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Abstract
In this paper, we study the oscillation of solutions for an even-order differential
equation with middle term, driven by a p-Laplace differential operator of the form

{
(r(x)�p[z(κ–1)(x)])′ + a(x)�p[f (z(κ–1)(x))] +

∑j
i=1 qi(x)�p[h(z(δi(x)))] = 0,

j ≥ 1, r(x) > 0, r′(x) + a(x) ≥ 0, x ≥ x0 > 0.

The oscillation criteria for these equations have been obtained. Furthermore, an
example is given to illustrate the criteria.

Keywords: Even-order; Differential equation; Oscillation; p-Laplacian equation

1 Introduction
It is worth mentioning in this context that delay differential equations have many real-life
applications in all branches of science and engineering; see [1, 2]. On the other hand, the p-
Laplace equations have crucial applications in different areas such as in elasticity theory,
see, for example, Aronsson–Janfalk [3], and in general nonlinear phenomena, see Vetro
[4]. Therefore, the literature reveals results of various studies concerning the oscillatory
behavior of equations driven by a p-Laplace differential operator; see, by way of exam-
ple not exhaustive enumeration, Li–Baculikova–Dzurina–Zhang [5], Liu–Zhang–Yu [6],
Zhang–Agarwal–Li [7]. Additionally, the oscillatory properties of differential equations
are studied intensively by many scientists; see, for example, [8–22].

The aim of this work is to investigate the oscillatory behavior of the even-order delay
differential equation (DDE) with damping of the form

⎧⎨
⎩(r(x)�p[z(κ–1)(x)])′ + a(x)�p[f (z(κ–1)(x))] +

∑j
i=1 qi(x)�p[h(z(δi(x)))] = 0,

j ≥ 1, r(x) > 0, r′(x) + a(x) ≥ 0, x ≥ x0 > 0,
(1)

under the following conditions:
(G1) �p[s] = |s|p–2s;
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(G2) r, a, qi ∈ C([x0,∞), [0,∞)), qi(x) > 0, i = 1, 2, . . . , j are such that

∫ ∞

x0

[
1

r(s)
exp

(
–

∫ s

x0

a(u)
r(u)

du
)]1/(p–1)

ds < ∞; (2)

(G3) δi ∈ C([x0,∞), (0,∞)), δi(x) ≤ x and limx→∞ δi(x) = ∞, i = 1, 2, . . . , j;
(G4) f , h ∈ C(R,R), f (x) ≥ m|x|p–2x > 0, h(x) ≥ �|x|p–2x > 0 for x �= 0, m ≥ 1 and � > 0,

where the first term of equation (1) means the p-Laplace-type operator with 1 < p < ∞.
To achieve our target, we implemented several relevant facts and auxiliary results from

the existing literature [7, 23–26]. Notice that Liu–Zhang–Yu [6] provided some theoretical
information on the oscillation of half-linear functional differential equations with damp-
ing, i.e.,

⎧⎨
⎩(r(x)�(z(n–1)(x)))′ + a(x)�(z(n–1)(x)) + q(x)�(z(g(x))) = 0,

� = |s|p–2s, x ≥ x0 > 0,

where n is even. The authors used the comparison method with second order equations.
In Bazighifan–Poom [23] and Bazighifan–Abdeljawad [24], the comparison method with
the first and second order equations is used to establish oscillation criteria for

⎧⎨
⎩(r(x)|z(n–1)(x)|p–2z(n–1)(x))′ +

∑j
i=1 qi(x)g(z(δi(x))) = 0,

j ≥ 1, x ≥ x0 > 0,

where n is even and p is a real number greater than 1, in the case where δi(x) ≥ υ , α ≤ β

(with r ∈ C1((0,∞),R), qi ∈ C([0,∞),R), i = 1, 2, . . . , j).
For the special case when p = 1, Elabbasy et al. [16] provided some information on the

asymptotic behavior of (1). The authors used the comparison method with second order
equations to achieve their targets. We must point out that Li et al. [5] had used the Riccati
transformation, together with the integral averaging technique, to discuss the oscillation
of the following equation:

⎧⎨
⎩(r(x)|z′′′(x)|p–2z′′′(x))′ + q(x)|z(δi(x))|p–2z(δ(x)) = 0,

1 < p < ∞, x ≥ x0 > 0.

