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Abstract
In this article, we study a fractional order HIV/AIDS infection model with
ABC-fractional derivative. The model is based on four classes of a population. The
study includes the existence and uniqueness of solution, the stability analysis, and
simulations. We utilize the fixed point technique for the existence and uniqueness
analysis. The stability of the fractional order model is derived with the help of existing
literature for the Hyers–Ulam stability. For the numerical computations, the Lagrange
interpolation is utilized, and the simulations are obtained for specific parameters. The
results are closer to the classical results for different orders.
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1 Introduction
Infectious diseases have been documented as an unremitting risk to human beings. Trans-
missible diseases are those which transfer from animals to humans or from humans to
humans. The spread of these diseases occurs through different sources, including air-
borne viruses, bacteria, and body fluids like blood, urine, spit, breast milk, tears, and many
more. Among the transmissible diseases, acquired immunodeficiency syndrome (AIDS) is
a transferable disease, and human immunodeficiency virus (HIV) is the causative source
for AIDS which weakens the role of the body to fight against diseases and leaves it open
to attack of usually safe infections. HIV targets CD4+ T-cells and replicates rapidly. In
the initial stage of infection, the plasma holding high level of HIV virus particles covers
the whole body and is present in both free virus particles as well the virus within infected
immune cells. Because of the important role of CD4+ T-cells in immune regulation, their
reduction and destruction causes decrease in the ability of the immune system to fight.
The decrease in these cells is used in a clinical examination as pointer for AIDS (see [1–4]
for more details). Recently, scientists have presented several models for the human im-
mune system, and a large number of articles can be studied in the area of HIV infection of
CD4+ T-cells to understand HIV infection, HIV dynamics, disease progression, and inter-
action of the immune system with HIV. In this area, the primary model describing the HIV
infection was developed by Perelson [2], which was later on modified by Perelson et al. [3].
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They studied that the model shows many of the symptoms of AIDS which were clinically
analyzed such as the decrease of CD4+ T-cells, the long latency period, low levels of free
virus in the body, and many more.

Recently, some researchers have developed very impressive articles for the mathematical
description of the HIV/AIDS models. Among those, Mukandavire et al. [5] presented a
mathematical model for the HIV/AIDS spread on sex-base as a delay-system of differential
equations and gave the local and global stabilities for their model subjected to the value of
basic reproduction number R0. Tabassum et al. [6] developed a nonlinear mathematical
model for the HIV/AIDS transmission and examined the necessary conditions required
for the well-posedness and boundedness. Dutta and Gupta [7] presented a mathematical
model for HIV/AIDS analysis with weak CD4+ T cells and studied the infection, infection-
free equilibrium situations.

The modeling in the fractional order has got more valuable attention of scientists due
to diverse analysis of dynamical problems. One can see the use of different mathemati-
cal techniques for handling these models. For instance, Nazir et al. [8] used the Caputo–
Fabrizio derivative sense of fractional order derivative for the study of HIV model. They
produced existence, stability, and numerical simulations in their work. Sweilam et al. [9]
analyzed a variable order fractional co-infection optimal control model of HIV vs malaria.
They described the necessary assumptions for the control of the spread in their study. One
can see some more related fractional order models and their analysis in the recent devel-
opments in [10–15] and many more in the literature.

Keeping in view the importance of mathematical modeling and the use of fractional or-
der operators, we consider the following HIV/AIDS model for the existence, stability, and
numerical simulations using the Atangana–Baleanu fractional derivative in the Caputo
sense

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABC
0 Dα1

t S(t) = π – β(I(t) – ηcC(t) + ηAA(t))S(t) – μ0S(t),
ABC
0 Dα1

t I(t) = β(I(t) – ηcC(t) + ηAA(t))S(t) – (ρ + φ + μ0)I(t)

+ ωC(t) + αA(t),
ABC
0 Dα1

t C(t) = φI(t) – (ω + μ0)C(t),
ABC
0 Dα1

t A(t) = ρI(t) – (α + μ0 + d)A(t),

(1)

where the total population is S(t),I(t),C(t),A(t). For this model, {S(t),I(t),C(t),A(t)}
represents the classes as follows: (S) the exposed people with HIV, (I) the contami-
nated/infected, (C) anti-viral treatment (ART) underneath cure, A(t) is the class of people
with AIDS. Here, β is the joining rate for HIV diffusion, ηA ≥ 1 is a drug parameter, for
irresistibleness of a patient with AIDS side effects, while ηC ≥ 1 is for the halfway repair
of the immune capacity of HIV patients who are treated under ART cure. The model is
considered in the ABC sense of fractional derivative. For details, the readers can benefit
from [16–20].

