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Abstract
We investigate the existence and uniqueness of solutions to a coupled system of the
hybrid fractional integro-differential equations involving ϕ-Caputo fractional
operators. To achieve this goal, we make use of a hybrid fixed point theorem for a sum
of three operators due to Dhage and also the uniqueness result is obtained by
making use of the Banach contraction principle. Moreover, we explore the
Ulam–Hyers stability and its generalized version for the given coupled hybrid system.
An example is presented to guarantee the validity of our existence results.
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1 Introduction
Probably, the fractional differential equation (FrDiffEq) has been preferred instead of the
integer order one because of its opportunities for the description of dynamical behaviors
of numerous processes in the scientific and engineering fields. To see some improvements
in relation to the applicability of FrDiffEqs, we point out the monographs of Hilfer [1],
Kilbas et al. [2], Miller and Ross [3], Oldham [4], Pudlubny [5] and the references therein.
In view of some strong properties of fractional operators, a number of researchers have
studied various abstract fractional applied models in recent years. For example, Abdo et
al. [6] derived some existence results of positive solutions for a weighted fractional BVP
and Baghani et al. [7] investigated the existence results for a fractional model of Basset–
Boussinesq–Oseen equations. In 2020, Baleanu et al. [8] designed a new fractional hybrid
model of a thermostat via the hybrid conditions and proved some theorems by means of
the Dhage method. By using a prior estimate method, Nazir et al. [9] turned to studying a
sequential hybrid fractional equation and Vivek et al. [10] analyzed dynamical behaviors
of Hilfer–Hadamard type fractional pantograph equations by utilizing successive approx-
imations. The latest achievements in this field can be found in references such as [11–14].
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The notion of the Ulam–Hyers (U–H) stability has been taken into consideration in sev-
eral publications. The announced stability analysis is a simple manner in this regard. Such
a species of stability was developed by Ulam [15]. Later, it was developed by Hyers [16, 17].
Recently, Ben Chikh et al. [18] considered a multi-order BVP via integral conditions and
studied the U–H stability for this system. Samina et al. [19] reviewed the qualitative prop-
erties of a coupled system of fractional hybrid differential equations by terms of the U–H
stability. At the same time, Ahmad et al. [20] derived similar results on the U–H stability
for a coupled system of fractional hybrid BVPs with finite delays.

On the other side, ϕ-fractional operators were introduced by Kilbas [2] as a generaliza-
tion of Riemann–Liouville (Riem–Lio) operators. These fractional operators are not quite
the same as the other classical fractional operators; this is so because their kernel appears
with respect to another increasing function ϕ. Several generalized FODs and their appli-
cations were introduced by Agarwal [21].

In 2017, Almeida [22] proposed a kind of Caputo FOD with some applied specifications
and after that, he studied the existence results for two distinct ϕ-fractional models by these
new derivatives [23, 24]. Also, In 2020, Derbazi et al. [25] investigated a ϕ-fractional ini-
tial value problem by using a monotone iterative technique and then Wahash et al. stud-
ied a singular structure of fractional differential equations based on the newly-defined
ϕ-derivatives and presented a modified Picard iterative method [26]. Abdo et al. [27] ob-
tained some results in two directions of the existence and the U–H stability for a mixed
structure of ϕ-Hilfer fractional intgro-differential equations.

In 2015, Sitho, Ntouyas and Tariboon [28] proved an existence result for an initial value
problem of fractional hybrid sequential integro-differential equations given by

⎧
⎨

⎩

c
D

α
0+ [

c
D

ω
0+ υ(z)–

∑m
i=1 I

βi
0+ fi(z,υ(z))

g(z,υ(z)) ] = h(z,υ(z), Iγ0+υ(z)), z ∈ [0, T],

υ(0) = 0, c
D

ω
0+υ(0) = 0,

(1)

where α ∈ (0, 1], ω ∈ (0, 1], βi > 0. c
D

λ
0+ denotes the Caputo fractional derivative of or-

der λ ∈ {α,ω} and I
μ

0+ denotes the Riemann–Liouville fractional integral of order μ ∈
{β1,β2, . . . ,βm,γ } and g ∈ C([0, 1] × R,R{0}) and h ∈ C([0, 1] × R

2,R) and fi ∈ C([0, 1] ×
R,R) for i = 1, 2, . . . , m.

Next in 2019, Jamil, Khan and Shah [29] studied the existence result for a boundary value
problem of hybrid fractional sequential integro-differential equations involving Caputo
derivatives given by

⎧
⎨

⎩

c
D

α
0+ [

c
D

ω
0+ υ(z)–

∑m
i=1 I

βi
0+ fi(z,υ(z))

g(z,υ(z)) ] = h(z,υ(z), Iγ0+υ(z)), z ∈ [0, 1],

υ(0) = 0, c
D

ω
0+υ(0) = 0, υ(1) = δυ(η),

(2)

where α ∈ (0, 1], ω ∈ (1, 2], βi,γ > 0, δ ∈ (0, 1), η ∈ (0, 1). c
D

λ
0+ denotes the Caputo fractional

derivative of order λ ∈ {α,ω} and I
μ

0+ denotes the Riemann–Liouville fractional integral
of order μ ∈ {β1,β2, . . . ,βm,γ } and g ∈ C([0, 1] × R,R{0}) and h ∈ C([0, 1] × R

2,R) and
fi ∈ C([0, 1] ×R,R) with fi(0, 0) = 0 for i = 1, 2, . . . , m. In that work, Jamil et al. proved the
existence results with the help of Dhage’s criterion [29].

Motivated by the novel advancements in ϕ-fractional calculus and by the above work,
in the current study, we implement the generalized U–H and U–H stability and existence
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analysis on the coupled system of the fractional hybrid nonlinear integro-differential equa-
tions

⎧
⎨

⎩

c
D

ν;ϕ
a+ [ υ(z)–

∑m
k=1 I

σk ;ϕ
a+ Fk (z,υ(z), (z))

K1(z,υ(z), (z)) ] = H1(z,υ(z), (z)),
c
D

μ;ϕ
a+ [  (z)–

∑n
k=1 I

ξk ;ϕ
a+ Gk (z,υ(z), (z))

K2(z,υ(z), (z)) ] = H2(z,υ(z), (z)),
z ∈ J := [a, b], (3)

with the initial conditions

υ(a) = 0,  (a) = 0, (4)

where c
D

β ;ϕ
a+ is the ϕ-Caputo FOD of order β ∈ {ν,μ} ⊆ (0, 1), Iθ ;ϕ

a+ is the ϕ-RL-integral of or-
der θ > 0, θ ∈ {σ1,σ2, . . . ,σm, ξ1, ξ2, . . . , ξn}, σk(k = 1, 2, 3, 4, . . . , m), ξj > 0 (j = 1, 2, 3, 4, . . . , n),
the nonlinear functions K1,K2 : J × R × R → R\{0} and the functions Fk ,Gj,H1, H2 :
J×R×R−→ R are continuous.