In Park et al. [26], the Riccati technique is used to obtain oscillation criteria of
⎧⎨
⎩(r(x)|z(n–1)(x)|p–2z(n–1)(x))′ + q(x)g(z(δ(x))) = 0,

1 < p < ∞, x ≥ x0 > 0,

where n is even. Zhang et al. in [7] studied the equation
⎧⎨
⎩L′

z + p(x)|(z(κ–1)(x))|p–2z(κ–1)(x) + q(x)|(z(δ(x)))|p–2z(δ(x)) = 0,

1 < p < ∞, x ≥ x0 > 0,

where

Lz = r(x)
∣∣(z(κ–1)(x)

)∣∣p–2z(κ–1)(x).
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As a matter of fact, the investigation of the half-linear/p-Laplace equation (1) has be-
come an important area of research due to the fact that such equations arise in a variety
of real-world problems such as in the study of non-Newtonian fluid theory, the turbulent
flow of a polytrophic gas in a porous medium, etc.; see the following papers for more details
[27–33]. In this work, we will partially use the tools and findings of [7, 23–26] to obtain
new oscillation conditions for (1). Theoretical results will be illustrated via an example.

2 Oscillation criteria
For further convenience, we denote:

σ (x0, x) := exp

(∫ x

x0

a(u)
r(u)

du
)

,

ζ (x) :=
∫ ∞

x

ds
(r(s)σ (x0, s))1/(p–1) ,

� (x) :=
δ′

i(x)
δi(x)

–
ma(x)

r(x)
,

ψ(x) :=
1

σ 1/(p–1)(x0, x)
–

ζ (x)a(x)r(2–p)/(p–1)(x)
(p – 1)

,

ψ∗(x) :=
a(x)
r(x)

+
(p – 1)pδi(x)ψp(x)σ (x0, x)

ζ (x)r1/(p–1)(x)
.

Next, we recall some technical tools useful throughout the paper:

Lemma 2.1 ([34]) Let z ∈ Cκ ([x0,∞), (0,∞)). If limx→∞ z(x) �= 0 and

z(κ–1)(x)z(κ)(x) ≤ 0,

then

z(x) ≥ λ

(κ – 1)!
xκ–1∣∣z(κ–1)(x)

∣∣, λ ∈ (0, 1).

Lemma 2.2 ([35]) Let C > 0 and D be constants. Then

Dz – Cz(α+1)/α ≤ αα

(α + 1)α+1
Dα+1

Cα
, α ≥ 1.

Lemma 2.3 ([34]) Let z ∈ Cκ ([x0,∞), (0,∞)). If z(κ–1)(x)z(κ)(x) ≤ 0, then for every θ ∈ (0, 1)
and κ > 0 one has

z(θx) ≥ κxκ–1z(κ–1)(x).

Lemma 2.4 ([36]) Let z ∈ Cn–1([xz,∞),R) be an (eventually) positive solution of (1). Then,
we distinguish the following situations:

(I1) z(x) > 0, z′(x) > 0, z(κ–1)(x) > 0, z(κ)(x) < 0;

(I2) z(x) > 0, z(κ–2)(x) > 0, z(κ–1)(x) < 0.
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Lemma 2.5 Let (I1) hold and z(x) > 0. If

ς (x) := δi(x)
r(x)(z(κ–1))p–1(x)

zp–1(x/2)
, ς (x) > 0, (3)

where δi ∈ C1([x0,∞)), then there exists a constant κ > 0 such that

ς ′(x) ≤ –�δi(x)
j∑

i=1

qi(x) + �+(x)ς (x) –
(p – 1)κxκ–2

2(r(x)δi(x))1/(p–1) ς
p

(p–1) (x). (4)

Proof Let (I1) hold and z(x) > 0. Using Lemma 2.3, we obtain

z′(x/2) ≥ κxκ–2z(κ–1)(x). (5)

From (3), we get

ς ′(x) = δ′
i(x)

r(x)(z(κ–1))p–1(x)
zp–1(x/2)

+ δi(x)
(r(z(κ–1))p–1)′(x)

zp–1(x/2)

– (p – 1)δi(x)
z′(x/2)r(x)(z(κ–1))p–1(x)

2zp(x/2)
.