About the ABC-fractional calculus, we highlight the following useful literature from
[21–25].
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Definition 1.1 The ABC-fractional differential operator on ψ ∈ H∗(a, b), b > a, for α1 ∈
[0, 1] is

ABC
a Dα1

τ ψ(τ ) =
B(α1)
1 – α1

∫ τ

a
ψ ′(s)Eα1

[
–α1(τ – s)α1

1 – α1

]

ds, (2)

where B(α1) satisfies the property B(0) = B(1) = 1.

Definition 1.2 For ψ ∈ H∗(a, b), b > a,α1 ∈ [0, 1], the ABR-fractional derivative is

ABR
a Dα1

τ ψ(τ ) =
B(α1)
1 – α1

d
dτ

∫ τ

a
ψ(s)Eα1

[
–α1(τ – s)α1

1 – α1

]

ds. (3)

Definition 1.3 The AB-integral of ψ ∈ H∗(a, b), b > a, 0 < α1 < 1 is given by

AB
a Iα1

τ ψ(τ ) =
1 – α1

B(α1)
ψ(τ ) +

α1

B(α1)�(α1)

∫ τ

a
ψ(s)(τ – s)α1–1 ds. (4)

Lemma 1.4 The AB-fractional derivative and AB-fractional integral of the function ψ sat-
isfy the Newton–Leibniz formula

AB
a Iα1

τ

(ABC
a Dα1

τ ψ(τ )
)

= ψ(τ ) – ψ(a). (5)

2 Existence criteria
By the AB-fractional integral and HIV/AIDS model (1), we have

S(t) – S(0)

=
1 – α1

β(α1)
(
π – β

(
I(t) – ηcC(t) + ηA,A(t)

)
S(t) – μ0S(t)

)

+
α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1(π – β

(
I(t) – ηcC(t) + ηAA(t)

)

× S(t) – μ0S(t)
)

ds,

I(t) – I(0)

=
1 – α1

β(α1)
(
β
(
I(t) – ηcC(t) + ηAA(t)

)
S(t) – (ρ + φ + μ0)I(t) + ωC(t)

+ αA(t)
)

+
α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1(β

(
I(t) – ηcC(t) + ηAA(t)

)
S(t)

– (ρ + φ + μ0)I(t) + ωC(t) + αA(t)
)

ds,
(6)

C(t) – C(0)

=
1 – α1

β(α1)
(φI(t) – (ω + μ0)C(t) +

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1

× (
φI(t) – (ω + μ0)C(t)

)
ds,

A(t) – A(0)

=
1 – α1

β(α1)
(
ρI(t) – (α + μ0 + d)A(t)

)
+

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1
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× (
ρI(t) – (α + μ0 + d)A(t)

)
ds.

Assume that the functions Qi for i = 1, 2, 3, 4 are given as follows:

Q1(t, S) = π – β
(
I(t) – ηcC(t) + ηAA(t)

)
S(t) – μ0S(t), (7)

Q2(t,I) = β
(
I(t) – ηcC(t) + ηAA(t)

)
S(t) – (ρ + φ + μ0)I(t) + ωC(t) + αA(t), (8)

Q3(t,C) = φI(t) – (ω + μ0)C(t), (9)

Q3(t,A) = ρI(t) – (α + μ0 + d)A(t), (10)
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ1 = μ0 + βκ2 + ηcκ3 + ηAκ4,

ψ2 = μ0 + ρ + φ + βκ1,

ψ3 = μ0 + ω,

ψ4 = α + d + μ0.

(11)

• (B) We assume that, for S(t),S∗(t),I(t),I∗(t),C(t),C∗(t),A(t),A∗(t) ∈ L[0, 1], there
exist constants κi > 0, for i = 1, 2, 3, 4, such that
‖S(t)‖ ≤ κ1,‖I(t)‖ ≤ κ2,‖C(t)‖ ≤ κ3,‖A(t)‖ ≤ κ4, and ξ1, ξ2 > 0, and

∥
∥C(t) + A(t)

∥
∥ ≤ ξ1, (12)

∥
∥I(t) + A(t)

∥
∥ ≤ ξ2. (13)

Theorem 2.1 The Qi for i ∈ N 4
1 satisfies the Lipschitz condition provided that (B) is

obeyed.

