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Abstract
This work is mainly concentrated on finite-time stability of multiterm fractional
system for 0 < α2 ≤ 1 < α1 ≤ 2 with multistate time delay. Considering the Caputo
derivative and generalized Gronwall inequality, we formulate the novel sufficient
conditions such that the multiterm nonlinear fractional system is finite time stable.
Further, we extend the result of stability in the finite range of time to the multiterm
fractional integro-differential system with multistate time delay for the same order by
obtaining some inequality using the Gronwall approach. Finally, from the examples,
the advantage of presented scheme can guarantee the stability in the finite range of
time of considered systems.
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1 Introduction
Fractional calculus has been utilized as a key to the description of discontinuity and sin-
gularity formation. After several years of development, it has gained a lot of attention
from physicists and mathematicians. We notice that fractional derivatives can be com-
posite in perspective of pure mathematics and attract increasing interest in establishing
the theoretical results and numerical approaches. Since the analysis and synthesis of frac-
tional derivatives have been recognized in a wide-ranging field of practical applications
in various applied sciences and have produced tremendous results. The core advantage
of fractional derivatives is that numerous interdisciplinary practical applications can be
easily formulated [1, 16, 25, 31].

Finite-time stability (FTS) is a more practical idea which is valuable to analyze the na-
ture of a system within a finite interval of time and it is an essential part in the study of
transient behavior of systems. Thus, it was extensively studied in both integer and frac-
tional differential systems. Time delay can occur in input, output, or the state variable.
The delay of state has appeared several times in physical systems and control problems
[15, 24, 29, 32, 34, 35, 40]. On the other hand, in a multistate system the conversion be-
tween the behaviors in each state will depend on the passage of time and on inputs of
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the system. So it is valuable to investigate the FTS concept for a multi-delayed fractional
nonlinear system.

Deng et al. [6] investigated the stability analysis of a multiple delay fractional linear sys-
tem (0 < q < 1). The FTS of the fractional linear time-invariant system was examined by
utilizing a generalized Gronwall inequality in [23]. Liu and Zhong [22] discussed the FTS
of a fractional multitime delayed system. Mittag-Leffler stability of a nonlinear fractional
system was studied by introducing the Lyapunov method in [20, 41] for order 0 < α < 1.
The robust stability concept was discussed for the system of fractional order in [5, 19] and
for a fractional-order system, various concepts were discussed in [4, 12, 26, 28, 37, 39].
FTS analysis for various types of fractional system was explored in [14, 18, 27, 36]. Zhang
and Niu [42] discussed the exponential stability of a class of nonlinear delay-integro-
differential equations. In [43], the analysis of FTS of fractional systems with variable co-
efficients with α ∈ (0, 1) was examined using certain sufficient inequalities which were
obtained by applying the Hölder and generalized Gronwall inequalities. Zhang et al. [44]
discussed the stability concept for fractional nonlinear systems with order from (0, 2). In
[8], FTS analysis of delayed nonlinear fractional difference system was investigated by us-
ing Gronwall and Jensen inequalities, and the same concept was discussed for a Hopfield
neural network with time delay in [11]. In [10], the authors studied FTS of delayed frac-
tional neutral systems by using Gronwall inequality.

By the above deliberations, we were inspired to study the FTS of a multiterm fractional
system with multistate time delay. The main idea of this work is made precise as follows:

1. In the literature, the results of FTS for fractional nonlinear systems have been re-
ported. However, there have been no works for the FTS of multiterm fractional non-
linear systems. It is more essential to study the FTS of fractional-order systems with
damping behavior. Thus, we consider the multiterm nonlinear fractional system with
0 < α2 ≤ 1 < α1 ≤ 2.

2. Many of the previous results on fractional-order systems are often for a single-delay in
state. So it is crucial to pay attention to the study of multiterm nonlinear fractional systems
in which multiple delays occur in their states.

3. Further, we extend the result for multiterm fractional-order integro-differential sys-
tems with multistate time delay.

The organization of this work is given as follows: In Sect. 2, we have included some
useful lemmas and definitions which are helpful to reach our results. In Sect. 3, the FTS
concept is discussed for multiterm nonlinear fractional system with multistate time delay
and also the same concept is analyzed for multiterm fractional order integro-differential
system with a multistate time delay. The main results of this paper are verified through
examples in Sect. 4. Finally, the paper is concluded in Sect. 5.

2 Preliminaries
The following notations are used in this paper: Rn denotes the n-dimensional Euclidean
space of the reals with maximum norm; Rn×m consist of all matrices of dimension n × m;
σmax(A) denotes the largest singular value of matrix A. Explicitly, σmax(A) =

√
λmax(ATA).

