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Abstract
COVID-19 or coronavirus is a newly emerged infectious disease that started in Wuhan,
China, in December 2019 and spread worldwide very quickly. Although the recovery
rate is greater than the death rate, the COVID-19 infection is becoming very harmful
for the human community and causing financial loses to their economy. No proper
vaccine for this infection has been introduced in the market in order to treat the
infected people. Various approaches have been implemented recently to study the
dynamics of this novel infection. Mathematical models are one of the effective tools in
this regard to understand the transmission patterns of COVID-19. In the present paper,
we formulate a fractional epidemic model in the Caputo sense with the consideration
of quarantine, isolation, and environmental impacts to examine the dynamics of the
COVID-19 outbreak. The fractional models are quite useful for understanding better
the disease epidemics as well as capture the memory and nonlocality effects. First, we
construct the model in ordinary differential equations and further consider the
Caputo operator to formulate its fractional derivative. We present some of the
necessary mathematical analysis for the fractional model. Furthermore, the model is
fitted to the reported cases in Pakistan, one of the epicenters of COVID-19 in Asia. The
estimated value of the important threshold parameter of the model, known as the
basic reproduction number, is evaluated theoretically and numerically. Based on the
real fitted parameters, we obtainedR0 ≈ 1.50. Finally, an efficient numerical scheme
of Adams–Moulton type is used in order to simulate the fractional model. The impact
of some of the key model parameters on the disease dynamics and its elimination are
shown graphically for various values of noninteger order of the Caputo derivative. We
conclude that the use of fractional epidemic model provides a better understanding
and biologically more insights about the disease dynamics.

Keywords: Caputo fractional model; COVID-19; Stability analysis; Real data;
Quarantine and isolation; Environmental impact; Parameter estimations; Simulation

1 Introduction
The novel virus (2019-nCoV) that is highly transmissible and pathogenic was first identi-
fied from a single individual in Wuhan city in China. This novel infection causes a severe
acute respiratory syndrome and it has spread across the world. The reported COVID-
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19 confirmed cases are over 10.27 million, and there have been more than 0.5 million
deaths till 30 June 2020 globally so far [1]. The worst affected regions due to coronavirus
are America, Europe, Africa, South-East Asia, Western Pacific, Eastern, and Mediter-
ranean. The initial symptoms of a COVID-19 infection include dry cough, fever, fatigue,
and breath shortening that appear in 2–10 days and further cause pneumonia, SARS, kid-
ney failure, and even death [2]. The pandemic has continuously spread due to absence
of vaccine and antiviral treatments. Thus WHO announced it a global issue. The pol-
icy makers have implemented the non-pharmaceutical intervention like social distancing,
self-quarantine, isolation of infected, wearing mask, protective kits for medical personnel,
and travel restrictions to minimize the disease incidence. It is also a challenging problem
for scientists and virologist evaluating potential treatments based on ongoing clinical tri-
als.

Researchers suggested many mathematical models to analyze the dynamical behavior
and spread of the novel virus which can help to predict the future situation and even
control of the COVID-19 pandemic [3]. In the analysis of mathematical models of coro-
navirus, the reproductive number has a significant role in describing the nonlinear dy-
namics of physical and biological engineering problems. The reproduction number indi-
cates that COVID-19 has been continuously increasing or has been controlled. In Pak-
istan, 209,337 confirmed infected cases have been reported and about 4304 have lost
their lives out of over 220 million population to date [4, 5]. The first case was reported
in Karachi on 26 February 2020, and day by day situation is getting worse and virus is
spreading quickly due to limiting testing. The government is unable to maintain strict
lockdown and has imposed a smart lockdown by easing restrictions due to severe eco-
nomic hardships, especially for labor community who earns for living to survive every
day. To study the dynamics of COVID-19 transmission pattern, many mathematical mod-
els provide more insight on how to control the disease spread to health authorities [6–8].
Fanelli and Piazza [9] studied a novel compartmental model describing the transmission
patterns of COVID-19 in three highly infected countries. The dynamics of COVID-19
with an impact of non-pharmaceutical interventions was studied by Ullah and Khan [10]
on Pakistani data. The fractional mathematical models rendering the natural fact in a sys-
tematic way as in [11, 12] and [13, 14] are used to simulate the transmission of coron-
avirus. Different mathematical models with an effect of nonlocality and fading memory
process by using differential operators have been presented [14, 15]. The fractional order
epidemic models are more helpful and reliable in analyzing the dynamics of an infectious
disease than the classical integer order models [16, 17]. The fractional order models for
different diseases show cooperatively better fit to the real data. In [18, 19] a different frac-
tional operator is suggested, and applications of these fractional operators are found in
[20, 21]. Recently a Caputo fractional order COVID-19 model has been studied in [22].
Some other fractional mathematical models for the investigations of infectious diseases
have been studied in [15, 23–26]. For example, the fractional diffusion equations and their
analysis are studied in [15]. A new scheme to solve numerically the fractional order dif-
ferential equations is utilized in [23]. New numerical investigations for the fluid in non-
conventional media are suggested in [24]. Coronavirus modelings, simulations, and their
possible control through a mathematical model are studied by the author in [25]. The
spread of coronavirus in South Africa and Turkey with detailed statistical and mathemati-
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cal results is studied in [26]. Recently, the authors have studied the analysis of coronavirus
model in fractional derivative [27]. The use of quarantine and isolations in the model-
ing of coronavirus is investigated in [28]. A mathematical model for the dynamical anal-
ysis of coronavirus and its control analysis is studied by the authors in [10]. The notified
cases of coronavirus in Saudi Arabia through a mathematical model are considered in
[29], where the authors provide suggestions on possible controls based on the parame-
ters.