Consider, for Q1, the following:

∥
∥Q1(t, S) – Q1

(
t, S∗)∥∥ =

∥
∥π – β

(
I(t) – ηcC(t) + ηAA(t)

)
S(t) – μ0S(t)

– (π – β
(
I(t) – ηcC(t) + ηAA(t)

)
S∗(t) – μ0S∗(t)

∥
∥

≤ [
μ0 + β‖I‖ + ηc‖c‖ + ηA‖A‖]∥∥S – S∗∥∥

≤ [μ0 + βκ2 + ηcκ3 + ηAκ4]
∥
∥S – S∗∥∥

= ψ1
∥
∥S – S∗∥∥. (14)

For Q2(t,I), we have

∥
∥Q2(t,I) – Q2

(
t,I∗)∥∥

=
∥
∥β

(
I(t) – ηcC(t) + ηAA(t)

)
S(t) – (ρ + φ + μ0)I(t) + ωC(t) + αA(t)

– (β
(
I∗(t) – ηcC(t) + ηAA(t)

)
S(t) – (ρ + φ + μ0)I∗(t) + ωC(t) + αA(t)

∥
∥

≤ [
μ0 + ρ + φ + β‖S‖]∥∥I – I∗∥∥ (15)

≤ [μ0 + ρ + φ + βκ1]
∥
∥I – I∗∥∥

= ψ2
∥
∥I – I∗∥∥.
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Q3(t,C) implies

∥
∥Q3(t,C) – Q3

(
t,C∗)∥∥ =

∥
∥φI(t) – (ω + μ0)C(t) – (φI(t) – (ω + μ0)C∗(t)

∥
∥ (16)

≤ [μ0 + ω]
∥
∥C – C∗∥∥

= ψ3
∥
∥C – C∗∥∥.

And finally, for Q4(t,A), we have

∥
∥Q4(t,A) – Q4

(
t,A∗)∥∥ (17)

=
∥
∥ρI(t) – (α + μ0 + d)A(t) –

(
ρI(t) – (α + μ0 + d)A∗(t)

)∥
∥

≤ [μ0 + α + d]
∥
∥A – A∗∥∥

= ψ4
∥
∥A – A∗∥∥.

Thus, from (14) to (17), we have that Qi for i = 1, 2, 3, 4 satisfies the Lipschitz condition.
This completes the proof.

Assuming that S(0) = I(0) = C(0) = A(0) = 0, we have

S(t) =
1 – α1

β(α1)
Q1

(
t,S(t)

)
+

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q1

(
s,S(s)

)
ds, (18)

I(t) =
1 – α1

β(α1)
Q2

(
t,I(t)

)
+

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q2

(
s,I(s)

)
ds, (19)

C(t) =
1 – α1

β(α1)
Q1

(
t,C(t)

)
+

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q3

(
s,C(s)

)
ds, (20)

A(t) =
1 – α1

β(α1)
Q1

(
t,C(t)

)
+

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q4

(
s,A(s)

)
ds. (21)

For the iterative scheme of model (1), define

Sn(t) =
1 – α1

β(α1)
Q1

(
t,Sn–1(t)

)
+

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q1

(
s,Sn–1(s)

)
ds,

In(t) =
1 – α1

β(α1)
Q2

(
t,In–1(t)

)
+

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q2

(
s,In–1(s)

)
ds,

Cn(t) =
1 – α1

β(α1)
Q1

(
t,Cn–1(t)

)
+

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q3

(
s,Cn–1(s)

)
ds,

An(t) =
1 – α1

β(α1)
Q1

(
t,Cn–1(t)

)
+

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q4

(
s,An–1(s)

)
ds.