Now, we present some lemmas and definitions which are needed to obtain our results.
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Definition 2.1 ([1]) Caputo fractional derivative of y(t) of order α1 ∈ R
+ is given by

C
0 Dα1

t0,ty(t) =
1

�(n – α1)

∫ t

t0

(t – ϑ)n–α1–1y(n)(ϑ) dϑ ,

with n – 1 < α1 < n ∈ Z
+.

Definition 2.2 ([31]) The Mittag-Leffler function with two parameters is defined as

Eα1,α2 (z) =
∞∑

j=0

zj

�(α1j + α2)
, z ∈C,α1 > 0,α2 > 0. (1)

If α2 = 1 then (1) becomes

Eα1,1(z) =
∞∑

j=0

zj

�(α1j + 1)
≡ Eα1 (z). (2)

Lemma 2.3 ([16]) For the fractional integrals and Caputo fractional derivatives, we have

Iα
t
(C

0 Dαy(t)
)

= y(t) –
n–1∑

k=0

tk

k
yk(0), t > 0, n – 1 < α < n.

Further, when 1 < α < 2,

Iα
t
(C

0 Dαy(t)
)

= y(t) – y(0) – ty′(0).

Lemma 2.4 ([33]) Assume 0 < α2 < 1 < α1 < 2, then

Iα1
t
(C

0 Dα2 y(t)
)

= Iα1–α2
t y(t) –

y(0)tα1–α2

�(α1 – α2 + 1)
.

Lemma 2.5 (Generalized Gronwall inequality (GGI), [7, 38]) Assume y(t) > 0, ω(t) > 0
are locally integrable and consider a continuous function ν(t) > 0 for t ∈ [0, T). Suppose
ν(t) ≤ M, α1 > 0 with

y(t) ≤ ω(t) + ν(t)
∫ t

0
(t – μ)α1–1y(μ) dμ, 0 ≤ t < T . (3)

Then

y(t) ≤ ω(t) +
∫ t

0

[ ∞∑

n=1

(ν(t)�(α1))n

�(nα1)
(t – μ)nα1–1ω(μ)

]

dμ, 0 ≤ t < T . (4)

Lemma 2.6 ([38]) Under the assumptions of Lemma 2.5, if ω(t) > 0 is a nondecreasing
function on [0, T) then

y(t) ≤ ω(t)Eα1

(
ν(t)

(
�(α1)

)
tα1
)
. (5)
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Lemma 2.7 (Extended form of Gronwall inequality, [33]) Suppose both fractional orders
α1 and α2 are nonzero and positive, ω(t) > 0 is locally integrable, the continuous functions
ν1(t) > 0 and ν2(t) > 0 are nondecreasing on [0, T), and ν1(t) ≤ M1, ν2(t) ≤ M2. Assume
y(t) > 0 is locally integrable on [0,T) and

y(t) ≤ ω(t) + ν1(t)
∫ t

0
(t – μ)α1–1y(μ) dμ + ν2(t)

∫ t

0
(t – μ)α2–1y(μ) dμ. (6)

Then for t ∈ [0, T),

y(t) ≤ ω(t) +
∫ t

0

∞∑

n=1

[
ν(t)

]n

×
n∑

k=0

ck
n[�(α1)]n–k[�(α2)]k

�((n – k)α1 + kα2)
(t – μ)(n–k)α1+kα2–1ω(μ) dμ, (7)

where ν(t) = ν1(t) + ν2(t) and ck
n = n(n–1)(n–2)···(n–k+1)

k! .

Lemma 2.8 ([33]) Under the assumptions of Lemma 2.7, if ω(t) > 0 is a nondecreasing
function on [0, T) then

y(t) ≤ ω(t)Eγ

[
ν(t)

(
�(α1)tα1 + �(α2)tα2

)]
, (8)

where γ = min{α1,α2}.

At this instant, we impose the following conditions for deriving the results:
(H1) The function f (t, y(t)) satisfies Lipschitz condition on [0, T) and there exists K > 0

such that

∥∥f
(
t, y(t)

)∥∥≤ K
∥∥y(t)

∥∥, ∀t ∈ L, y ∈R
n;

(H2) The function f (t, x, y) is Lipschitz continuous and there exist D1 > 0 and D2 > 0 such
that

∥∥f (t, x, y)
∥∥≤ D1‖x‖ + D2‖y‖, x, y ∈R

n.