By a coupled solution of the coupled IVPs of FrDiffEqs (3)–(4), we mean a pair (υ, ) ∈
C2(J,R) × C2(J,R) that satisfies IVP (3)–(4), where C2(J,R) is a space that consists of a
collection of the twice continuously differentiable real mappings.

The novelty of our suggested problem in comparison to problems (1) and (2) is that, in
this paper, we consider a kind of general case of initial value problem in a configuration of
a hybrid coupled system illustrated by (3). Indeed, fractional operators used in our prob-
lem are considered as generalized ones with respect to an increasing function ϕ, which
implies that we can cover a wide range of fractional operators in our IVP (3) subject to the
generalized kernels. This feature of ϕ-operators shows the importance and usefulness of
these kinds of fractional operators compared to other ones. Also, unlike the two papers
mentioned above, we here extend our problem to a hybrid coupled system of fractional
integro-differential initial value problems with different sequential orders based on the
generalized ϕ-RL-integral operators and in addition to the establishment of the existence
and uniqueness results, we investigate the stability of the suggested coupled system in
terms of the Ulam–Hyers stability and the generalized Ulam–Hyers one. In future work,
we can implement these techniques on different boundary value problems equipped with
complicated integral multi-point boundary conditions.

The structure of this research work is as follows: Sect. 2 provides the auxiliary definitions
along with desired lemmas. Section 3 is devoted to generalized U–H and U–H stability and
the existence analysis for the given system of integro-differential IVPs (3)–(4). Moreover,
we present a concrete example to emphasize the validity of the obtained outcomes.

2 Basic preliminaries
To achieve the desired fundamental purposes, we first review several basic auxiliary no-
tions that are required throughout the manuscript.

The collection C = C(J,R) is designated as a collection consisting of continuous real-
valued functions υ : J → R. Apparently, C is a Banach space along with the supremum
norm

‖υ‖ = sup
{∣
∣υ(z)

∣
∣ : z ∈ J

}
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and is a Banach algebra under the action “·” defined by

(υ ·  )(z) = υ(z) ·  (z)

for υ, ∈ C and z ∈ J = [a, b]. Given the Banach algebra C, consider the product space
E = C× C which is a vector space equipped with the coordinate-wise addition and scalar
multiplication. Define a norm ‖ · ‖ in the product linear space E by

∥
∥(υ, )

∥
∥ = ‖υ‖ + ‖‖.

Then the normed linear space (E,‖(·, ·)‖) is a Banach space which further becomes a Ba-
nach algebra. The multiplication action between the members of E is illustrated by

(
(υ, ) · (u, v)

)
(z) = (υ, )(z) · (u, v)(z) =

(
υ(z)u(z), (z)v(z)

)
(5)

for all z ∈ J, where (υ, ), (u, v) ∈ E.
We start by characterizing ϕ-Riem–Lio fractional integrals and derivatives.

Definition 2.1 ([2]) Let α > 0 and an increasing function ϕ : J −→ R satisfy ϕ′(z) �= 0 for
all z ∈ J. We define the left-sided ϕ-Riem–Lio integral of an integrable function υ on J in
the fractional framework w.r.t. another differentiable function ϕ as

I
α;ϕ
a+ υ(z) =

1
�(α)

∫ z

a
ϕ′(s)

(
ϕ(z) – ϕ(s)

)α–1
υ(s) ds, (6)

where � denotes the standard Euler–Gamma function.

Equation (6) turns to the Riem–Lio and Hadamard fractional integrals by taking ϕ(z) = z
and ϕ(z) = ln z, respectively. Moreover, the Cauchy formula for m-fold integrals can be
obtained by considering ϕ(z) = z and α = 1:

∫ z

a
dz1

∫ z1

a
dz2

∫ z2

a
dz3 · · ·

∫ zm–1

a
u(zm) dzm =

1
(m – 1)!

∫ z

a
(z – s)m–1u(s) ds.

Definition 2.2 ([2]) Let m ∈ N with m = [α] + 1. The left-sided ϕ-Riem–Lio fractional
derivative of an existing function υ ∈ Cm(J,R) w.r.t. a non-decreasing function ϕ such
that ϕ′(z) �= 0, for all z ∈ J in the fractional framework is represented as follows:

D
α;ϕ
a+ υ(z) =

(
1

ϕ′(z)
d
dz

)m

I
m–α;ϕ
a+ υ(z)

=
1

�(m – α)

(
1

ϕ′(z)
d
dz

)m ∫ z

a
ϕ′(s)

(
ϕ(z) – ϕ(s)

)m–α–1
υ(s) ds.

Definition 2.3 ([22]) Let m ∈ N with m = [α] + 1. The left-sided ϕ-Caputo fractional
derivative of an existing function υ ∈ Cm(J,R) w.r.t. a non-decreasing function ϕ such
that ϕ′(z) �= 0, for all z ∈ J in the fractional framework is represented as follows:

c
D

α;ϕ
a+ υ(z) = I

m–α;ϕ
a+

(
1

ϕ′(z)
d
dz

)m

υ(z).
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For simplicity, we have

υ[m]
ϕ (z) =

(
1

ϕ′(z)
d
dz

)m

υ(z).

From the definition, it is clear that

c
D

α;ϕ
a+ υ(z) =

⎧
⎨

⎩

∫ z
a

ϕ′(s)(ϕ(z)–ϕ(s))m–α–1

�(m–α) υ[m]
ϕ (s) ds if α /∈N,

υ[m]
ϕ (z) if α ∈N.

(7)

Notice that, if υ ∈ Cm(J,R), then the αth ϕ-Caputo fractional derivative of υ is deter-
mined by

c
D

α;ϕ
a+ υ(z) = D

α;ϕ
a+

[

υ(z) –
n–1∑

k=0

υ[k]
ϕ (a)
k!

(
ϕ(z) – ϕ(a)

)k
]

(see [22, Theorem 3]).

Lemma 2.4 ([2]) Assuming α,β > 0 and υ ∈ L1(J,R), we get

I
α;ϕ
a+ I

β ;ϕ
a+ υ(z) = I

α+β ;ϕ
a+ υ(z) (z ∈ J).

Lemma 2.5 ([23]) Assuming α > 0, following assertions hold:
If υ ∈ C(J,R), then

c
D

α;ϕ
a+ I

α;ϕ
a+ υ(z) = υ(z), z ∈ J.

If υ ∈ Cm(J,R) and m – 1 < α < m, then

I
α;ϕ
a+

c
D

α;ϕ
a+ υ(z) = υ(z) –

m–1∑

k=0

υ[k]
ϕ (a)
k!

[
ϕ(z) – ϕ(a)

]k , z ∈ J.

Lemma 2.6 ([2, 23]) Let z > a, α ≥ 0 and β > 0. Then
• I

α;ϕ
a+ (ϕ(z) – ϕ(a))β–1 = �(β)

�(α+β) (ϕ(z) – ϕ(a))α+β–1,
• c

D
α;ϕ
a+ (ϕ(z) – ϕ(a))β–1 = �(β)

�(β–α) (ϕ(z) – ϕ(a))β–α–1,
• c

D
α;ϕ
a+ (ϕ(z) – ϕ(a))k = 0, for any k = 0, . . . , m – 1; m ∈N.