Theorem 2.2 The fractional order HIV/AIDS model (1) has a solution if we have

� = max{�i} < 1, i ∈N 4
1 . (22)

We define the function

G1n(t) = Sn+1(t) – S(t), G2n(t) = In+1(t) – I(t), (23)
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G3n(t) = Cn+1(t) – C(t), G4n(t) = An+1(t) – A(t). (24)

Then, using equations (3) to (24), we find that

‖G1n‖ ≤ 1 – α1

β(α1)
∥
∥Q1

(
t,Sn(t)

)
– Q1

(
t,Sn–1(t)

)∥
∥

+
α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1∥∥Q1

(
s,Sn(s)

)
– Q1

(
t,Sn–1(t)

)∥
∥ds

≤
[

1 – α1

β(α1)
+

1
β(α1)�(α1)

]

ψ1‖Sn – S‖ (25)

≤
[

1 – α1

β(α1)
+

1
β(α1)�(α1)

]n

�n‖Sn – S‖.

And

‖G2n‖ ≤ 1 – α1

β(α1)
∥
∥Q2

(
t,In(t)

)
– Q2

(
t,In–1(t)

)∥
∥

+
α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1∥∥Q2

(
s,In(s)

)
– Q2

(
t,In–1(t)

)∥
∥ds (26)

≤
[

1 – α1

β(α1)
+

1
β(α1)�(α1)

]

ψ2‖In – I‖

≤
[

1 – α1

β(α1)
+

1
β(α1)�(α1)

]n

�n‖In – I‖.

Similarly,

‖G3n‖ ≤ 1 – α1

β(α1)
∥
∥Q3

(
t,Cn(t)

)
– Q3

(
t,Cn–1(t)

)∥
∥

+
α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1∥∥Q3

(
s,Cn(s)

)
– Q3

(
t,Cn–1(t)

)∥
∥ds (27)

≤
[

1 – α1

β(α1)
+

1
β(α1)�(α1)

]

ψ3‖Cn – C‖

≤
[

1 – α1

β(α1)
+

1
β(α1)�(α1)

]n

�n‖Cn – C‖,

‖G4n‖ ≤ 1 – α1

β(α1)
∥
∥Q4

(
t,An(t)

)
– Q4

(
t,An–1(t)

)∥
∥

+
α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1∥∥Q4

(
s,An(s)

)
– Q4

(
t,An–1(t)

)∥
∥ds (28)

≤
[

1 – α1

β(α1)
+

1
β(α1)�(α1)

]

ψ4‖An – A‖

≤
[

1 – α1

β(α1)
+

1
β(α1)�(α1)

]n

�n‖An – A‖.

Thus, we have G(t)n → 0, i ∈N 4
1 , as n → ∞ for � < 1, which completes the proof.

3 Uniqueness of solution
For our suggested model (1), we study the uniqueness of solution.
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Theorem 3.1 HIV/AIDS model (1) has a unique solution if

[
1 – αi

β(αi)
+

1
β(αi)�(αi)

]

ψi ≤ 1, i ∈N 4
1 . (29)

Let there exist another solution S(t),I(t),C(t),A(t) such that

S(t) =
1 – α1

β(α1)
Q1

(
t,S(t)

)
+

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q1

(
s,S(s)

)
ds, (30)

I(t) =
1 – α1

β(α1)
Q2

(
t,I(t)

)
+

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q2

(
s,I(s)

)
ds, (31)

C(t) =
1 – α1

β(α1)
Q3

(
t,C(t)

)
+

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q3

(
s,C(s)

)
ds, (32)

A(t) =
1 – α1

β(α1)
Q4

(
t,C(t)

)
+

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q4

(
s,A(s)

)
ds. (33)

Then

∥
∥S(t) – S(t)

∥
∥ ≤ 1 – α1

β(α1)
∥
∥Q1

(
t,S(t)

)
– Q1

(
t,S(t)

)∥
∥

+
α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1∥∥Q1

(
s,S(s)

)
– Q1

(
t,S(t)

)∥
∥ds (34)

≤
[

1 – α1

β(α1)
+

1
β(α1)�(α1)

]

ψ1‖S – S‖,

which implies

[
1 – α1

β(α1)
ψ1 +

ψ1

β(α1)�(α1)
– 1

]

‖S–S‖ ≥ 0. (35)

By (29), (35) is true if ‖S – S‖ = 0, which implies S(t) = S(t). Similarly, we have

∥
∥I(t) – I(t)

∥
∥ ≤ 1 – α1

β(α1)
∥
∥Q2

(
t,I(t)

)
– Q2

(
t,I(t)

)∥
∥

+
α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1∥∥Q2

(
s,C(s)

)
– Q2

(
t,I(t)

)∥
∥ds (36)