3 Main results
3.1 Multiterm nonlinear fractional system
The multiterm fractional nonlinear system with multistate time delay is described as

⎧
⎪⎪⎨

⎪⎪⎩

C
0 Dα1

t y(t) – AC
0 Dα2

t y(t) = B0y(t) +
∑n

i=1 Biy(t – ρi) + f (t, y(t)) + Cu(t),

t ∈ L = [t0, t0 + T],

y(t) = y0, y′(t) = y1, –ρ ≤ t ≤ 0,

(9)

with 0 < α2 ≤ 1 < α1 ≤ 2. Here, the state vector y(t) is in R
n, the matrices A,Bi in R

n×n

and matrix C in R
n×m, u(t) ∈ R

m denotes the control vector, ρ = max(ρ1,ρ2, . . . ,ρn), ρi is
a constant with ρi > 0, and T is either positive or +∞. Also, here ‖ · ‖ indicates the max
norm.
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Definition 3.1 ([17, 21]) The system (9) is said to be finite-time stable with respect
to {t0, L, δ, ε,α1u,ρ} iff κ < δ and ∀t ∈ L,‖u(t)‖ < α1u implies ‖y(t)‖ < ε,∀t ∈ L, where
κ = max{‖y0‖,‖y1‖} and δ,α1u, ε are positive constants.

Definition 3.2 ([17, 21]) The system (9) is said to be finite-time stable with respect
to {t0, L, δ, ε,ρ} at (u(t) ≡ 0,∀t) iff κ < δ, ∀t ∈ L implies ‖y(t)‖ < ε, ∀t ∈ L, where κ =
max{‖y0‖,‖y1‖} and δ, ε are positive constants.

Theorem 3.3 Assume that t0 = 0. The multiterm fractional-order nonlinear system (9) is
finite-time stable with respect to {δ, ε, L0,α1u}, δ < ε, if it satisfies

{
1 + t +

σmax(A)tα1–α2

�(α1 – α2 + 1)

}
Eγ

(
ν(t)

(
�(α1 – α2)tα1–α2 + �(α1)tα1

))

+
ηu

�(α1 + 1)
tα1 ≤ ε

δ
, ∀t ∈ L0 = [0, T], (10)

where ηu = cα1u
δ

, ν(t) = ν1(t) + ν2(t); ν1(t) = σmax(A)
�(α1–α2) , ν2(t) = K+σ (n+1)

�(α1) and σmax(·) denotes the
highest singular value of a given matrix (·).

Proof Applying fractional integral on both sides of system (9), we get

Iα1
(C

0 Dα1
t y(t)

)
– AIα1

(C
0 Dα2

t y(t)
)

= Iα1

(

B0y(t) +
n∑

i=1

Biy(t – ρi) + f
(
t, y(t)

)
+ Cu(t)

)

.

Now utilizing Lemmas 2.3 and 2.4, we obtain the solution of system (9) as

y(t) = y0 + ty1 –
Atα1–α2

�(α1 – α2 + 1)
y0 +

A
�(α1 – α2)

∫ t

0
(t – μ)α1–α2–1y(μ) dμ

+
1

�(α1)

∫ t

0
(t – μ)α1–1

[

B0y(μ) +
n∑

i=1

Biy(μ – ρi)

+ f
(
μ, y(μ)

)
+ Cu(μ)

]

dμ.

The above equation implies that

∥∥y(t)
∥∥≤ ‖y0‖ + t‖y1‖ +

‖A‖(t)α1–α2

�(α1 – α2 + 1)
‖y0‖

+
‖A‖

�(α1 – α2)

∫ t

0
(t – μ)α1–α2–1∥∥y(μ)

∥∥dμ

+
1

�(α1)

∫ t

0
(t – μ)α1–1

∥∥∥∥∥
B0y(μ) +

n∑

i=1

Biy(μ – ρi)

+ f
(
μ, y(μ)

)
+ Cu(μ)

∥∥∥∥∥
dμ. (11)
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Now,

∥∥∥∥∥
B0y(t) +

n∑

i=1

Biy(t – ρi) + f
(
t, y(t)

)
+ Cu(t)

∥∥∥∥∥
≤ ‖B0‖

∥∥y(t)
∥∥ +

n∑

i=1

‖Bi‖
∥∥y(t – ρi)

∥∥

+
∥∥f
(
t, y(t)

)∥∥ + ‖C‖∥∥u(t)
∥∥. (12)

Consider σ1 = max1≤i≤n σmax(Bi) and σ = max{σmax(B0),σ1}. From this consideration we
get

‖Bi‖ ≤ σ ; ∀i = 0, 1, 2, . . . , n. (13)

Applying (13) and Hypothesis (H1) in (12), we get

∥∥∥∥∥
B0y(t) +

n∑

i=1

Biy(t – ρi) + f
(
t, y(t)