The following definition will be used in the sequel.

Definition 2.7 ([30, 31]) A self-operator � on a Banach space C is called Lipschitz if there
exists a constant L� > 0 satisfying

∥
∥�(υ) – �( )

∥
∥ ≤ L�‖υ – ‖

for all elements υ, ∈ C.
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We shall make use of the hybrid fixed point result due to Dhage [30, 32] and the contrac-
tion principle due to Banach as a fundamental apparatus for demonstrating the existence–
uniqueness result of the coupled solutions of the proposed system given in this paper.

Theorem 2.8 ([30, 32]) Let X be a convex, bounded and closed set contained in the Banach
algebra C and the operators P ,S : C → C and Q : X → C be such that:

(s1) P and S are Lipschitz maps with Lipschitz constants LP and LS , respectively;
(s2) Q is continuous and compact;
(s3) υ = PυQ + Sυ∀ ∈ X ⇒ υ ∈ X; and
(s4) LPMQ + LS < 1, where MQ = ‖Q(X)‖ = sup{‖Qυ‖ : υ ∈ X}.
Then the operator equation υ = PυQυ + Sυ possesses a solution in X .

Theorem 2.9 ([33]) A contraction mapping T : � → � possesses a unique fixed point
where � be a nonempty closed set contained in a Banach space C.

3 Main result
To start for verifying the main results, the following assumptions are required for us in the
sequel:

(HYP0) The real functions H1 and H2 are bounded on J×R×R subject to bounds MH1

and MH2 , respectively. And there exist MKi > 0 for i = 1, 2 such that

∣
∣K1(z,υ, )

∣
∣ ≤ MK1 ,

∣
∣K2(z,υ, )

∣
∣ ≤ MK2 .

(HYP1) There exist LH1 > 0 and LH2 > 0 such that

∣
∣H1(z,υ, ) – H1(z, ῡ , ̄ )

∣
∣ ≤ LH1

(|υ – ῡ| + | – ̄ |)

and

∣
∣H2(z,υ, ) – H2(z, ῡ , ̄ )

∣
∣ ≤ LH2

(|υ – ῡ| + | – ̄ |)

for all z ∈ J and υ, ῡ , , ̄ ∈ R.
(HYP2) There exist LK2 > 0 and LK1 > 0 such that

∣
∣K1(z,υ, ) – K1(z, ῡ , ̄ )

∣
∣ ≤ LK1

(|υ – ῡ| + | – ̄ |)

and

∣
∣K2(z,υ, ) – K2(z, ῡ , ̄ )

∣
∣ ≤ LK2

(|υ – ῡ| + | – ̄ |)

for all z ∈ J and υ, ῡ , , ̄ ∈ R.
(HYP3) There exist bounded functions LFk , LGk : J →R+ with bounds ‖LFk ‖ and ‖LGj‖

such that

∣
∣Fk(z,υ, ) – Fk(z, ῡ , ̄ )

∣
∣ ≤ LFk (z)

(|υ – ῡ| + | – ̄ |), k = 1, . . . , m,
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and

∣
∣Gj(z,υ, ) – Gj(z, ῡ , ̄ )

∣
∣ ≤ LGj (z)

(|υ – ῡ| + | – ̄ |), j = 1, . . . , n,

for z ∈ J and υ, ῡ, , ̄ ∈R.
(HYP4) There exist Kj,0 > 0(j = 1, 2) such that

K1,0 = sup
z∈J

∣
∣K1(z, 0, 0)

∣
∣, K2,0 = sup

z∈J

∣
∣K2(z, 0, 0)

∣
∣,

along with

F0 = sup
z∈J

∣
∣Fk(z, 0, 0)

∣
∣ ∀k ∈ {1, 2, . . . , m},

and

G0 = sup
z∈J

∣
∣Gj(z, 0, 0)

∣
∣ ∀j ∈ {1, 2, . . . , n}.

(HYP5) The constants in the hypotheses (HYP1)–(HYP4) obey the following assertion:

[LK1A1MH1 ] +
[
B1‖LFk ‖

]
+ [LK2A2MH2 ] +

[
B2‖LGj‖

]
< 1 (8)

To show the existence of solutions of the proposed system of integro-differential IVPs
(3)–(4), we require the lemma given below.

Lemma 3.1 If a function υ ∈ Cm(J,R) is taken as a solution for the hybrid fractional
integro-differential equation

c
D

ν;ϕ
a+

[
υ(z) –

∑m
k=1 I

σk ;ϕ
a+ Fk(z,υ(z), (z))

K1(z,υ(z), (z))

]

= H1
(
z,υ(z), (z)

)
, z ∈ J := [a, b], (9)

with the initial condition

υ(a) = 0, (10)

then it satisfies the following hybrid fractional integral equation:

υ(z) =
m∑

k=1

I
σk ;ϕ
a+ Fk

(
z,υ(z), (z)

)
+

([
K1

(
z,υ(z), (z)

)]× [
I
ν;ϕ

H1
(
z,υ(z), (z)

)])
. (11)

Proof Applying the νth ψ-Riem–Lio fractional integral on both sides of (9) and using
Lemma 2.5, we obtain

[
υ(z) –

∑m
k=1 I

σk ;ϕ
a+ Fk(z,υ(z), (z))

K1(z,υ(z), (z))

]

= I
ν;ϕ
a+ H1

(
z,υ(z), (z)

)
+ c1, (12)

which implies

υ(z) =
m∑

k=1

I
σk ;ϕ
a+ Fk

(
z,υ(z), (z)

)
+

[
K1

(
z,υ(z), (z)

)](
I
ν;ϕ
a+ H1

(
z,υ(z), (z)

)
+ c1

)
. (13)
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Using the initial condition υ(a) = 0, we have c1 = υ(a)
K1(a,υ(a), (a)) = 0. Now, substituting the

value of c1 in (13), we get

υ(z) =
m∑

k=1

I
σk ;ϕ
a+ Fk

(
z,υ(z), (z)

)
+

([
K1

(
z,υ(z), (z)

)]× [
I
ν;ϕ

H1
(
z,υ(z), (z)

)])
. (14)

The proof is finished. �

Lemma 3.2 If a function  ∈ Cm(J,R) is taken as a solution for the hybrid fractional
integro-differential equation

c
D

μ;ϕ
a+

[
 (z) –

∑n
k=1 I

ξk ;ϕ
a+ Gk(z,υ(z), (z))

K2(z,υ(z), (z))

]

= H2
(
z,υ(z), (z)

)
, z ∈ J := [a, b], (15)

with the initial condition

 (a) = 0, (16)

then it satisfies the following hybrid fractional integral equation:

 (z) =
n∑

k=1

I
ξk ;ϕ
a+ Gk

(
z,υ(z), (z)

)

+
([
K2

(
z,υ(z), (z)

)] × [
I
μ;ϕ

H2
(
z,υ(z), (z)

)])
. (17)

Proof The proof is similar to above. �

Notation 3.3 For simplicity, take

A1 =
(ϕ(b) – ϕ(a))ν

�(ν + 1)
, A2 =

(ϕ(b) – ϕ(a))μ

�(μ + 1)
,

B1 =
m∑

k=1

(ϕ(b) – ϕ(a))σk

�(σk + 1)
, B2 =

n∑

j=1

(ϕ(b) – ϕ(a))ξj

�(ξj + 1)
‖,

LP = LK1 + LK2 , LS = B1‖LFk ‖ + B2‖LGj‖,

LQ = (A1MH1 + A2MH2 ). (18)

Theorem 3.4 Suppose that the hypotheses (HYP0)–(HYP5) are obeyed. Furthermore, if

LPLQ + LS < 1, (19)

then the coupled system (3)–(4) possesses a mild coupled solution formulated on J.