≤
[

1 – α1

β(α1)
+

1
β(α1)�(α1)

]

ψ2‖C – C‖,

which implies

[
1 – α1

β(α1)
ψ1 +

ψ1

β(α1)�(α1)
– 1

]

‖I–I‖ ≥ 0. (37)

By (29), (37) is true if ‖I – I‖ = 0, which implies I(t) = I(t). Now, for C , we have

∥
∥C(t) – C(t)

∥
∥ ≤ 1 – α1

β(α1)
∥
∥Q3

(
t,C(t)

)
– Q3

(
t,C(t)

)∥
∥
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+
α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1∥∥Q3

(
s,C(s)

)
– Q3

(
t,C(t)

)∥
∥ds (38)

≤
[

1 – α1

β(α1)
+

1
β(α1)�(α1)

]

ψ2‖C – C‖,

which implies

[
1 – α1

β(α1)
ψ1 +

ψ1

β(α1)�(α1)
– 1

]

‖C–C‖ ≥ 0. (39)

By (29), (39) is true if ‖C – C‖ = 0, which implies C(t) = C(t). Similarly, A(t) = A(t). Thus
(1) has a unique solution.

4 Hyers–Ulam stability
Definition 4.1 The integral system (18)–(21) is Hyers–Ulam stable if, for �i > 0, i ∈ N 4

1

and γi > 0, i ∈N 4
1 such that

∣
∣
∣
∣S(t) –

1 – α1

β(α1)
Q1

(
t,S(t)

)
–

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q1

(
s,S(s)

)
ds

∣
∣
∣
∣ ≤ γ1, (40)

∣
∣
∣
∣I(t) –

1 – α1

β(α1)
Q2

(
t,I(t)

)
–

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q2

(
s,I(s)

)
ds

∣
∣
∣
∣ ≤ γ2, (41)

∣
∣
∣
∣C(t) –

1 – α1

β(α1)
Q3

(
t,C(t)

)
–

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q3

(
s,C(s)

)
ds

∣
∣
∣
∣ ≤ γ3, (42)

∣
∣
∣
∣A(t) –

1 – α1

β(α1)
Q4

(
t,A(t)

)
–

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q4

(
s,A(s)

)
ds

∣
∣
∣
∣ ≤ γ4, (43)

we have Ṡ(t), İ(t), Ċ(t), Ȧ(t), which implies

Ṡ(t) =
1 – α1

β(α1)
Q1

(
t, Ṡ(t)

)
+

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q1

(
s, Ṡ(s)

)
ds, (44)

İ(t) =
1 – α1

β(α1)
Q2

(
t, İ(t)

)
+

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q2

(
s, İ(s)

)
ds, (45)

Ċ(t) =
1 – α1

β(α1)
Q3

(
t, Ċ(t)

)
+

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q3

(
s, Ċ(s)

)
ds, (46)

Ȧ(t) =
1 – α1

β(α1)
Q4

(
t, Ȧ(t)

)
+

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q4

(
s, Ȧ(s)

)
ds (47)

such that

∣
∣S(t) – Ṡ(t)

∣
∣ ≤ δ1γ1,

∣
∣I(t) – İ(t)

∣
∣ ≤ δ2γ2,

∣
∣C(t) – Ċ(t)

∣
∣ ≤ δ3γ3,

∣
∣A(t) – Ȧ(t)

∣
∣ ≤ δ4γ4.

Theorem 4.2 Let (B) be satisfied. Then (1) is Hyers–Ulam stable.

Proof By Theorem 3.1, HIV/AIDS model (1) has a unique solution, sayS(t),I(t),C(t),A(t).
Let (Ṡ(t), İ(t), Ċ(t), Ȧ(t) be an approximate solution of (1) satisfying (18)–(21). Then we
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have

∥
∥S(t) – Ṡ(t)

∥
∥ ≤ 1 – α1

β(α1)
∥
∥Q1

(
t,S(t)

)
– Q1

(
t, Ṡ(t)

)∥
∥

+
α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1∥∥Q1

(
s,S(s)

)
– Q1

(
t, Ṡ(t)

)∥
∥ds (48)

≤
[

1 – α1

β(α1)
+

1
β(α1)�(α1)

]

ψ1‖S – Ṡ‖.