Environmental viral load plays an essential role in the disease incidence and is consid-
ered to be one of the main transmission routes of COVID-19. In this study, we reformulate
the model [28] with the impact of quarantine, isolation, and environmental effects on the
transmission dynamics of coronavirus with the application of Caputo derivative. The pa-
rameter values are estimated from the cumulative COVID-19 cases reported in Pakistan.
The fractional order models provide better understanding and give more insights about
the pandemic. The rest of the work is arranged as follows: In Sect. 2 basics preliminaries
are presented, while the model formulation for integer case with parameter estimation and
curve fitting is presented in Sect. 3. Model derivation and basics properties are presented
in Sects. 4 and 5, respectively. In Sect. 6 we present the analysis of the model, while the
numerical simulations are depicted in Sect. 7. Brief concluding remarks are presented in
Sect. 8.

2 Preliminaries on fractional derivative
In order to proceed, first we recall some basic definitions regarding fractional calculus.

Definition 1 The fractional order derivative in the Caputo case with order α for a function
g ∈ Cn is defined as follows [19]:

CDα
t
(
g(t)

)
=

1
�(n – α)

∫ t

0

gn(ς )(t – ς )n–α

(t – ς )
dς , n – 1 < α ≤ n ∈ N . (1)

Clearly, CDα
t (g(t)) tends to g ′(t) as α → 1.

Definition 2 The corresponding integral with order α > 0 is defined as follows:

Iα
t
(
g(t)

)
=

1
�(α)

∫ t

0

g(ς )(t – ς )α

(t – ς )
dς , 0 < α < 1, t > 0. (2)

Definition 3 The Atangana–Baleanu–Caputo (ABC) fractional operator of order α ∈
[0, 1] is defined as follows [18]:

ABC
a Dα

t
(
g(t)

)
=

ABC(α)
(1 – α)

∫ t

a
g ′(ς )Eα

[
–α

(t – ς )α

1 – α

]
dς . (3)

Definition 4 The associated ABC fractional integral of order α is defined as follows:

ABC
a Iα

t
(
g(t)

)
=

1 – α

B(α)
g(t) +

α

B(α)�(α)

∫ t

a
g(ς )(t – ς )α–1 dς , α ∈ [0, 1]. (4)
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Definition 5 The constant point z∗ is an equilibrium point of the Caputo-fractional
model, then [30]

CDα
t z(t) = g

(
t, z(t)

)
, α ∈ (0, 1), (5)

if and only if g(t, z∗) = 0.

3 The classical integer order model formulation
In this section, we briefly discuss the integer order model of the dynamics of COVID-19
with quarantine, isolation, and environmental load which is mainly studied for the Chi-
nese population data in the case of fractal-fractional Atangana–Baleanu derivative [28].
For the mathematical model formulation, the net population N(t) at time t is further di-
vided into mutually-exclusive sub-compartments as susceptible or healthy S(t), exposed
E(t), infected with clinical symptoms I(t), asymptomatically infected A(t), quarantined
class Q(t), hospitalized H(t), and the recovered R(t) individuals. The class M(t) denotes
the environmental viral load due to the infected people. It is to be that the asymptomatic
infected individuals are also capable of transmitting the infection. The nonlinear ordinary
differential equations governed by these assumptions are described as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = � – δS(t) – λS(t),
dE
dt = λS(t) – ((1 – ϕ)ω + ϕρ + δ + ε1)E(t),
dI
dt = (1 – ϕ)ωE(t) – (σ1 + δ + ς1 + τ )I(t),
dA
dt = ϕρE(t) – (σ2 + δ)A(t),
dQ
dt = ε1E(t) – (δ + η1 + ε2)Q(t),
dH
dt = τ I(t) + ε2Q(t) – (δ + η2 + ς2)H(t),
dR
dt = σ1I(t) + σ2A(t) + η1Q(t) + η2H(t) – δR(t),
dM
dt = m1I + m2A(t) – m3M(t),

(6)

where

λ =
ζ1(I + ψA)

N
+ ζ2M, (7)

subject to the following nonnegative initial conditions:

⎧
⎪⎪⎨

⎪⎪⎩

S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0,

A(0) = A0 ≥ 0, Q(0) = Q0 ≥ 0,

H(0) = H0 ≥ 0, R(0) = R0 ≥ 0, M(0) = M0 ≥ 0.