Proof According to Lemmas 3.1 and 3.2, the mild coupled solutions of the coupled system
of fractional integro-differential IVPs in (3)–(4) are the solutions of the coupled fractional
integral equations

υ(z) =
m∑

k=1

I
σk ;ϕ
a+ Fk

(
z,υ(z), (z)

)
+

[
K1

(
z,υ(z), (z)

)] × [
I
ν;ϕ
a+ H1

(
z,υ(z), (z)

)]
(20)
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and

 (z) =
n∑

j=1

I
ξj ;ϕ
a+ Gk

(
z,υ(z), (z)

)
+

[
K2

(
z,υ(z), (z)

)] × [
I
μ;ϕ
a+ H2

(
z,υ(z), (z)

)]
. (21)

Choose ρ > 0 so that

ρ ≥ K1,0(A1MH1 ) + B1F0 + K1,0(A2MH2 ) + B2G0

1 – [LK1A1MH1 ] – [B1‖LFk ‖] – [LK2A2MH2 ] – [B2‖LGj‖]
(22)

and specify a subset X of the Banach space C× C by

X =
{

(υ, ) ∈ C× C :
∥
∥(υ, )

∥
∥ ≤ ρ

}
.

Evidently, X is a convex, bounded and closed set contained in the Banach space C×C = E.
Characterize the operators P = (P1,P2) : E → E,S = (S1,S2) : E → E and Q = (Q1,Q2) :
X → E by

⎧
⎨

⎩

P1(υ, ) = K1(z,υ(z), (z)), z ∈ J,

P2(υ, ) = K2(z,υ(z), (z)), z ∈ J,

and
⎧
⎨

⎩

Q1(υ, ) = I
ν;ϕ
a+ H1(z,υ(z), (z)), z ∈ J,

Q2(υ, ) = I
μ;ϕ
a+ H2(z,υ(z), (z)), z ∈ J,

and
⎧
⎨

⎩

S1(υ, ) =
∑m

k=1 I
σk ;ϕ
a+ Fk(z,υ(z), (z)), z ∈ J,

S2(υ, ) =
∑n

j=1 I
ξj ;ϕ
a+ ;Gj(z,υ(z), (z)), z ∈ J.

In this case, the coupled system of the given hybrid integral equations (20)–(21) can be
represented in the framework of a system of operator equations as

P(υ, )(z)Q(υ, )(z) + S(υ, )(z) = (υ, )(z), z ∈ J,

which further taking into account the multiplication given in (5) reduces to

(
P1(υ, )(z)Q1(υ, )(z) + S1(υ, )(z),P2(υ, )(z)Q2(υ, )(z) + S2(υ, )(z)

)

= (υ, )(z)

for z ∈ J. This further implies that

⎧
⎨

⎩

P1(υ, )(z)Q1(υ, )(z) + S1(υ, )(z) = υ(z), z ∈ J,

P2(υ, )(z)Q2(υ, )(z) + S2(υ, )(z) =  (z), z ∈ J.
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Presently, we demonstrate in the following steps that all three operators P , Q and S follow
the assertions of Theorem 2.8.

Step I: We first show that P = (P1,P2) and S = (S1,S2) are Lipschitzian on E with
Lipschitz constants LP = (LK1 + LK2 ) and LS = (B1‖LFk ‖ + B2‖LGj‖), respectively. Let
(υ, ), (ῡ, ̄ ) ∈ E be arbitrary. Then, using (HYP2), we have

∣
∣P1(υ, )(z) – P1(ῡ, ̄ )(z)

∣
∣ =

∣
∣K1

(
z,υ(z), (z)

)
– K1

(
z, ῡ(z), ̄ (z)

)∣
∣

≤ LK1

(∣
∣υ(z) – ῡ(z)

∣
∣ +

∣
∣ (z) – ̄ (z)

∣
∣
)

≤ LK1

(‖υ – ῡ‖ + ‖ – ̄‖)

for all z ∈ J. Operating the supremum norm over z, we get

∥
∥P1(υ, ) – P1(ῡ, ̄ )

∥
∥ ≤ LK1

(‖υ – ῡ‖ + ‖ – ̄‖)

for all (υ, ), (ῡ , ̄ ) ∈ E. Along the same lines, we get

∥
∥P2(υ, ) – P2(ῡ, ̄ )

∥
∥ ≤ LK2

(‖υ – ῡ‖ + ‖ – ̄‖)

for all (υ, ), (ῡ , ̄ ) ∈ E. Accordingly, employing the definition of operator P , we get

∥
∥P(υ, ) – P(ῡ, ̄ )

∥
∥ =

∥
∥
(
P1(υ, ),P2(υ, )

)
–

(
P1(ῡ, ̄ ),P2(ῡ, ̄ )

)∥
∥

=
∥
∥
(
P1(υ, ) – P1(ῡ , ̄ ),P2(υ, ) – P2(ῡ, ̄ )

)∥
∥

≤ ∥
∥P1(υ, ) – P1(ῡ, ̄ )

∥
∥ +

∥
∥P2(υ, ) – P2(ῡ , ̄ )

∥
∥

≤ LK1

(‖υ – ῡ‖ + ‖ – ̄‖) + LK2

(‖υ – ῡ‖ + ‖ – ̄‖)

= (LK1 + LK2 )
(‖υ – ῡ‖ + ‖ – ̄‖)

= LP
∥
∥(υ, ) – (ῡ, ̄ )

∥
∥

for all (υ, ), (ῡ, ̄ ) ∈ E, where LP = (LK1 + LK2 ). Similarly, due to the definition of S and
using (HYP3), we get

∣
∣S1(υ, )(z) – S1(ῡ , ̄ )(z)

∣
∣

=

∣
∣
∣
∣
∣

m∑

k=1

I
σk ;ϕ
a+ Fk

(
z,υ(z), (z)

)
–

m∑

k=1

I
σk ;ϕ
a+ Fk

(
z, ῡ(z), ̄ (z)

)
∣
∣
∣
∣
∣

≤
m∑

i=1

1
�(σk)

∫ z

a
ϕ′(z)

(
ϕ(z) – ϕ(s)