From (3) and (5), we find

ς ′(x) ≤ δ′
i(x)

δi(x)
ς (x) + δi(x)

(r(z(κ–1))p–1)′(x)
zp–1(x/2)

– (p – 1)κxκ–2δi(x)
r(x)(z(κ–1))p(x)

2zp(x/2)
. (6)

From (1), we get

(
r(x)�p

[
z(κ–1)(x)

])′ = –a(x)�p
[
f
(
z(κ–1)(x)

)]
–

j∑
i=1

qi(x)�p
[
h
(
z
(
δi(x)

))]

= –ma(x)
∣∣z(κ–1)(x)

∣∣p–2z(κ–1)(x)

– �

j∑
i=1

qi(x)
∣∣z(κ–1)(δi(x)

)∣∣p–2z(κ–1)(δi(x)
)

= –ma(x)
(
z(κ–1)(x)

)p–1 – �

j∑
i=1

qi(x)
(
z(κ–1)(δi(x)

))p–1. (7)

From (6) and (7), we find

ς ′(x) ≤ δ′
i+(x)
δi(x)

ς (x) – ma(x)
ς (x)
r(x)

– �δi(x)
j∑

i=1

qi(x)
zp–1(δi(x))
zp–1(x/2)

– (p – 1)κxκ–2 ς
p

(p–1) (x)
2(δi(x)r(x))1/(p–1)
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≤ –�δi(x)
j∑

i=1

qi(x) +
(

δ′
i+(x)
δi(x)

– m
a(x)
r(x)

)
ς (x)

– (p – 1)κxκ–2 ς
p

(p–1) (x)
2(δi(x)r(x))1/(p–1) .

Hence, we find

ς ′(x) ≤ –�δi(x)
j∑

i=1

qi(x) + �+(x)ς (x) – (p – 1)κxκ–2 ς
p

(p–1) (x)
2(δi(x)r(x))1/(p–1) .

The proof is complete. �

Lemma 2.6 Let (I2) hold and z(x) > 0. If

ϑ(x) := –
r(x)(–z(κ–1))p–1(x)

(z(κ–2))p–1(x)
, ϑ(x) < 0, (8)

then there exists a constant μ ∈ (0, 1) such that

ϑ ′(x) ≤ ma(x)
r(x)ζ p–1(x)σ (x0, x)

– �

j∑
i=1

qi(x)
(

μ

(κ – 2)!
δκ–2

i (x)
)p–1

– (p – 1)
ϑ

p
(p–1) (x)

r
1

(p–1) (x)
. (9)

Proof Assume that (I2) holds and z(x) > 0. Since

(
–r(x)

(
–z(κ–1)(x)

)p–1
σ (x0, x)

)′

=
(
–r(x)

(
–z(κ–1)(x)

)p–1)′
σ (x0, x)

+
(
–r(x)

(
–z(κ–1)(x)

)p–1)
σ (x0, x)

a(x)
r(x)

= (–1)p

(
–a(x)f

(
z(κ–1)(x)

)
–

j∑
i=1

qi(x)g
(
z
(
δi(x)

)))
σ (x0, x)

– a(x)
(
–z(κ–1)(x)

)p–1
σ (x0, x)

≤ (–1)p

(
–ma(x)

(
z(κ–1)(x)

)p–1 – �

j∑
i=1

qi(x)zp–1(δi(x)
))

σ (x0, x)

– a(x)
(
–z(κ–1)(x)

)p–1
σ (x0, x)

=

(
–a(x)

(
–z(κ–1)(x)

)p–1(1 – m) + �

j∑
i=1

qi(x)
(
–zp–1(δi(x)

)))
σ (x0, x)

= (–1)p–1

(
–a(x)

(
z(κ–1)(x)

)p–1(1 – m) + �

j∑
i=1

qi(x)
(
zp–1(δi(x)

)))
σ (x0, x)

≤ –�

j∑
i=1

qi(x)zp–1(δi(x)
)
σ (x0, x) < 0,
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we deduce that –r(x)(–z(κ–1)(x))p–1σ (x0, x) is decreasing. Thus, for s ≥ x ≥ x1, one has

(
r(s)σ (x0, s)

)1/(p–1)z(κ–1)(s) ≤ (
r(x)σ (x0, x)

)1/(p–1)z(κ–1)(x). (10)

Dividing both sides of (10) by (r(s)σ (x0, s))1/(p–1) and integrating the resulting inequality
from x to u, we get

z(κ–2)(u) ≤ z(κ–2)(x) +
(
r(x)σ (x0, x)

)1/(p–1)z(κ–1)(x)
∫ u

x

ds
(r(s)σ (x0, s))1/α .