(8)

The biological description of the parameters involved in COVID-19 model (6) is given in
Table 1.

3.1 Parameter estimation
In this section, we estimate the model parameters with the help of the well-known sta-
tistical technique known as nonlinear least square curve fitting approach. The confirmed
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Table 1 Description of the model parameters and their estimated and fitted values

Parameter Description Value (in days) Reference

� Recruitment rate δ × N(0) Estimated
δ Natural death rate 1/(67.7× 365) [4]
ω Incubation period 0.1897 [4]
ρ Incubation period 0.1305 Fitted
σ1 Infected recovery rate 0.5253 Fitted
σ2 Asymptomatic recovery rate 0.3851 Fitted
η1 Quarantined recovery rate 0.6715 Fitted
η2 Recovery rate of the hospitalized 0.6052 Fitted
τ Rate of moving from I to H class 0.3061 Fitted
ε1 Quarantine rate of exposed individuals 0.2395 Fitted
ε2 Hospitalization rate of Q individuals 0.3101 Fitted
ς1 Infected disease death rate 0.0222 Fitted
ς2 Hospitalized disease death rate 0.0661 Fitted
ζ1 Contact rate 0.6104 Fitted
ζ2 Disease transmission coefficient 1.2× 10–7 Fitted
m1 Viral contribution toM by I class 0.2157 Fitted
m2 Viral contribution toM by A class 0.2276 Fitted
m3 Removal rate of virus fromM 0.2276 Fitted
ψ Transmissibility multiple 0.5856 Fitted

Figure 1 Curve fitting (solid red line) to the confirmed infected cases using model (6), while the data are
consider from 1 March to 30 June 2020

infected cases from 1 March to 30 June 2020 in Pakistan are used to estimate the model
parameter values [31]. The recruitment rate and the natural mortality rate are estimated
from literature, and other parameters are fitted from real data. The updated reproduction
number evaluated by using the estimated and fitted parameters is R0 ≈ 1.50. The pre-
dicted curve having a better agreement to the actual reported cases is depicted in Fig. 1.
The model parameter values are shown in Table 1. The initial conditions used in data fit-
ting as well as in numerical results are given as S(0) = 220,870,336, E(0) = 20,000, I(0) =
4, A(0) = 200, Q(0) = H(0) = M(0) = 0.

4 Model derivation in Caputo operator
We reformulate the COVID-19 fractional order (6) model using a Caputo fractional
derivative in order to observe the memory effects and gain more insights about the pan-
demic. System (6) in terms of integral form is followed by substituting the value of kernel
as a power-law correlation function. After applying the Caputo fractional derivative of



Aba Oud et al. Advances in Difference Equations        (2021) 2021:106 Page 6 of 19

order α – 1, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDα–1
t [ dS

dt ] = CDα–1
t I–(α–1)

t [� – δS(t) – λS(t)],
CDα–1

t [ dE
dt ] = CDα–1

t I–(α–1)
t [λS(t) – ((1 – ϕ)ω + ϕρ + δ + ε1)E(t)],

CDα–1
t [ dI

dt ] = CDα–1
t I–(α–1)

t [(1 – ϕ)ωE(t) – (σ1 + δ + ς1 + τ )I(t)],
CDα–1

t [ dA
dt ] = CDα–1

t I–(α–1)
t [ϕρE(t) – (σ2 + δ)A(t)],

CDα–1
t [ dQ

dt ] = CDα–1
t I–(α–1)

t [ε1E(t) – (δ + η1 + ε2)Q(t)],
CDα–1

t [ dH
dt ] = CDα–1

t I–(α–1)
t [τ I(t) + ε2Q(t) – (δ + η2 + ς2)H(t)],

CDα–1
t [ dR

dt ] = CDα–1
t I–(α–1)

t [σ1I(t) + σ2A(t) + η1Q(t) + η2H(t) – δR(t)],
CDα–1

t [ dM
dt ] = CDα–1

t I–(α–1)
t [m1I + m2A(t) – m3M(t)].