)σk –1LFk (s)
(∣
∣υ(s) – ῡ(s)

∣
∣ +

∣
∣ (s) – ̄ (s)

∣
∣
)

ds

≤
m∑

k=1

(ϕ(b) – ϕ(a))σk

�(σk + 1)
‖LFk ‖

(∥
∥(υ – ῡ)

∥
∥ +

∥
∥ – ̄

∥
∥
)

for all z ∈ J. Operating the supremum over z, we get

∥
∥S1(υ, ) – S1(ῡ, ̄ )

∥
∥ ≤

m∑

k=1

(ϕ(b) – ϕ(a))σk

�(σk + 1)
‖LFk ‖

∥
∥(υ, ) – (ῡ, ̄ )

∥
∥
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= B1‖LFk ‖
∥
∥(υ, ) – (ῡ, ̄ )

∥
∥ (23)

for all (υ, ), (ῡ, ̄ ) ∈ E. Similarly using (HYP3), we can confirm that S2 is also Lips-
chitzian with Lipschitz constant B2‖LGj‖; that is,

∥
∥S2(υ, ) – S2(ῡ, ̄ )

∥
∥ ≤

n∑

j=1

(ϕ(b) – ϕ(a))ξj

�(ξj + 1)
‖LGj‖

∥
∥(υ, ) – (ῡ , ̄ )

∥
∥

= B2‖LGj‖
∥
∥(υ, ) – (ῡ, ̄ )

∥
∥ (24)

for all (υ, ), (ῡ , ̄ ) ∈ E. Hence, from (23)–(24) it follows that

∥
∥S(υ, ) – S(ῡ, ̄ )

∥
∥ ≤ (

B1‖LFk ‖ + B2‖LGj‖
)∥
∥(υ, ) – (ῡ , ̄ )

∥
∥

for all (υ, ), (ῡ, ̄ ) ∈ E. In consequence, S = (S1,S2) is a Lipschitz map subject to the
constant

LS =
(
B1‖LFk ‖ + B2‖LGj‖

)
> 0.

Step II: Now we show that Q = (Q1,Q2) is a continuous and compact operator from X
into E. To deduce the continuity of Q, we regard {(υn,n)}n∈N as a sequence of points
contained in X going to (υ, ) ∈ X. Then the dominated convergence result propounded
by Lebesgue yields

lim
n→∞Q1(υn,n)(z) =

1
�(ν)

lim
n→∞

∫ z

a
ϕ′(s)

(
ϕ(z) – ϕ(s)

)ν–1
H1

(
s,υn(s),n(s)

)
ds

=
1

�(ν)

∫ z

a
ϕ′(s)

(
ϕ(z) – ϕ(s)

)ν–1
lim

n→∞H1
(
s,υn(s),n(s)

)
ds

=
1

�(ν)

∫ z

a
ϕ′(s)

(
ϕ(z) – ϕ(s)

)ν–1
H1

(
s,υ(s), (s)

)
ds

= Q1(υ, )(z)

for al z ∈ J. Similarly, we prove

lim
n→∞Q2(υn,n)(z) = Q2(υ, )(z)

for all z ∈ J. Hence Q(υn,n) = (Q1(υn,n),Q2(υn,n)) converges to Q(υ, ) pointwise
on J. In the next, the compactness of Q is explored on X. Firstly, to ensure the uniform
boundedness, by assuming (υ, ) ∈ X and applying (HYP0), we get

∣
∣Q1(υ, )(z)

∣
∣ =

1
�(ν)

∫ z

a
ϕ′(s)

(
ϕ(z) – ϕ(s)

)ν–1∣∣H1
(
s,υ(s), (s)

)∣
∣ds

≤ (ϕ(b) – ϕ(a))ν

�(ν + 1)
MH1 .

Operating the supremum in terms of z in the above, we arrive at

∥
∥Q1(υ, )(z)

∥
∥ ≤ (ϕ(b) – ϕ(a))ν

�(ν + 1)
MH1 = A1MH1 < ∞
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for all (υ, ) ∈ X. Hence Q1 is a uniformly bounded operator on X. In a similar phase,
we can guarantee that Q2 involves the uniform boundedness specification on X subject
to bound A2MH2 . Accordingly, Q will be a uniformly bounded operator on X, because we
have

∥
∥Q(υ, )(z)

∥
∥ =

∥
∥Q1(υ, )(z)

∥
∥ +

∥
∥Q2(υ, )(z)

∥
∥

≤ (ϕ(b) – ϕ(a))ν

�(ν + 1)
MH1 +

(ϕ(b) – ϕ(a))μ

�(μ + 1)
MH2

= A1MH1 + A2MH2 = LQ < ∞.

Next, to confirm the equicontinuity of Q, let (υ, ) ∈ X be an arbitrary point and let
r, q ∈ J subject to r < q. Then we have

∣
∣Q1(υ, )(q) – Q1(υ, )(r)

∣
∣

≤ ∣
∣I

ν,ϕ
a+ H1

(
s,υ(z), (z)

)|z=q – I
ν,ϕ
a+ H1

(
s,υ(z), (z)

)|z=r
∣
∣

≤ 1
�(ν)

∫ r

a
ϕ′(s)

[(
ϕ(q) – ϕ(s)

)ν–1 –
(
ϕ(r) – ϕ(s)

)ν–1]∣∣H1
(
s,υ(s), (s)

)∣
∣ds

+
1

�(ν)

∫ q

r
ϕ′(s)

(
ϕ(q) – ϕ(s)

)ν–1∣∣H1
(
s,υ(s), (s)

)∣
∣ds

→ 0 as r → q.

This implies

∥
∥Q1(υ, )(q) – Q1(υ, )(r)

∥
∥ → 0 as r → q

uniformly for all (υ, ) ∈ X. Similarly,

∥
∥Q2(υ, )(q) – Q2(υ, )(r)

∥
∥ → 0 as r → q

uniformly for all (υ, ) ∈ X. Hence, it follows that

∥
∥Q(υ, )(q) – Q(υ, )(r)

∥
∥ → 0 as r → q

uniformly for all (υ, ) ∈ X. Now, it is understood thatQ has the equicontinuity feature on
the Banach space E. In consequence, Q will be relatively compact and thus the conclusion
of a result due to Arzelá–Ascoli shows that Q is completely continuous and in the final
step, Q is compact on X.

Step III: We now proceed to demonstrate the third condition (s3) of Theorem 2.8. Let
(u, v) be an element in X such that

(υ, ) =
(
P1(υ, )Q1(u, v) + S1(υ, ),P2(υ, )Q2(u, v) + S2(υ, )

)
.