Taking γ1 = ψ1, � = 1–α1
β(α1) + α1

β(α1)�(α1) , this implies

∥
∥S(t) – Ṡ(t)

∥
∥ ≤ γ1�1. (49)

Similarly, for I(t), İ ,C(t), Ċ(t),A(t), Ȧ(t), we have

⎧
⎪⎪⎨

⎪⎪⎩

‖I(t) – İ(t)‖ ≤ γ2�,

‖C(t) – Ċ(t)‖ ≤ γ3�,

‖A(t) – Ȧ(t)‖ ≤ γ4�.

(50)

This implies that system (1) is Hyers–Ulam stable, which ultimately ensures the stability
of (1). This completes the proof. �

5 Numerical scheme
With the help of (7)–(10), we produce the following numerical scheme:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ABC
0 Dα1

t S(t) = Q1(t,S),
ABC
0 Dα1

t I(t) = Q2(t.I),
ABC
0 Dα1

t C(t) = Q3(t,C),
ABC
0 Dα1

t A(t) = Q4(t,A).

(51)

With the help of fractional AB-integral operator, (51) gets the following form:

S(t) – S(0) =
1 – α1

β(α1)
Q1(t,S) +

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q1(s,S) ds, (52)

I(t) – I(0) =
1 – α1

β(α1)
Q2(t,I) +

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q2(s,I) ds, (53)

C(t) – C(0) =
1 – α1

β(α1)
Q3(t,C) +

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q3(s,C) ds, (54)

A(t) – A(0) =
1 – α1

β(α1)
Q4(t,A) +

α1

β(α1)�(α1)

∫ t

0
(t – s)α1–1Q4(s,A) ds. (55)

By dividing the assumed interval [0, t] into subintervals with the help of point tn+1, for
n = 0, 1, 2 . . . , we have

S(tn+1) – S(0)
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=
1 – α1

β(α1)
Q1(tn,S) +

α1

β(α1)�(α1)

n∑

k=0

∫ tk+1

tk

(tn+1 – s)α1–1Q1(s,S) ds, (56)

I(tn+1) – I(0)

=
1 – α1

β(α1)
Q2(tn,I) +

α1

β(α1)�(α1)

n∑

k=0

∫ tk+1

tk

(tn+1 – s)α1–1Q2(s,I) ds, (57)

C(tn+1) – C(0)

=
1 – α1

β(α1)
Q3(tn,C) +

α1

β(α1)�(α1)

n∑

k=0

∫ tk+1

tk

(tn+1 – s)α1–1Q3(s,C) ds, (58)

A(tn+1) – A(0)

=
1 – α1

β(α1)
Q4(tn,A) +

α1

β(α1)�(α1)

n∑

k=0

∫ tk+1

tk

(tn+1 – s)α1–1Q4(s,A) ds. (59)

Now, using the Lagrange interpolation, we have

S(tn+1) = S(0) +
1 – α1

β(α1)
Q1(tk ,S) +

α1

B(α1)

×
n∑

k=0

[
hα1Q1(tk ,S)
�(α1 + 2)

(
(n + 1 – k)α1 (n – k + 2 + α1)

– (n – k)α1 (n – k + 2 + 2α1)
)

–
hα1Q1(tk–1,S)

�(α1 + 2)

× (
(n + 1 – k)α1 – (n – k)α1 (n + 1 – k + α1)

)
]

,

I(tn+1) = I(0) +
1 – α1

β(α1)
Q2(tk ,I) +

α1

B(α1)
(60)

×
n∑

k=0

[
hα1Q2(tk ,I)
�(α1 + 2)

(
(n + 1 – k)α1 (n – k + 2 + α1)

– (n – k)α1 (n – k + 2 + 2α1)
)

–
hα1Q2(tk–1,I)

�(α1 + 2)

× (
(n – k + 1)α1 – (n – k)α1 (n + 1 – k + α1)

)
]

,

C(tn+1) = C(0) +
1 – α1

β(α1)
Q3(tk ,C) +

α1

B(α1)
(61)

×
n∑

k=0

[
hα1Q3(tk ,I)
�(α1 + 2)

(
(n + 1 – k)α1 (n – k + 2 + α1)

– (n – k)α1 (n – k + 2 + 2α1)
)

–
hα1Q3(tk–1,C)

�(α1 + 2)

× (
(n + 1 – k)α1 – (n – k)α1 (n + 1 – k + α1)

)
]

,

A(tn+1) = A(0) +
1 – α1

β(α1)
Q4(tk ,A) +

α1

B(α1)
(62)



Aslam et al. Advances in Difference Equations        (2021) 2021:107 Page 11 of 15

×
n∑

k=0

[
hα1Q4(tk ,A)

�(α1 + 2)
(
(n + 1 – k)α1 (n – k + 2 + α1)

– (n – k)α1 (n – k + 2 + 2α1)
)

–
hα1Q4(tk–1,A)

�(α1 + 2)

× (
(n + 1 – k)α1+1 – (n – k)α1 (n + 1 – k + α1)

)
]

.