(9)

Both are the inverse operators, we get the COVID-19 model in the Caputo operator form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDα
t S(t) = � – δS(t) – λS(t),

CDα
t E(t) = λS(t) – ((1 – ϕ)ω + ϕρ + δ + ε1)E(t),

CDα
t I(t) = (1 – ϕ)ωE(t) – (σ1 + δ + ς1 + τ )I(t),

CDα
t A(t) = ϕρE(t) – (σ2 + δ)A(t),

CDα
t Q(t) = ε1E(t) – (δ + η1 + ε2)Q(t),

CDα
t H(t) = τ I(t) + ε2Q(t) – (δ + η2 + ς2)H(t),

CDα
t R(t) = σ1I(t) + σ2A(t) + η1Q(t) + η2H(t) – δR(t),

CDα
t M(t) = m1I + m2A(t) – m3M(t).

(10)

The initial conditions are as follows:

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, A(0) ≥ 0,

Q(0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0, M(0) ≥ 0.
(11)

5 Basic properties
5.1 Invariant region
The dynamics of Caputo fractional model (10) is explored in a feasible region � ⊂R

8
+ such

that � = {(S(t), E(t), I(t), A(t), Q(t), H(t), R(t)) ∈ R
7
+ : N(t) ≤ �

δ
, M(t) ∈R+ :≤ �

δ

m1+m2
m3

}.

Lemma 1 The region � ⊂ R
7
+ is positively invariant with nonnegative initial conditions

for model (10) in R
7
+.

Proof After summing the components of human population in model (10), we obtain a
total population as follows:

CDα
t N(t) = CDα

t S(t) + CDα
t E(t) + CDα

t I(t) + CDα
t A(t) + CDα

t Q(t)

+ CDα
t H(t) + CDα

t R(t),

and then we have

CDα
t N(t) + δN(t) ≤ �.
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After applying the Laplace transform, we have

N(s) ≤ �

s(sα + δ)
+ N(0)

sα–1

sα + δ
.

By considering the inverse Laplace, we arrive at

N(t) ≤ N(0)Eα,1
(
δtα

)
+ �tαEα,α+1

(
δtα

)
,

where the Mittag-Leffler function is shown by

Eα,β(y) =
∞∑

n=0

yn

�(αn + β)
,

and the Laplace transform is

L
[
tβ–1Eα,β

(±αtα
)]

=
sα–β

sα ∓ α
.

Thus, the solution of the model with the nonnegative conditions in � remains in �. So,
the region � is positively invariant and attracts all the solutions in R

7
+. �

Now, for the positivity of the system solution, let

R
7
+ =

{
y ∈R

7 | y ≥ 0
}

and y(t) =
(
S(t), E(t), I(t), A(t), Q(t), H(t), R(t)

)T .

Corollary 1 [32] Suppose that g(t) ∈ C[m, n] and CDα
t g(t) ∈ (m, n],where α ∈ (0, 1]. Then

if

(i). CDα
t g(t) ≥ 0, ∀y ∈ (m, n), then g(t) is nondecreasing;

(ii). CDα
t g(t) ≤ 0, ∀y ∈ (m, n), then g(t) is nonincreasing.

5.2 Positivity and boundedness
Proposition 1 The solution of model (10) is nonnegative and bounded for all (S(0), E(0),
I(0), A(0), Q(0), H(0), R(0)) ∈ R

7
+ for t > 0.

Proof To show that the solution of the model is nonnegative, it is required to show that on
each hyper-plane bounding the positive orthant there is a the vector field point R7

+. From
system (10), we have

CDα
t S |S=0= � > 0, CDα

t E |E=0= λS ≥ 0, CDα
t I |I=0= (1 – ϕ)ωE ≥ 0,

CDα
t A |A=0= ϕρE ≥ 0, CDα

t Q |Q=0= ε1E ≥ 0, CDα
t H |H=0= τ I + ε2Q ≥ 0,

CDα
t R |R=0= σ1I + σ2A + η1Q + η2H ≥ 0.

The solution is

N(t) ≤ N(0)Eα,1
(
–δtα

)
+ �tαEα,α+1

(
–δtα

)
.



Aba Oud et al. Advances in Difference Equations        (2021) 2021:106 Page 8 of 19

Also, the Mittag-Leffler function is bounded ∀ t > 0. Therefore, we have

lim
t→+∞ N(t) ≤ �

δ
.

The solution of the system will remain in R7
+ by using Corollary 1, and hence a biologically

feasible region is constructed as follows:

� =
{

(S, E, I, A, Q, H , R) ∈R
7
+ : S, E, I, A, Q, H , R ≥ 0

}
.

Since all the terms are positive, the solution of model (10) is bounded. �

6 Analysis of the model
6.1 Disease-free equilibrium (DFE)
For the equilibrium points of fractional model (10), we have

CDα
t S(t) = CDα

t E(t) = CDα
t I(t) = CDα

t A(t) = CDα
t Q(t) = CDα

t H(t) = CDα
t R(t)

= CDα
t M(t) = 0.