Then we have

∣
∣υ(z)

∣
∣ =

∣
∣P1(υ, )(z)Q1(u, v)(z) + S1(υ, )

∣
∣
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≤ ∣
∣P1(υ, )(z)

∣
∣
∣
∣Q1(u, v)(z)

∣
∣ +

∣
∣S1(υ, )

∣
∣

≤ [∣
∣K1(z,υ, ) – K1(z, 0, 0)

∣
∣ +

∣
∣K1(z, 0, 0)

∣
∣
]

×
(

1
�(ν)

∫ z

a
ϕ′(s)

(
ϕ(z) – ϕ(s)

)ν–1∣∣H1
(
s, u(s), v(s)

)∣
∣ds

)

+
m∑

K=1

Iσk ;ϕ[∣
∣Fk(z,υ, ) – Fk(z, 0, 0)

∣
∣ +

∣
∣Fk(z, 0, 0)

∣
∣
]

≤ [
LK1

(‖υ‖ + ‖‖) + K1,0
] × (A1MH1 )

+ B1
[
LFk

(‖υ‖ + ‖‖) + F0
]
. (25)

Taking the supremum in the above inequality (25), we obtain

‖υ‖ ≤ [
LK1

(‖υ‖ + ‖‖) + K1,0
] × (A1MH1 ) + B1

[‖LFk ‖
(‖υ‖ + ‖‖) + F0

]
. (26)

Similarly, proceeding with the analogous arguments, we obtain

‖‖ ≤ [
LK2

(‖υ‖ + ‖‖) + K2,0
] × (A2MH2 ) + B2

[‖LGj‖
(‖υ‖ + ‖‖) + G0

]
. (27)

Adding the inequalities (26) and (27), we obtain

‖υ‖ + ‖‖
≤ [

LK1

(‖υ‖ + ‖‖) + K1,0
] × (A1MH1 ) + B1

[‖LFk ‖
(‖υ‖ + ‖‖) + F0

]

+
[
LK2

(‖υ‖ + ‖‖) + K2,0
] × (A2MH2 ) + B2

[‖LGj‖
(‖υ‖ + ‖‖) + G0

]
.

Thus

‖υ‖ + ‖‖ ≤ K1,0(A1MH1 ) + B1F0 + K1,0(A2MH2 ) + B2G0

1 – [LK1A1MH1 ] – [B1‖LFk ‖] – [LK2A2MH2 ] – [B2‖LGj‖]
≤ ρ. (28)

As ‖(υ, )‖ = ‖υ‖+‖‖, we have ‖(υ, )‖ ≤ ρ . Thus (υ, ) ∈ X and so the assertion (s3)
of Theorem 2.8 follows.

Step IV: At last, we have

MQ =
∥
∥Q(X)

∥
∥ = sup

{∥
∥Q(υ, )

∥
∥ : (υ, ) ∈ X

}

= sup
{∥
∥Q1(υ, )

∥
∥ +

∥
∥Q2(υ, )

∥
∥ : (υ, ) ∈ X

}

≤A1MH1 + A2MH2 .

From the above estimate and by (18), we obtain

LPMQ + LS ≤ (LK1 + LK2 )(A1MH1 + A2MH2 ) + B1‖LFk ‖ + B2‖LGj‖ < 1

and so the hypothesis (s4) of Theorem 2.8 is obeyed. Accordingly, the operators P , Q
and S obey all four assertions of Theorem 2.8 and thus the equation P(υ, )Q(υ, ) +
S(υ, ) = (υ, ) possesses a solution in X. Consequently, the generalized coupled hybrid
system of integro-differential IVPs (3)–(4) involves a mild coupled solution formulated on
J. This finishes the argument. �
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3.1 Uniqueness via the Banach contraction principle
This section is devoted to demonstrating the uniqueness subject for the proposed coupled
system of ϕ-Caputo integro-differential IVPs (3)–(4) by making use of Theorem 2.9.

Lemma 3.5 If the functions Fk ,Gj : J × R
2 → R, K1,K2 : J × R

2 → R\{0} and H1,H2 :
J×R

2 →R are continuous, then the coupled system of ϕ-Caputo integro-differential IVPs
(3)–(4) is equivalent to the nonlinear fractional integral equations which take the form

υ(z) =
m∑

k=1

I
σk ;ϕ
a+ Fk

(
z,υ(z), (z)

)
+

[
K1

(
z,υ(z), (z)

)] × [
I
ν;ϕ
a+ H1

(
z,υ(z), (z)

)]
(29)

and

 (z) =
n∑

j=1

I
ξj ;ϕ
a+ Gk

(
z,υ(z), (z)

)
+

[
K2

(
z,υ(z), (z)

)] × [
I
μ;ϕ
a+ H2

(
z,υ(z), (z)

)]
(30)

for all z ∈ J.

Theorem 3.6 Assume that the continuous functions Fk ,Gj : J × R
2 → R, K1,K2 : J ×

R
2 →R\{0} and H1,H2 : J×R

2 →R satisfy the assumptions (HYP0)–(HYP3). Then the
system of the coupled integro-differential IVPs (3)–(4) possesses one and only one solution
if

2∑

i=1

�i < 1 (31)

subject to the conditions

�1 =
[
A1(LK1 MK1 + LH1 MH1 ) + B1‖LFk ‖

]
,

�2 =
[
A2(LK2 MK2 + LH2 MH2 ) + B2‖LGj‖

]
. (32)

Proof According to Lemma 3.5, we consider the operators G1 : E → E and G2 : E → E

defined by

G1
(
υ(z), (z)

)
=

m∑

k=1

I
σk ;ϕ
a+ Fk

(
z,υ(z), (z)

)

+
[
K1

(
z,υ(z), (z)

)] × [
I
ν;ϕ
a+ H1

(
z,υ(z), (z)

)]
(33)

and

G2
(
υ(z), (z)

)
=

n∑

j=1

I
ξj ;ϕ
a+ Gk

(
z,υ(z), (z)

)

+
[
K2

(
z,υ(z), (z)

)] × [
I
μ;ϕ
a+ H2

(
z,υ(z), (z)

)]
. (34)

Therefore, we construct G : E → E as

G(υ, )(z) = G1(υ, )(z) + G2(υ, )(z).
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Let (υ, ), (υ, ) ∈ E. Applying (HYP0)–(HYP3), we have

∣
∣G1(υ, )(z) – G1(υ , )(z)

∣
∣

≤
m∑

k=1

(ϕ(b) – ϕ(a))σk

�(σk + 1)
‖LFk ‖

(|υ – υ| + | –  |)

+
(ϕ(b) – ϕ(a))ν

�(ν + 1)
(LK1 MK1 + LH1 MH1 )

(|υ – υ| + | –  |)

≤ [
A1(LK1 MK1 + LH1 MH1 ) + B1‖LFk ‖

](|υ – υ| + | –  |),

which implies

∥
∥G1(υ, )(z) – G1(υ , )(z)

∥
∥ ≤ �1

(‖υ – υ‖ + ‖ – ‖) = �1
∥
∥(υ, ) – (υ, )

∥
∥ (35)

subject to �1 given in (32). By the same technique, we can also get

∥
∥G2(υ, )(z) – G2(υ , )(z)

∥
∥ ≤ �2

(‖υ – υ‖ + ‖ – ‖) = �2
∥
∥(υ, ) – (υ, )

∥
∥ (36)

subject to �2 given in (32). In view of the condition
∑2

i=1 �i < 1 and

∥
∥G(υ, )(z) – G(υ , )(z)

∥
∥ ≤ (�1 + �2)

∥
∥(υ, ) – (υ , )

∥
∥, (37)

we see that G is a contraction. In the light of Theorem 2.9, G possesses a fixed point
uniquely which guarantees that the system of the coupled integro-differential IVPs (3)–(4)
involves a solution uniquely. �

3.2 U–H stability and its generalized U–H version
In the current subsection, we are interested in studying U–H and the generalized U–H
stability types of the proposed system of the coupled integro-differential IVPs (3)–(4).