)
+ Cu(t)

∥∥∥∥∥
≤ σ

∥∥y(t)
∥∥ +

n∑

i=1

σ
∥∥y(t – ρi)

∥∥

+ K
∥∥y(t)

∥∥ + c
∥∥u(t)

∥∥, (14)

where ‖C‖ ≤ c. Substituting inequality (14) into (11), we get

∥∥y(t)
∥∥≤ ‖y0‖ + t‖y1‖ +

σmax(A)tα1–α2

�(α1 – α2 + 1)
‖y0‖ +

σmax(A)
�(α1 – α2)

×
∫ t

0
(t – μ)α1–α2–1∥∥y(μ)

∥∥dμ +
1

�(α1)

∫ t

0
(t – μ)α1–1

{

σ
∥∥y(μ)

∥∥

+
n∑

i=1

σ
∥∥y(μ – ρi)

∥∥ + K
∥∥y(μ)

∥∥ + c
∥∥u(μ)

∥∥
}

dμ. (15)

Now let

x(t) = sup
β∈[–ρ,t]

∥∥y(β)
∥∥, ∀t ∈ L0

and

∥∥y(μ)
∥∥≤ x(μ),

∥∥y(μ – ρi)
∥∥≤ x(μ), ∀i = 1, 2, . . . , n,μ ∈ [0, t].

From (15) it follows that

∥∥y(t)
∥∥≤ ‖y0‖ + t‖y1‖ +

σmax(A)tα1–α2

�(α1 – α2 + 1)
‖y0‖ +

σmax(A)
�(α1 – α2)

×
∫ t

0
(t – μ)α1–α2–1x(μ) dμ +

(
σ (n + 1) + K

�(α1)

)∫ t

0
(t – μ)α1–1x(μ) dμ

+
cα1u

�(α1 + 1)
tα1

= ‖y0‖ + t‖y1‖ +
σmax(A)tα1–α2

�(α1 – α2 + 1)
‖y0‖ +

σmax(A)
�(α1 – α2)
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×
∫ t

0
μα1–α2–1x(t – μ) dμ +

(
σ (n + 1) + K

�(α1)

)∫ t

0
μα1–1x(t – μ) dμ

+
cα1u

�(α1 + 1)
tα1 . (16)

Here ‖u(μ)‖ ≤ α1u and σmax(A) indicates the highest singular value for the given matrixA.
Note that for all β ∈ [0, t], we have

∥∥y(β)
∥∥≤ ‖y0‖ + t‖y1‖ +

σmax(A)tα1–α2

�(α1 – α2 + 1)
‖y0‖ +

σmax(A)
�(α1 – α2)

×
∫ β

0
μα1–α2–1x(β – μ) dμ +

(
σ (n + 1) + K

�(α1)

)∫ β

0
μα1–1x(β – μ) dμ

+
cα1u

�(α1 + 1)
tα1 . (17)

Since the functions
∫ t

0 μα1–α2–1x(t – μ) dμ and
∫ t

0 μα1–1x(t – μ) dμ are increasing with re-
spect to t ≥ 0, because of the increasing of the nonnegative function x(t), we get

∫ β

0
μα1–α2–1x(β – μ) dμ ≤

∫ t

0
μα1–α2–1x(t – μ) dμ,

∫ β

0
μα1–1x(β – μ) dμ ≤

∫ t

0
μα1–1x(t – μ) dμ.

(18)

Therefore

∥∥y(β)
∥∥≤ ‖y0‖ + t‖y1‖ +

σmax(A)tα1–α2

�(α1 – α2 + 1)
‖y0‖ +

σmax(A)
�(α1 – α2)

×
∫ t

0
μα1–α2–1x(t – μ) dμ +

(
σ (n + 1) + K

�(α1)

)∫ t

0
μα1–1x(t – μ) dμ

+
cα1u

�(α1 + 1)
tα1 , ∀β ∈ [0, t]. (19)

Hence, we have

x(t) = sup
β∈[–ρ,t]

∥∥y(β)
∥∥≤ max

{
sup

β∈[–ρ,0]

∥∥y(β)
∥∥, sup

β∈[0,t]

∥∥y(β)
∥∥
}

≤ max

{
‖y0‖,

(
‖y0‖ + t‖y1‖ +

σmax(A)tα1–α2

�(α1 – α2 + 1)
‖y0‖ +

σmax(A)
�(α1 – α2)

×
∫ t

0
μα1–α2–1x(t – μ) dμ +

(
σ (n + 1) + K

�(α1)