The disease-free equilibrium is denoted by E∗
0 = (S0, E0, I0, A0, Q0, H0, R0, M0) and is given

by

E∗
0 =

(
�

δ
, 0, 0, 0, 0, 0, 0, 0

)
. (12)

6.2 The reproduction number
The next generation technique is used to derive the reproduction number R0 for the dy-
namics of disease. Let x = (E, I, A, Q, H , M)T , then we have

dx
dt

= F – V, (13)

where

F =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎝

0 ζ1 ψζ1 0 �ζ2
δ

0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎠

,

V =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

k0 0 0 0 0 0
(ϕ – 1)ω k1 0 0 0 0

–ϕρ 0 k2 0 0 0
–δ1 0 0 k3 0 0
0 –τ 0 –ε2 k4 0
0 –m1 –m2 0 0 m3

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

.
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The next generation matrix is of the form

FV–1 =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎝

ρϕψς1
k0k2

+ k2k3k4m3ω(1–ϕ)ς1
k0k1k2k3k4m3

+ d ς1
k1

+ m1�ς2
k1m3δ

ψς1
k2

+ m2�ς2
k2m3δ

0 0 �ζ2
m3δ

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎠

,

where

k0 = (1 – ϕ)ω + ϕρ + δ + ε1, k1 = σ1 + δ + ς1 + τ , k2 = σ2 + δ,

k3 = δ + η1 + ε2, k4 = δ + η2 + ς2,

d =
(k1k3k4m2ϕρ + k2k3k4m1ω – k2k3k4m1ωϕ)�ς2

k0k1k2k3k4m3δ
.

The spectral radius of the next generation matrix is shown by

R0 =
k1δm3ζ1ϕρψ + k2δm3ωζ1 – k2ζ2ϕω�m1

k0k1k2m3δ

+
k1ζ2ρϕ�m2 + k2ζ2ω�m1 – k2δζ1ϕm3ω

k0k1k2m3δ
. (14)

6.3 Local stability of DFE
Theorem 1 For any two positive integers q and r, let gcd(q, r) = 1 for α = q

r and M = n, the
disease-free equilibrium is locally asymptotically stable if | arg(λ)| > π

2M for all roots of the
associated characteristic equation

det
(
diag

[
λMαλMαλMαλMαλMαλMαλMαλMα

]
– J

(
E∗

0
))

= 0. (15)

Proof For local stability, the linearized system is the Jacobian of system at disease-free
state as follows:

J
(
E∗

0
)

=

⎛

⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜
⎝

–δ 0 –ζ1 –ψζ1 0 0 0 �ζ2
δ

0 –k0 ζ1 ψζ1 0 0 0 �ζ2
δ

0 (1 – ϕ)ω –k1 0 0 0 0 0
0 ϕ) 0 –k2 0 0 0 0
0 ε1 0 0 –k3 0 0 0
0 0 τ 0 δ2 –k4 0 0
0 0 σ1 σ2 η1 η2 –δ 0
0 0 m1 m2 0 0 0 –m3

⎞

⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟
⎠

. (16)

The evaluation of determinant equation (15) implies

(
λq + δ

)2(
λq + k3

)(
λq + k4

)(
λ4q + a1λ

3q + a2λ
2q + a3λ

q + a4
)

= 0, (17)
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the eigenvalues –δ, –δ, –k3, –k4 have negative real parts and the others can be found from
the last factor of (17). The co-efficient is of the form

a1 = k0 + k1 + k2 + m3,

a2 = k0k2(1 – R1) + (k0 + k1 + k2)m3 + k1k2,

a3 = k0k1k2(1 – R2) + k0k2m3(1 – R3) + k0k1m3(1 – R4) + k1k2m3

– ζ1
(
ϕk1ρψ + m3

(
ϕρψ + (1 – ϕ)ω

))
,

a4 = k0k1k2m3(1 – R0).

Clearly, ai for i = 1, 2, . . . , 4 are all positive if R0 < 1. The arguments of the roots of equa-
tions (λq + δ)2 = 0, (λq + k3) = 0 and (λq + k4) = 0 are similar, that is,

arg(λk) =
π

m
+ k

2π

m
>

π

M
>

π

2M
, where k = 0, 1, 2, . . . , (m – 1).

In a similar fashion, we also find that the arguments of the equation (λ4q + a1λ
3q + a2λ

2q +
a3λ

q + a4) = 0 are all greater than π
2M if R0 < 1, having an argument less than π

2M for R0 > 1.
The DFE is locally asymptotically stable for R0 < 1. �

6.4 Global stability of DFE
The Lyapunov function approach is used to proceed to the result for the GAS of the pro-
posed model at the disease-free state. For this, we have the following theorem.

Theorem 2 The DFE of the Caputo COVID-19 model is GAS if R0 < 1.