Definition 3.7 The system of the coupled integro-differential IVPs (3)–(4) is stable with
U–H criterion if a real number c = max(c1, c2) > 0 exists so that, for any ε = max(ε1, ε2) > 0
and for any (υ, ) ∈ E satisfying

⎧
⎪⎨

⎪⎩

|cDν;ϕ
a+ [ υ(z)–

∑m
k=1 I

σk ;ϕ
a+ Fk (z,υ(z), (z))

K1(z,υ(z), (z)) ] – H1(z,υ(z), (z))| ≤ ε1, z ∈ J,

|cDμ;ϕ
a+ [

 (z)–
∑n

j=1 I
ξj ;ϕ
a+ Gj(z,υ(z), (z))

K2(z,υ(z), (z)) ] – H2(z,υ(z), z)| ≤ ε2, z ∈ J,
(38)

there exists a unique solution (υ, ) ∈ C× C of (3)–(4) with

∥
∥(υ, ) – (υ, )

∥
∥ ≤ cε.

Definition 3.8 The system of the coupled integro-differential IVPs (3)–(4) is named the
generalized stable with U–H criterion if there exists σ = max(σ1,σ2) ∈ C(R>0,R>0) along
with σ (0) = 0 subject to for any ε = max(ε1, ε2) > 0 and for any (υ, ) ∈ E satisfying (38), a
solution (υ, ) ∈ E of (3)–(4) exists uniquely for which

∥
∥(υ, ) – (υ, )

∥
∥ ≤ σ (ε).
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Remark 3.9 (υ, ) ∈ E satisfies the system (38) if there exists a function (g1,g2) ∈ E (which
depends on (υ, )) such that

(i) |g1(z)| ≤ ε1and |g2(z)| ≤ ε2 for z ∈ J;
(ii) for z ∈ J,

⎧
⎨

⎩

c
D

ν;ϕ
a+ [ υ(z)–

∑m
k=1 I

σk ;ϕ
a+ Fk (z,υ(z), (z))

K1(z,υ(z), (z)) ] = H1(z,υ(z), z) + g1(z),
c
D

μ;ϕ
a+ [

 (z)–
∑n

j=1 I
ξ ;ϕ
a+ Gj(z,υ(z), (z))

K2(z,υ(z), (z)) ] = H2(z,υ(z), (z)) + g1(z).

Theorem 3.10 Suppose that (HYP2) and (38) are fulfilled. Then the system of the coupled
integro-differential IVPs (3)–(4) is U–H and generalized U–H stable provided that (1 –
�1)(1 – �2) – �2�1 �= 0 where �1 and �2 are illustrated in (32).

Proof For ε1, ε2 > 0, let (υ, ) ∈ E be any solution of (38). By Remark 3.9 and Lemma 3.1,
we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

υ(z) = K1(z,υ(z), (z))Iν;ϕ
a+ H1(z,υ(z), z) +

∑m
k=1 I

σk ;ϕ
a+ Fk(z,υ(z), (z))

+ K1(z,υ(z), (z))Iν;ϕ
a+ g1(z),

 (z) = K2(z,υ(z), (z))Iμ;ϕ
a+ H2(z,υ(z), z) +

∑n
j=1 I

ξj ;ϕ
a+ Gj(z,υ(z), (z))

+ K2(z,υ(z), (z))Iμ;ϕ
a+ g2(z),

(39)

for z ∈ J and

υ(a) = 0,  (a) = 0.

From (39) and for z ∈ J, we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|υ(z) – K1(z,υ(z), (z))Iν;ϕ
a+ H1(z,υ(z), z) –

∑m
k=1 I

σk ;ϕ
a+ Fk(z,υ(z), (z))|

≤ |K1(z,υ(z), (z))|Iν;ϕ
a+ |g1(z)| ≤ (ϕ(z)–ϕ(a))ν

�(ν+1) LK1ε1,

| (z) – K2(z,υ(z), (z))Iν;ϕ
a+ H2(z,υ(z), z) –

∑n
j=1 I

ξj ;ϕ
a+ Gj(z,υ(z), (z))|

≤ |K2(z,υ(z), (z))|Iν;ϕ
a+ |g2(z)| ≤ (ϕ(z)–ϕ(a))μ

�(μ+1) LK2ε2,

(40)

and

∣
∣υ(a)

∣
∣ ≤ 0,

∣
∣ (a)

∣
∣ ≤ 0.

Let (υ, ) ∈ E be the solution of the system

⎧
⎪⎨

⎪⎩

c
D

ν;ϕ
a+ [ υ(z)–

∑m
k=1 I

σk ;ϕ
a+ Fk (z,υ(z), (z))

K1(z,υ(z), (z)) ] = H1(z,υ(z), (z)),

c
D

μ;ϕ
a+ [

 (z)–
∑n

j=1 I
ξj ;ϕ
a+ Gj(z,υ(z), (z))

K2(z,υ(z), (z)) ] = H2(z,υ(z), (z)),
z ∈ J, (41)

with
⎧
⎨

⎩

υ(a) = υ(a) = 0,

 (a) =  (a) = 0.
(42)
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Thanks to Lemma 3.1, the equivalent fractional integral system to problem (41)–(42) is

υ(z) = K1
(
z,υz, (z)

)
I
ν,ϕ
a+ H1

(
z,υz, (z)

)
+

m∑

k=1

I
σk ,ϕ
a+ Fk

(
z,υ(z), (z)

)
, if z ∈ J, (43)

 (z) = K2
(
z,υz, (z)

)
I
μ,ϕ
a+ H2

(
z,υ(z), (z)

)
+

n∑

j=1

I
ξj ,ϕ
a+ Gj

(
z,υ(z), (z)

)
if z ∈ J. (44)

Since υ(a) = υ(a) and  (a) =  (a) we have |υ(a) – υ(a)| = 0 and | (a) –  (a)| = 0. On
the other hand, for any z ∈ J and by the same arguments in Theorem 3.6 with (40) and
(43), we get

∣
∣υ(z) – υ(z)

∣
∣

=

∣
∣
∣
∣
∣
υ(z) – K1

(
z,υz, (z)

) × I
ν,ϕ
a+ H1

(
z,υ(z), (z)

)
–

m∑

k=1

I
σk ,ϕ
a+ Fk

(
z,υ(z), (z)

)
∣
∣
∣
∣
∣

≤ (ϕ(z) – ϕ(a))ν

�(ν + 1)
LK1ε1 + �1

(‖υ – υ‖C + ‖ – ‖),

which implies

(1 – �1)‖υ – υ‖ – �1‖ – ‖ ≤ �1ε1, (45)

where �1 := (ϕ(b)–ϕ(a))ν
�(ν+1) LK1 . Similarly, we have

(1 – �2)‖ – ‖ – �2‖υ – υ‖ ≤ �2ε2, (46)

where �2 := (ϕ(b)–ϕ(a))μ
�(μ+1) LK2 .