Letting u → ∞, we arrive at

0 ≤ z(κ–2)(x) +
(
r(x)σ (x0, x)

)1/(p–1)z(κ–1)(x)ζ (x),

which yields

–
z(κ–1)(x)
z(κ–2)(x)

ζ (x)
(
r(x)σ (x0, x)

)1/(p–1) ≤ 1.

Hence,

r(x)(z(κ–1)(x))p–1

(z(κ–2)(x))p–1 ≥ –1
ζ p–1(x)σ (x0, x)

.

From (8), we have

ϑ(x) ≥ –1
ζ p–1(x)σ (x0, x)

(11)

and

ϑ ′(x) =
(–r(x)(–z(κ–1)(x))p–1)′

(z(κ–2)(x))p–1 – (p – 1)
–r(x)(–z(κ–1)(x))p

(z(κ–2)(x))p .

From (1) and (8), we obtain

ϑ ′(x) ≤ –m
a(x)
r(x)

ϑ(x) – �

j∑
i=1

qi(x)
zp–1(δi(x))

(z(κ–2)(x))p–1 – (p – 1)
ϑ

p
(p–1) (x)

r
1

(p–1) (x)
(12)

= –m
a(x)
r(x)

ϑ(x) – �

j∑
i=1

qi(x)
zp–1(δi(x))

(z(κ–2)(δi(x)))p–1
(z(κ–2)(δi(x)))p–1

(z(κ–2)(x))p–1 – (p – 1)
ϑ

p
(p–1) (x)

r
1

(p–1) (x)
.

Using Lemma 2.1, we find

z(x) ≥ μ

(κ – 2)!
xκ–2z(κ–2)(x). (13)

Thus, from (11) and (13), we get

ϑ ′(x) ≤ ma(x)
r(x)ζ p–1(x)σ (x0, x)

– �

j∑
i=1

qi(x)
(

μ

(κ – 2)!
δκ–2

i (x)
)p–1

– (p – 1)
ϑ

p
(p–1) (x)

r
1

(p–1) (x)
.

The proof is complete. �
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Theorem 2.1 Let functions δi, ζ ∈ C1([x0,∞), (0,∞)) and κ > 0, μ ∈ (0, 1) be such that

lim
x→∞ sup

∫ x

x0

(
�δi(s)

j∑
i=1

qi(s) –
(

2
κsκ–2

)p–1 r(s)δi(s)(�+(s))p

pp

)
ds = ∞ (14)

and

lim
x→∞ sup

∫ x

x0

(
�

j∑
i=1

qi(s)
(

μδκ–2
i (s)

(κ – 2)!
ζ (s)

)p–1

σ (x0, s) – ψ∗(s)

)
ds = ∞. (15)

Then all solutions of (1) are oscillatory.

Proof Let z be a nonoscillatory solution of equation (1) and z(x) > 0. Applying Lemma 2.2
to (4) and setting

D = �+(x), C = (p – 1)κxκ–2/
(
2
(
r(x)δi(x)

)1/(p–1)), and z = ς ,

we have

ς ′(x) ≤ –�δi(x)
j∑

i=1

qi(x) +
(

2
κxκ–2

)p–1 r(x)δi(x)(�+(x))p

pp . (16)

Integrating from x1 to x, we find

∫ x

x1

(
�δi(s)

j∑
i=1

qi(s) –
(

2
κsκ–2

)p–1 r(s)δi(s)(�+(s))p

pp

)
ds ≤ ς (x1),

which contradicts (14).
Now, multiplying (9) by ζ p–1(x)σ (x0, x) and integrating the resulting inequality from x1

to x, we get

ζ p–1(x)σ (x0, x)ϑ(x) – ζ p–1(x1)σ (x0, x1)ϑ(x1) –
∫ x

x1

a(s)
r(s)

ds

+ (p – 1)
∫ x

x1

r
–1

(p–1) (s)ζ p–2(s)σ (x0, s)ψ(s)ϑ(s) ds

+
∫ x

x1

�

j∑
i=1

qi(s)
(

μ

(κ – 2)!
δκ–2

i (s)
)p–1

ζ p–1(s)σ (x0, s) ds

+ (p – 1)
∫ x

x1

ϑ
p

(p–1) (s)

r
1

(p–1) (s)
ζ p–1(s)σ (x0, s) ds

≤ 0.