)∫ t

0
μα1–1x(t – μ) dμ

+
cα1u

�(α1 + 1)
tα1

)}

= ‖y0‖ + t‖y1‖ +
σmax(A)tα1–α2

�(α1 – α2 + 1)
‖y0‖ +

σmax(A)
�(α1 – α2)

×
∫ t

0
(t – μ)α1–α2–1x(μ) dμ +

(
σ (n + 1) + K

�(α1)

)∫ t

0
(t – μ)α1–1x(μ) dμ

+
cα1u

�(α1 + 1)
tα1 . (20)
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Let

ω(t) = ‖y0‖ + t‖y1‖ +
σmax(A)tα1–α2

�(α1 – α2 + 1)
‖y0‖, (21)

which is a nondecreasing function, and let ν1(t) = σmax(A)
�(α1–α2) ,ν2(t) = σ (n+1)+K

�(α1) . Utilizing this
consideration, we get

x(t) ≤ ω(t) + ν1(t)
∫ t

0
(t – μ)α1–α2–1x(μ) dμ

+ ν2(t)
∫ t

0
(t – μ)α1–1x(μ) dμ +

cα1u

�(α1 + 1)
tα1 . (22)

Now applying Lemma 2.8, we obtain

∥∥y(t)
∥∥≤ x(t) ≤ ω(t)Eγ

{
ν(t)

(
�(α1 – α2)tα1–α2 + �(α1)tα1

)}
+

cα1u

�(α1 + 1)
tα1 ,

where ν(t) = ν1(t) + ν2(t). Now applying the conditions of FTS, one can obtain

∥∥y(t)
∥∥≤ δ

(
1 + t +

σmax(A)tα1–α2

�(α1 – α2 + 1)

)
Eγ

{
ν(t)

(
�(α1 – α2)tα1–α2 + �(α1)tα1

)}

+
cα1u

�(α1 + 1)
tα1 . (23)

Hence from (10), we have

∥∥y(t)
∥∥ < ε, ∀t ∈ L0. (24)

This completes the proof. �

Corollary 3.4 If α1 = 2 and α2 = 1 then system (9) becomes the second-order integer system
with multistate time delay which is given by

⎧
⎨

⎩

d2y
dt2 – A dy

dt = B0y(t) +
∑n

i=1 Biy(t – ρi) + f (t, y(t)) + Cu(t), t ∈ L0,

y(t) = y0, y′(t) = y1, –ρ ≤ t ≤ 0.
(25)

The given system (25) is FTS with respect to {δ, ε, L0,α1u,ρ}, δ < ε, if it satisfies

{
1 + t + σmax(A)t1}eν(t)(t+t2) +

ηu

2
t2 ≤ ε

δ
, ∀t ∈ L0 = [0, T], (26)

where ηu = cα1u
δ

, ν(t) = ν1(t) + ν2(t), ν1(t) = σmax(A),ν2(t) = σ (n + 1) + K .

Proof The solution of (25) is given by

y(t) = y0 + ty1 – Aty0 + A
∫ t

0
y(μ) dμ +

∫ t

0
(t – μ)

[

B0y(μ) +
n∑

i=1

Biy(μ – ρi)

+ f
(
μ, y(μ)

)
+ Cu(μ)

]

dμ.
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Now computing the norm of both sides of the above equation, we get

∥∥y(t)
∥∥≤ ‖y0‖ + t‖y1‖ + ‖A‖t‖y0‖ + ‖A‖

∫ t

0

∥∥y(μ)
∥∥dμ

+
∫ t

0
(t – μ)

[∥∥∥∥∥
B0y(μ) +

n∑

i=1

Biy(μ – ρi) + f
(
μ, y(μ)

)
+ Cu(μ)

∥∥∥∥∥

]

dμ.

Now following the steps from the proof of Theorem 3.3, we obtain

x(t) ≤ ‖y0‖ + t‖y1‖ + σmax(A)t‖y0‖ + σmax(A)
∫ t

0
x(μ) dμ

+
(
σ (n + 1) + K

)∫ t

0
(t – μ)x(μ) dμ + cα1u

t2

2
, (27)

where σmax(A) denotes the largest singular value of matrix A. Now consider the nonde-
creasing function ω(t) defined by

ω(t) = ‖y0‖ + t‖y1‖ + σmax(A)t‖y0‖

and also let ν1(t) = σmax(A), ν2(t) = σ (n + 1) + K .
Now utilizing the above notations in (27), we get

x(t) ≤ ω(t) + ν1(t)
∫ t

0
x(μ) dμ

+ ν2(t)
∫ t

0
(t – μ)x(μ) dμ + cα1u

t2

2
. (28)

From Gronwall’s inequality, we obtain

∥∥y(t)
∥∥≤ x(t) ≤ ω(t)Eγ

{
ν(t)

(
�(1)t1 + �(2)t2)} + cα1u

t2

2
, (29)

where ν(t) = ν1(t) + ν2(t) and γ = min{1, 2} = 1. Hence we know that E1(z) = ez . Now from
the condition of FTS, we get

∥∥y(t)
∥∥≤ δ

(
1 + t + σmax(A)t

)
eν(t)(t+t2) + cα1u

t2

2
.