Representing (45) and (46) as matrices, we get

(
1 – �1 –�1

–�2 1 – �2

)(
‖υ – υ‖

‖ – ‖

)

≤
(

�1ε1

�2ε2

)

. (47)

After straightforward calculations of (47), we find that

‖υ – υ‖ ≤ 1 – �1

�
�1ε1 +

�1

�
�2ε2, (48)

‖ – ‖ ≤ �2

�
�1ε1 +

1 – �2

�
�2ε2, (49)

where � = (1 – �1)(1 – �2) – �2�1 �= 0. By collecting (48) and (49), we obtain

‖υ – υ‖ + ‖ – ‖ ≤
(

1 – �1

�
+

�2

�

)

�1ε1 +
(

�1

�
+

1 – �2

�

)

�2ε2.

For ε = max(ε1, ε2) and c = ( (1–�1+�2)�1+(�1+1–�2)�2
�

), we get

∥
∥(υ, ) – (υ, )

∥
∥ = ‖υ – υ‖ + ‖ – ‖ ≤ cε.
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Therefore, by means of Definition 3.7, the solution of the problem (3)–(4) is U–H stable.
Similarly, it gives the existence of a function σ ∈ C(R>0,R>0) so that σ (ε) = cε along with
σ (0) = 0. Accordingly, the solution of the system of the coupled integro-differential IVPs
(3)–(4) is generalized U–H stable. �

4 Example
In this section, we present an illustrative coupled system of the given coupled hybrid
integro-differential IVPs (3)–(4) to ensure the correctness of results obtained above.

Example 4.1 We formulate the coupled system of hybrid integro-differential IVPs which
take the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D
ν;ϕ
0+ [ λ(z)–Iσ1;ϕ

0+ ( z2
10 ( 1

2 (|λ|+|λ̂|)+e–z))
√

π cos(πz)
(7π+15ez )2

|λ|+|λ̂|
1+z + z

10
] =

√
3 cos2(2πz)
3(27–z) (|λ| + |λ̂|),

D
μ;ϕ
0+ [

λ̂(z)–Iξ1;ϕ
0+ ( 1

100 ez+ 2+|λ|+|λ̂|
8e2+z(1+|λ|+|λ̂|) )

1
10 ( |λ|+|λ̂|

1+z2 +z2)
] =

√
2π

4(4π–z)2 (|λ| + |λ̂|),

λ(a) = 0, λ̂(a) = 0.

(50)

Let us consider the hybrid system (50) with specific data:

ν =
1
2

, μ =
1
4

, σ1 =
2
3

, ξ1 =
3
5

, a = 0,

b = 1, m = n = 1, ϕ(z) = z, J = [0, 1].

Using the given data, we find that

F0 =
1

10
, G0 =

1
100

, K1,0 =
1

10
, K2,0 =

1
10

,

and

∣
∣F1(z,λ, λ̂) – F1(z,λ, λ̂)

∣
∣ ≤ 1

10
(‖λ – λ‖ + ‖λ̂ – λ̂‖),

∣
∣G1(z,λ, λ̂) – G1(z,λ, λ̂)

∣
∣ ≤ 1

8e2

(‖λ – λ‖ + ‖λ̂ – λ̂‖),

∣
∣K1(z,λ, λ̂) – K1(z,λ, λ̂)

∣
∣ ≤

√
π

(7π + 15)2

(‖λ – λ‖ + ‖λ̂ – λ̂‖),

∣
∣K2(z,λ, λ̂) – K2(z,λ, λ̂)

∣
∣ ≤ 1

10
(‖λ – λ‖ + ‖λ̂ – λ̂‖),

∣
∣H1(z,λ, λ̂) – H1(z,λ, λ̂)

∣
∣ ≤

√
3 cos2(2πz)
3(27 – z)

(‖λ – λ‖ + ‖λ̂ – λ̂‖),

∣
∣H2(z,λ, λ̂) – H2(z,λ, λ̂)

∣
∣ ≤

√
2π

4(4π – z)2

(‖λ – λ‖ + ‖λ̂ – λ̂‖).

Hence, the hypotheses (HYP1)–(HYP3) are satisfied with LF1 = 1
10 , LG1 = 1

8e2 , LK1 =√
π

(7π+15)2 , LK2 = 1
10 , ‖LH1‖ =

√
3

81 and ‖LH2‖ =
√

2
64π

. We demonstrate that the assertion (31)
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holds with z ∈ J = [0, 1] in which

�1 = 0.1108, �2 = 0.0562,
2∑

i=1

�i = 0.167 < 1

and also

�1 = 0.0015, �2 = 0.11033.

Since the assertions of Theorem 3.6 are verified, a solution exists uniquely for the coupled
hybrid system of integro-differential IVPs (50) on [0, 1]. Moreover, Theorem 3.10 ensures
the U–H and generalized U–H stability for problem (50). As shown in Theorem 3.10, for
every ε = max(ε1, ε2) > 0, if (υ, ) ∈R satisfies

⎧
⎨

⎩

|cDν;ϕ
a+ [ υ(z)–

∑m
k=1 I

σk ;ϕ
a+ Fk (z,υ(z), (z))

K1(z,υ(z), (z)) ] – H1(z,υ(z), (z))| ≤ ε1, z ∈ J,

|cDμ;ϕ
a+ [  (z)–

∑n
k=1 I

ξk ;ϕ
a+ Gk (z,υ(z), (z))

K2(z,υ(z), (z)) ] – H2(z,υ(z), (z))| ≤ ε1, z ∈ J,
(51)

then there exists a unique solution (υ, ) ∈ R such that

∥
∥(υ, ) – (υ, )

∥
∥ ≤ cε,

where c = ( (1–�1+�2)�1+(�1+1–�2)�2
�

) ≈ 0.1414 > 0 and � = (1 – �1)(1 – �2) – �2�1 =
0.8330 �= 0. Hence it is confirmed that the coupled hybrid system of integro-differential
IVPs (50) is U–H and generalized U–H stable.

5 Conclusion
In this research article, we investigate the existence and uniqueness of solutions to a cou-
pled hybrid system of fractional integro-differential equations involving ϕ-Caputo frac-
tional operators. To achieve the goals, we make use of a hybrid fixed point theorem for
a sum of three operators due to Dhage and at the same time the uniqueness result is ob-
tained by making use of the contraction principle. Moreover, we explore the Ulam–Hyers
stability and its generalized version for the given coupled hybrid system. An example is
presented to confirm the viability of our obtained results.
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