6 Computational results
In this subsection, we present the numerical results with the help of several plots. These
results have been produced as per the numerical scheme discussed above. In the com-
putation, we have considered the parametric values as follows: μ0 = 1

70 , β = 0.001, � = 2,
ηA = 1.3, ηC = 0.04, ω = 0.09, φ = 0.1, ρ = 0.1, α = 0.33, d = 1.

The objective of the present study of an HIV disease is to describe the transmission pro-
cess of the disease that can be biologically interpreted as follows: when infectious people
of HIV enter a population of potential people, the disease is transmitted to other individ-
uals through the mode of transmission of HIV. An individual who is suffering from HIV
may remain asymptomatic at the early stage of infection, only later showing the onset of
clinical symptoms and being diagnosed as a disease case.

Illustrative graphs show that the epidemiology of HIV is broadly predictable. Figure 1,
represents the comparison of the susceptable class for orders 1, 0.98, 0.96, 0.94, while
keeping the h = 0.09. Figure 2, represents the comparison of the susceptable class for or-
ders 1, 0.98, 0.96, 0.94, while keeping the h = 0.09. This class shows an increase in the
number of people with respect to the time due to the decrease in infection I(t) as given in
the Fig. 3 and recury given in Fig. 2. Our model reflects that if the treatment is continued
the number of AIDS can be reduced with respect to the time as given in Fig. 4. Figures 5–8,
are the joint solutions of the model.

We have determined conditions for when the disease persists and when it can be eradi-
cated. Graphs of various populations with different derivative orders are reflected in each
variable of our model, which serves as a proxy for variations in the susceptible, suscepti-

Figure 1 The susceptible class S(t) for α1 = 1, 0.98, 0.96, 0.94 and h = 0.09
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Figure 2 The cured class C(t) for α1 = 1, 0.98, 0.96, 0.94 and h = 0.09

Figure 3 The infected class I(t) for α1 = 1, 0.98, 0.96, 0.94 and h = 0.09

Figure 4 The AIDS classA(t) for α1 = 1, 0.98, 0.96, 0.94 and h = 0.09
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Figure 5 The solution for (1) for S ,I ,C ,A, keeping h = 0.1 and α = 1

Figure 6 The solution for (1) for S ,I ,C ,A, keeping h = 0.1 and α = 0.98

Figure 7 The solution for (1) for S ,I ,C ,A, keeping h = 0.1 and α = 1
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Figure 8 The solution for (1) for S ,I ,C ,A, keeping h = 0.1 and α = 0.98

ble to HIV, AIDS, and cured class. The graphs also show that our results are robust. These
also illustrate asymptotic behavior around the endemic equilibrium.

7 Conclusions
In this paper, we considered a fractional order HIV/AIDS model in the Atangana–Baleanu
sense of derivative for the existence, uniqueness of solution, Hyers–Ulam stability, and nu-
merical simulations. The study for the existence and uniqueness of solution guaranteed
that the model has a solution, while the Hyers–Ulam stability ensured its stability. These
encouraged us to perform the numerical simulations of model (1). For the numerical sim-
ulations, we used the Euler approach and the given scheme. The scheme was then utilized
for the numerical simulations. The joint solution of the model was given in Fig. 5, which
also shows stability for α1 = 1, while Fig. 6 is the solution of the model for α1 = 0.98. We
have also examined the nature of the solution by reducing the time to 20 days and observed
that the solutions for the orders 1 and 0.98 are in resemblance. That is, the behavior of
each class of the model is the same for fractional orders. As we get closer to the value of
α1 to 1, we get more classical results. This new model can be reconsidered for other types
of fractional order derivatives, and its theoretical as well as numerical stabilities may be
examined for the continuation of the study.
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