Hence

∥∥y(t)
∥∥≤ ε, ∀t ∈ L0. (30)�

3.2 Multiterm fractional-order integro-differential system
Consider the fractional integro-differential system with multistate time delay

⎧
⎪⎪⎨

⎪⎪⎩

C
0 Dα1

t y(t) – AC
0 Dα2

t y(t)

= B0y(t) +
∑n

i=1 Biy(t – ρi) + f (t, y(t),
∫ t

0 H(t, s, y(s)) ds) + Cu(t),

y(t) = y0, y′(t) = y1, –ρ ≤ t ≤ 0, t ∈ L0 = [0, a],

(31)



Arthi et al. Advances in Difference Equations        (2021) 2021:102 Page 10 of 15

with 0 < α2 ≤ 1 < α1 ≤ 2. Here, y(t), matrices A,Bi, C , u(t), and ρ are defined the same as
in (9). Also, f ∈ C[L0 ×R

n ×R
n,Rn] and H ∈ C[L0 × L0 ×R

n,Rn].

Theorem 3.5 Let H(t, s, y(s)) satisfy

∥∥H
(
t, s, y(s)

)∥∥≤ N1‖y‖. (32)

The multiterm fractional-order integro-differential system (31) is finite-time stable with
respect to {δ, ε, L0,α1u}, δ < ε if

{
1 + t +

σmax(A)tα1–α2

�(α1 – α2 + 1)

}
Eγ

(
ν(t)

(
�(α1 – α2)tα1–α2 + �(α1)tα1

))

+
ηu

�(α1 + 1)
tα1 ≤ ε

δ
, ∀t ∈ L0 = [0, a], (33)

where ηu = cα1u
δ

, ν(t) = ν1(t) + ν2(t); ν1(t) = σmax(A)
�(α1–α2) , ν2(t) = σ (n+1)+N

�(α1) ; N = D1 + D2aN1.

Proof The solution of (31) can be obtained in the following form:

y(t) = y0 + ty1 –
Atα1–α2

�(α1 – α2 + 1)
y0 +

A
�(α1 – α2)

∫ t

0
(t – μ)α1–α2–1y(μ) dμ

+
1

�(α1)

∫ t

0
(t – μ)α1–1

[

B0y(μ) +
n∑

i=1

Biy(μ – ρi)

+ f
(

μ, y(μ),
∫ t

0
H
(
μ, s, y(s)

)
ds
)

+ Cu(μ)

]

dμ. (34)

Then the above equation (34) implies

∥∥y(t)
∥∥≤ ‖y0‖ + t‖y1‖ +

‖A‖(t)α1–α2

�(α1 – α2 + 1)
‖y0‖ +

‖A‖
�(α1 – α2)

×
∫ t

0
(t – μ)α1–α2–1∥∥y(μ)

∥∥dμ +
1

�(α1)

∫ t

0
(t – μ)α1–1

∥∥∥∥∥
B0y(μ)

+
n∑

i=1

Biy(μ – ρi) + f
(

μ, y(μ),
∫ t

0
H
(
μ, s, y(s)

)
ds
)

+ Cu(μ)

∥∥∥∥∥
dμ. (35)

Now,

∥∥∥∥∥
B0y(μ) +

n∑

i=1

Biy(μ – ρi) + f
(

μ, y(μ),
∫ t

0
H
(
μ, s, y(s)

)
ds
)

+ Cu(μ)

∥∥∥∥∥

≤ ‖B0‖
∥∥y(t)

∥∥ +
n∑

i=1

‖Bi‖
∥∥y(t – ρi)

∥∥

+
∥∥∥∥f
(

t, y(t),
∫ t

0
H
(
t, s, y(s)

)
ds
)∥∥∥∥ + ‖C‖∥∥u(t)

∥∥. (36)
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From Hypothesis (H2), we have

∥∥∥∥f
(

t, y(t),
∫ t

0
H
(
t, s, y(s)

)
ds
)∥∥∥∥≤ D1

∥∥y(t)
∥∥ + D2

∫ t

0

∥∥H
(
t, s, y(s)