Proof Consider the following appropriate Lyapunov function:

F(t) = Y1E + Y2I + Y3A + Y4M, (18)

where the coefficients Yj, for j = 1, 2, 3, 4, are unknown positive constants, and they will be
chosen later. The Caputo-fractional derivative of F(t), along model (10), yields

CDα
t F(t) = Y1

CDα
t E + Y2

CDα
t I + Y3

CDα
t A + Y4

CDα
t M, (19)

CDα
t F(t) = Y1

(
λS(t) – k0E(t)

)
+ Y2

(
(1 – ϕ)ωE(t) – k1I(t)

)

+ Y3
(
ϕρE(t) – k2A(t)

)
+ Y4

(
m1I(t) + m2A(t) – m3M(t)

)

≤ (Y1ζ1 – Y2k1 + Y4m1)I(t) + (Y1ζ1ψ – Y3k2 + Y4m2)A(t)

+
(
Y2(1 – ϕ)ω – Y1k0 + Y3ϕρ

)
E(t) +

(
ζ2S0 – Y4m3

)
M(t), S ≤ N , S0

≤ (Y1ζ1 – Y2k1 + Y4m1)I(t) + (Y1ζ1ψ – Y3k2 + Y4m2)A(t)

+ Y1k0

(
Y2(1 – ϕ)ω + Y3ϕρ

Y1k0
– 1

)
E(t) +

(
ζ2S0 – Y4m3

)
M(t).

Let us choose

Y1 = m3δ, Y2 =
m3δζ1 + �m1ζ2

k1
, Y3 = m3ψζ1δ + �m2ζ2k2, Y4 = �ζ2.
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CDα
t F(t) ≤ k0m3δ(R0 – 1)E. (20)

Hence it follows that CDα
t F≤ 0 for R0 ≤ 1, all the parameters and variables are nonnega-

tive with CDα
t F = 0 iff E = I = A = M = 0. Thus (E, I, A, M) → (0, 0, 0, 0) as t → ∞. By using

E = I = A = M = 0 in the first and second last three equations of (10) implies that S → �
δ

,
and Q, H , R → 0 as t → ∞. Thus, using Lyapunov stability theorems for the fractional case
developed in [30], the solution of Caputo model (10) with nonnegative initial conditions
approaches to E∗

0 as t → ∞ in a feasible region. Thus, it follows that the DFE of model (10)
is GAS. �

6.5 Existence of endemic equilibrium point
We denote the endemic equilibrium for fractional coronavirus model given in (10) by E∗∗

01 =
(S∗∗, E∗∗, I∗∗, A∗∗, Q∗∗, H∗∗, R∗∗, M∗∗) such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗∗ = �
δ+λ∗∗ ,

E∗∗ = λ∗∗S∗∗
k0

,

I∗∗ = (1–ϕ)ωE∗∗
k1

= (1–ϕ)ωλ∗∗S∗∗
k0k1

,

A∗∗ = ϕρE∗∗
k2

= ϕρλ∗∗S∗∗
k0k2

,

Q∗∗ = ε1E∗∗
k3

= ε1λ∗∗S∗∗
k0k3

,

H∗∗ = τ I∗∗+ε2Q∗∗
k4

= τk3(1–ϕ)ωλ∗∗S∗∗+k1ε1ε2λ∗∗S∗∗
k0k1k2k3k4

,

M∗∗ = m2A∗∗+m1I∗∗
m3

= k1m2ϕρλ∗∗S∗∗+k2m1(1–ϕ)ωλ∗∗S∗∗
k0k1k2m3

,

R∗∗ = σ2A∗∗+η2H∗∗+σ1I∗∗+η1Q∗∗
δ

.

(21)

Inserting the above result into the force of infection state, we get

λ∗∗ =
ζ1(I∗∗ + ψA∗∗)

N∗∗ + ζ2M∗∗. (22)

Substituting (21) into (22) shows that the nonzero equilibria of the model satisfy the
quadratic equation

b0λ
∗∗2 + b1λ

∗∗ + b2 = 0, (23)

where

b0 = k0k1k2m3
(
k2

(
ε1k1

(
ε2(δ + η2) + k4(δ + η1)

)
+ k3k5

)
+ ϕk1k3k4ρ(δ + ζ2)

)
,

b1 = k0k1k2δm3
(
k2

(
ε1k1

(
ε2(δ + η2) + k4(δ + η1)

)
+ k3k7

)
+ ϕk1k3k4ρ(δ – ψζ1 + σ2)

)

+ σ2k6�
(
(1 – ϕ)k2m1ω – ϕk1ρm2

)
+ k2

0k2
1k2

2k3k4δm3,

b2 = k2
0k2

1k2
2k3k4δ

2m3(1 – R0).

Also, we have

k5 = τ (δ + η2(1 – ϕ)ω + k4
(
(1 – ϕ)ω(δ + η1) + k1δ

)
,

k6 = k2(–k2
(
ε1k1

(
ε2(δ + η2) + k4(δ + η1)

)
– k3k5

)
– ϕk1k3k4ρ(δ + σ2),
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k7 = τ (δ + η2(1 – ϕ)ω + k4
(
(1 – ϕ)ω(δ + η1 – ζ1) + k1δ

)
.