In view of Lemma 2.2, we put

C = ζ p–1(s)σ (x0, s)/r
1

(p–1) (s), D =
∫ x

x1

r
–1

(p–1) (s)ζ p–2(s)σ (x0, s)ψ(s), z = ϑ(x).
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Thus, we get

ζ p–1(x)σ (x0, x)ϑ(x) – ζ p–1(x1)σ (x0, x1)ϑ(x1) –
∫ x

x1

a(s)
r(s)

ds

+
∫ x

x1

�

j∑
i=1

qi(s)
(

μ

(κ – 2)!
δκ–2

i (s)
)p–1

ζ p–1(s)σ (x0, s) ds

+
∫ x

x1

(p – 1)pδi(s)ψp(s)σ (x0, s)

ζ (s)r
1

(p–1) (x)
ds

≤ 0.

Hence, by (11), we obtain

∫ x

x1

(
�

j∑
i=1

qi(s)
(

μδκ–2
i (s)

(κ – 2)!
ζ (s)

)p–1

σ (x0, s) – ψ∗(s)

)
ds ≤ ζ p–1(x)σ (x0, x)ϑ(x1) + 1,

which contradicts (15). The proof is complete. �

Remark 2.1 For interested researchers, there is a good problem of finding new results in
the following cases:

(S1) z(x) > 0, z′(x) > 0, z(κ–2)(x) > 0, z(κ–1)(x) ≤ 0, (r(x)(z(m–1)(x))p–1)′ ≤ 0,
(S2) z(x) > 0, z(r)(x) < 0, z(r+1)(x) > 0 for all odd integer r ∈ {1, 3, . . . ,κ – 3}, z(κ–1)(x) < 0,

(r(x)(w(κ–1)(x))p–1)′ ≤ 0.

Example 2.1 For x ≥ 1, consider the equation

(
x2(z′(x)

))′ +
x
2

z′(x) + q0z
(

x
2

)
= 0, x ≥ 1, (17)

where q0 > 0 is a constant. Let p = 2, κ = 2, x0 = 1, r(x) = x2, a(x) = x/2, q(x) = q0, δi(x) = x/2.
We now set δi(x) = m = � = 1, then

σ (x0, x) := exp

(∫ x

x0

a(u)
r(u)

du
)

= x1/2,

ζ (x) :=
∫ ∞

x

ds

(r(s)σ (x0, s))
1

(p–1)
=

2
3x3/2 ,

� (x) :=
δ′

i(x)
δi(x)

–
ma(x)

r(x)
=

–1
2x

,

ψ(x) :=
1

σ
1

(p–1) (x0, x)
–

ζ (x)a(x)r(2–p)/(p–1)(x)
(p – 1)

=
2

3x1/2 ,

ψ∗(x) :=
a(x)
r(x)

+
(p – 1)pδi(x)ψp(x)σ (x0, x)

ζ (x)r
1

(p–1) (x)
=

7
6x

,

thus, we get

lim
x→∞ sup

∫ x

x0

(
�δi(s)

j∑
i=1

qi(s) –
(

2
κsκ–2

)p–1 r(s)δi(s)(�+(s))p

pp

)
ds = ∞
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and, for some μ ∈ (0, 1),

lim
x→∞ sup

∫ x

x0

(
�

j∑
i=1

qi(s)
(

μδκ–2
i (s)

(κ – 2)!
ζ (s)

)p–1

σ (x0, s) – ψ∗(s)

)
ds

= lim
x→∞ sup

∫ x

x0

(
q0μ

s
–

7
6s

)
ds.

Thus, by Theorem 2.1, every solution of (17) is oscillatory if q0 > 7
6μ

.

3 Conclusion
In this article, we studied the oscillatory properties of even-order differential equations.
New oscillation criteria were established. We used Riccati technique to prove that every
solution of (1) is oscillatory. Further, we shall study equation (1) under the condition δi(t) ≥
t in the future work.
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