)∥∥ds. (37)

Using the condition (32), for t ≤ a, we get

∥∥∥∥f
(

t, y(t),
∫ t

0
H
(
t, s, y(s)

)
ds
)∥∥∥∥≤ D1

∥∥y(t)
∥∥ + aD2N1

∥∥y(t)
∥∥≤ N

∥∥y(t)
∥∥, (38)

where N = D1 + aD2N1.
Now substituting (38) into (36), we have

∥∥y(t)
∥∥≤ ‖y0‖ + t‖y1‖ +

‖A‖(t)α1–α2

�(α1 – α2 + 1)
‖y0‖

+
‖A‖

�(α1 – α2)

∫ t

0
(t – μ)α1–α2–1∥∥y(μ)

∥∥dμ

+
1

�(α1)

∫ t

0
(t – μ)α1–1

[

‖B0‖
∥∥y(μ)

∥∥ +
n∑

i=1

‖Bi‖
∥∥y(μ – ρi)

∥∥

+ N
∥∥y(μ)

∥∥ + ‖C‖∥∥u(μ)
∥∥
]

dμ.

By following the procedure of Theorem 3.3 and from (33), we have ‖y(t)‖ < ε,∀t ∈ L0.
Hence the proof is complete. �

Corollary 3.6 When α1 = 2, α2 = 1 and in the absence of delay, the system (31) becomes
the second-order integro-differential system without time delay which is given by

⎧
⎨

⎩

d2y
dt2 – A dy

dt = B0y(t) + f (t, y(t),
∫ t

0 H(t, s, y(s)) ds) + Cu(t), t ∈ L0 = [0, a],

y(t) = y0, y′(t) = y1, –ρ ≤ t ≤ 0,
(39)

which is FTS with respect to {δ, ε, L0,α1u}, δ < ε if

{
1 + t + σmax(A)t

}
eν(t)(t+t2) +

ηu

2
t2 ≤ ε

δ
, ∀t ∈ L0 = [0, a], (40)

where ηu = cα1u
δ

, ν(t) = ν1(t) + ν2(t); ν1(t) = σmax(A)
�(α1–α2

, ν2(t) = N+σmax(B0)
�(α1) ; N = D1 + D2aN1.

Proof The solution of (39) is given by

y(t) = y0 + ty1 – Aty0 + A
∫ t

0
y(μ) dμ +

∫ t

0
(t – μ)

[
B0y(μ)

+ f
(

μ, y(μ),
∫ t

0
H
(
μ, s, y(s)

)
ds
)

+ Cu(μ)
]

dμ.

Now taking the norm of both sides, we get

∥∥y(t)
∥∥ = ‖y0‖ + t‖y1‖ + ‖A‖t‖y0‖ + ‖A‖

∫ t

0

∥∥y(μ)
∥∥dμ
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+
∫ t

0
(t – μ)

∥∥∥∥B0y(μ) + f
(

μ, y(μ),
∫ t

0
H
(
μ, s, y(s)

)
ds
)

+ Cu(μ)
∥∥∥∥dμ.

Now following similar steps as in the proof of Theorem 3.5, we obtain

∥∥y(t)
∥∥≤ ‖y0‖ + t‖y1‖ + ‖A‖(t)‖y0‖ + ‖A‖

∫ t

0

∥∥y(μ)
∥∥dμ

+
∫ t

0
(t – μ)

[‖B0‖
∥∥y(μ)

∥∥ + N
∥∥y(μ)

∥∥ + ‖C‖∥∥u(μ)
∥∥]dμ, (41)

where N = D1 + D2aN1.
Now following the same steps which proved in Corollary 3.4, we obtain

∥∥y(t)
∥∥≤ {1 + t + σmax(A)t

}
eν(t)(t+t2) +

cα1u

2
t2. (42)

Hence

∥∥y(t)
∥∥ < ε, ∀t ∈ L0. �

Remark 3.7 It is noted that for a nonnegative function f (t), the fractional integral
∫ t

0 (t –
s)α1–α2–1f (s) ds may be monotonically increasing or decreasing with respect to t for 0 <
α1 –α2 < 1 (see [3, 9, 11, 30]). To prove that the integral term

∫ t
0 (t – s)α1–α2–1f (s) ds is mono-

tonically increasing for f (t) ≥ 0, there is an alternative approach found in [10] (Lemma 5).
It is noted that the results of Lemma 5 in [10] can also be used for proving that the frac-
tional integrals in (22) are monotonically increasing for 0 < α1 – α2 < 1.