Here, it should be noted that the coefficient of (23), b0 > 0, and b2 is positive (negative)
R0 < 1, (>). The following result is established.

Theorem 3 The proposed model has:
(i) a unique (E∗∗

01 ) endemic equilibrium if b2 < 0 ⇔R0 > 1;
(ii) unique E∗∗

01 if b1 < 0,∧b2 = 0) ∨ b2
1 – 4b0b2 = 0;

(iii) if b1 < 0, b2 > 0 and the discriminant is greater than zero, then there exist two
endemic equilibria.

(iv) Otherwise, no endemic equilibrium exists.

Thus from case (i) of Theorem 3, it is clear that model (10) has a unique positive endemic
equilibrium when R0 > 1, and point (iii) indicates the possibility of backward bifurcation
when R0 < 1.

7 Numerical results
This section presents simulation and discussion for the Caputo COVID-19 model (10).
The proposed fractional model is solved numerically using a generalized predictor-
corrector of the Adams–Bashforth–Moulton method [33, 34]. The biological parame-
ters estimated from the actual data reported in Pakistan from 1 March to 30 June 2020
and tabulated in Table 1 are utilized to obtain the simulation results. We varied different
model parameters and the order α of the Caputo operator in order to explain the role of
various parameters and memory index on the disease transmission patterns and control.
The impact of contact rates ζ1, ζ2,ψ (a measure of social distancing effects), quarantine
or contact-tracing policy ε1, and hospitalization or self-isolation rate τ is depicted graph-
ically in Figs. 2–6. The impact of environmental viral load due to the symptomatic (m1)
and asymptomatic infected individuals (m2) is depicted in Figs. 7 and 8, respectively. Fi-
nally, the role of removal rate of virus from the environment (via disinfection spray etc.)
is shown in Fig. 9.

7.1 Effect of reduction in contact rates (a measure of social distancing)
First of all, we simulate COVID-19 model (10) for different values of effective contacts ζ1

in order to evaluate the impact of social distancing on the dynamics of cumulative symp-
tomatic, asymptomatic, and hospitalized infected individuals. The simulation results for
different four values of fractional order are shown in Fig. 2(a)–(d). It can be observed from
these interpretations that the reduction in the effective contact rates ζ1 up to 50 percent
to its baseline values reduces the peak of cumulative COVID-19 infected cases very well.
The behavior is the same, seen for all four values of fractional order, although slightly
faster decrease in pandemic peak is observed for smaller values of α. The impact of disease
transmission rate due to the environmental viral load ζ2 is demonstrated in Fig. 3(a)–(d).
With the reduction in this rate, a rapid decrease is observed in the total of symptomatic,
asymptomatic, and hospitalized infected individuals and even becomes more biologically
significant for smaller values of fractional order. This interpretation shows that the envi-
ronmental transmission plays a significant role in disease prevalence. Finally, the influence
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Figure 2 The impact of contact rate ζ1 on cumulative symptomatic, asymptomatic, and hospitalized
COVID-19 individuals for α = 1,α = 0.95,α = 0.90,α = 0.85

Figure 3 The impact of contact rate ζ2 on cumulative symptomatic, asymptomatic, and hospitalized
COVID-19 individuals for α = 1,α = 0.95,α = 0.90,α = 0.85
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Figure 4 The impact of ψ on cumulative symptomatic, A, and H COVID-19 individuals for
α = 1,α = 0.95,α = 0.90,α = 0.85

Figure 5 The influence of quarantine rate of exposed individuals ε1 on I, A, and H individuals for
α = 1,α = 0.95,α = 0.90,α = 0.85
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Figure 6 The impact of hospitalization (self-isolation) rate on I,A, and H individuals for
α = 1,α = 0.95,α = 0.90,α = 0.85

Figure 7 The impact of viral influence of A individuals to the environment on I,A, and H individuals for
α = 1,α = 0.95,α = 0.90,α = 0.85
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Figure 8 The impact ofm2 to the environment on symptomatic, asymptomatic, and hospitalized COVID-19
individuals for α = 1,α = 0.95,α = 0.90,α = 0.85

Figure 9 The impact of removal ratem3 on symptomatic, A, and H COVID-19 individuals for
α = 1,α = 0.95,α = 0.90,α = 0.85
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of the reduction in ψ is depicted in Fig. 4(a)–(d) for four different values of α. A reason-
able decrease in the pandemic peak is observed with a reduction of contact rate ψ . Over-
all, from these interpretations, we conclude that maintaining a strict social distancing and
avoiding public gathering are needed to control the transmission of infection in the future.

