are possible to solve by using the method from
the second solution to Problem 1. This, a bit surprising, result shows a very specific charac-
ter of equation (7), or more concretely, the specificity of solvability of initial value problem
(7)–(8). So, we have that the following extension of Proposition 1 holds.

Proposition 2 Let the sequence (xn)n∈N0 be the solution to the equation

xn+1 = P1(xn)P2(xn–1) – a2b0–b1 – ab1–2b0 , n ∈N,

satisfying the initial value conditions

x0 = ab0 + a–b0 and x1 = ab1 + a–b1 ,

where a ∈ C \ {0} and b0, b1 ∈ Z, or a ∈ R \ {0} and b0, b1 ∈ R. Then the sequence is given
by closed-form formula (59).

Remark 1 Note that in the case when

b0 = 0 and b1 = 1,

we have c = –1 (or c = 1), so that equation (58) reduces to equation (7), and from formula
(59) is obtained formula (20).
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