Remark 3.8 The fractional oscillation equation

D2y(t) + a2n–1D2– 1
n y(t) + · · · + a1D

1
n y(t) + y(t) = 0 (43)

reduces to the harmonic oscillation equation D2y(t)+y(t) = 0 when an = 0, n = 1, 2, . . . , 2n–
1. In fact, this equation states mD2y(t) + ky(t) = 0. Here m is the mass, and k is the spring
constant of the oscillator. Based on this system, many researchers studied various charac-
teristics and effects of fractional oscillator models [28, 39]. In mechanical systems, damp-
ing is generated by several friction processes, like air resistance, viscous and dry friction,
etc. It is well known that the damping force is related to the velocity of the process, which
means that the friction force may be consistently interchanged with a viscous damping
force.

When n = 2 and a1 
= 0, a2 = a3 = 0, equation (43) becomes D2y(t) + a1D 1
2 y(t) + y(t) = 0,

a1 > 0. From this we get the following system with a forcing function f (t), mD2y(t) +
k2Dαy(t) + k1y(t) = f (t), α ∈ (0, 1). This equation represents a mechanical system with a
mass, a spring and viscoelastic damping. Here m, k1, and k2 denote the mechanical con-
stants. This model has been used in various studies and many results have been established
for it [2, 13]. It is important to note that the FTS analysis for this type of fractional nonlin-
ear systems with multistate time delay has been analyzed for the first time. Also we note
that the available results related to stability of fractional systems were discussed with a
single-delay in state and without damping behavior. So the results which were obtained in
this work are new and will be more useful in practice.
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4 Numerical examples
Example 4.1 Consider the multiterm fractional-order multistate time delay system (9)
with α1 = 1.25, α2 = 0.75,

A =

⎡

⎢
⎣

3 1 8
0 5 2
0 0 4

⎤

⎥
⎦ , B0 =

⎡

⎢
⎣

1 3 2
5 0 1
4 7 6

⎤

⎥
⎦ , B1 =

⎡

⎢
⎣

1 0 2
0 0 5
5 1 3

⎤

⎥
⎦ ,

B2 =

⎡

⎢
⎣

1 0 5
2 –1 3

–1 5 6

⎤

⎥
⎦ , C =

⎡

⎢
⎣

2
0
1

⎤

⎥
⎦ ,

and also take the nonlinear term

f (t, x(t)) =

⎡

⎢
⎣

sin x1(t)
sin x2(t)
sin x3(t)

⎤

⎥
⎦ .

Then we can calculate that σmax(A) = 9.7843, σmax(B0) = 11.0497, σmax(B1) = 7.1136, and
σmax(B0) = 9.1027. Hence σ = 11.0497, K = 1, and c = 2. Let δ = 0.1, ε = 100, α1u = 1. The
aim is to validate the FTS condition (10) with respect to

{t0 = 0, δ = 0.1, ε = 100,α1u = 1,ρ1 = 0.1,ρ2 = 0.01}.

Then by the FTS condition of Theorem 3.3, we obtain Te = 0.1.

Example 4.2 Consider the multiterm fractional-order integro-differential system (31)
with α1 = 1.25, α2 = 0.75,

A =

[
1 2
0 3

]

, B0 =

[
–1 0
1 2

]

, B1 =

[
0 4
1 2

]

,

B2 =

[
1 0
0 –1

]

, C =

[
–1
1

]

,

and also take f (t, y(t),
∫ t

0 H(t, s, y(s)) ds) = y(t) +
∫ t

0 sin y(s) ds. Then we get σmax(A) = 3.6503,
σmax(B0) = 2.2883, σmax(B1) = 4.4954, and σmax(B2) = 1. Hence σ = 4.4954, N1 = 1, D1 = 1,
and D2 = 1. Hence N = 3. Let δ = 0.1, ε = 100, α1u = 1. The aim is to validate the FTS
condition (33) with respect to {t0 = 0, δ = 0.1, ε = 100,α1u = 1,ρ1 = 0.1,ρ2 = 0.01}. Then by
the FTS condition of Theorem 3.5, we obtain Te = 0.35.

5 Conclusion
The problem of FTS of multiterm fractional nonlinear and integro-differential system be-
tween 0 < α2 ≤ 1 < α1 ≤ 2 with multistate time delay is emphasized in this work. For this,
we obtained new conditions that guarantee the FTS of both given systems by means of
generalized Gronwall inequality. The importance and efficacy of our results are demon-
strated by numerical examples. Furthermore, this work can be also extended to stochas-
tic systems with various effects, like impulses, various delay situations, and so on, which
makes the results more significant, and they will be considered in our future work.
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