7.2 Effect of contact-tracing and hospitalization/self-isolation
The quarantine contact-tracing policy of exposed individuals and hospitalization/isolation
of confirmed infected cases is another effective strategy to control the COVID-19 inci-
dence. Here, we simulate the model with different levels of quarantine and hospitalization
rates. The resulting graphical interpretation is shown in Figs. 5(a)–(d) and 6(a)–(d), re-
spectively. A dramatic decrease in pandemic peak is observed with an increase (up to 50
percent) in the contact-tracing rate as shown in Fig. 5(a)–(d). The same behavior is ob-
tained for all values of α. The influence of the increase in hospitalization of confirmed
infected individuals is analyzed in Fig. 6(a)–(d). These results suggest that in the absence
of treatment or vaccine, a proper and effective contact-tracing and self-isolation policy
should be adopted until the elimination of pandemic.

7.3 Effect of environmental viral load
The environmental viral load is one of the main routes of the COVID-19 infection trans-
mission. In this section, we simulate model (10) with the reduction in the viral contribution
to the environment by symptomatic and asymptomatic COVID-19 infective individuals at
different rates. Figure 7(a)–(d) demonstrates the impact of the reduction in m1 with dif-
ferent levels. It is observed that a reduction in m1 (up to 50 percent) reduces the infected
curve with a reasonable rate as seen in Fig. 7(a)–(d). The decrease in pandemic peaks is
relatively more significant for smaller values of the fractional order of Caputo operator.
The role of m2 (viral contribution of asymptomatic individuals to the environment) is an-
alyzed in Fig. 8(a)–(d). It can be seen that a reduction in m3 at 50 percent to its baseline
values given in Table 1 reduces the total number of symptomatic, asymptomatic, and hos-
pitalized infected individuals very well. The similar behavior is obtained for all values of
fractional order α. Finally, the influence of the removal rate of virus from the environment
is depicted in Fig. 9(a)–(d). It is observed that enhancement in m3 at 40 percent to its
baseline value dramatically reduces the infection curves as shown in Fig. 9(a)–(d). This
interpretation suggests that proper disinfection spray is necessary to remove the viruses
from the environment in order to reduce the disease prevalence.

8 Conclusion
The environmental viral load plays an essential role in the spread of the current COVID-
19 pandemic. Limited research has been done on the environmental impacts on disease
dynamics. In this paper, we studied the transmission dynamics of COVID-19 pandemic
with quarantine, hospitalization (or self-isolation), and the environmental viral load im-
pacts through a Caputo fractional model. Initially, the model is presented with classical
integer order differential equations and then reformulated using fractional order opera-
tor with the power-law kernel. The basic mathematical analysis of the Caputo COVID-19
model is performed and the local and global stability of the disease-free case is proven.
Utilizing the nonlinear least square approach, the model parameters are estimated and
fitted for the COVID-19 actual cases recorded in Pakistan. The most important threshold
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quantity, known as the basic reproduction number, is presented both theoretically and
numerically. The predictor-corrector iterative scheme of Adams–Moulton type is applied
in order to solve the model numerically. The real estimated and fitted parameters are used
to simulate the Caputo COVID-19 model. We depicted and discussed the simulation re-
sults for three different sets of model parameters showing the impact on the dynamics
cumulative symptomatic, asymptomatic, and hospitalized infected cases. Firstly, we ana-
lyzed the influence of reduction in contact rates (a measure of social distancing) on the
infected curves. The graphical interpretation of this case revealed that with a reduction
of effective contacts with infected individuals, a significant decrease in the cumulative in-
fected cases is seen. It is further observed that the reduction in the environmental viral
load dramatically reduces the pandemic peak. Secondly, we explored the impact of the
most commonly used interventions i.e., quarantine (or contact-tracing policy) and hos-
pitalization (or self-isolation) on cumulative infected population. These graphical inter-
pretations demonstrated that contact-tracing of exposed people is more effective in the
elimination of infection. It can be seen that with an increase in the quarantine rate up to
50 percent to the base line value reduces the infected cases significantly. Finally, we have
shown the impact of variation in the environmental viral load due to symptomatic and
asymptomatic COVID-19 infected individuals. It is found that reducing the rate of viral
release into the environment by asymptomatic infected individuals decreases the disease
burden very well. It is because the asymptomatic infected individuals are unaware of the
infection and freely continue the daily routine without any necessary safety precautions
like the use of face mask and sanitizer. Moreover, we have also depicted the impact of
variation in the removal rate of virus from the environment (or surfaces) on the disease
prevalence. A dramatic reduction in the infected cases is found with an enhancement in
this rate, which demonstrates that disinfection spray is very helpful in the disease elim-
ination. We believe that the investigations in the paper will be beneficial for the health
and decision-making authorities to combat the disease in the community. In the future,
the present model can be reformulated by incorporating some suitable time-dependent
control interventions using optimal control theory.
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