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analyze the nonnegative solution, the basic reproduction number Ry, and the
stabilities of equilibrium points for the system firstly. In many studies, the numerical
solutions of some models cannot fit very well with the real data. Thus, to show the
dynamics of the Ebola epidemic, the Gorenflo-Mainardi-Moretti-Paradisi scheme
(GMMP) is taken to get the numerical solution of the SEIR fractional order Ebola
system and the modified grid approximation method (MGAM) is used to acquire the
parameters of the SEIR fractional order Ebola system. We consider that the GMMP
method may lead to absurd numerical solutions, so its stability and convergence are
given. Then, the new fractional orders, parameters, and the root-mean-square relative
error g(U*) = 04146 are obtained. With the new fractional orders and parameters, the
numerical solution of the SEIR fractional order Ebola system is closer to the real data
than those models in other literature works. Meanwhile, we find that most of the
fractional order Ebola systems have the same order. Hence, the fractional order Ebola
system with different orders using the Caputo derivatives is also studied. We also
adopt the MGAM algorithm to obtain the new orders, parameters, and the
root-mean-square relative error which is g(U*) = 0.2744. With the new parameters and
orders, the fractional order Ebola systems with different orders fit very well with the
real data.
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1 Introduction

Ebola is very dangerous and fatal. After its existence was found in 1976 in the Ebola River
region of southern Sudan and Congo (old Zaire), it caused quite a stir in the medical com-
munity. After this, people call this infectious disease “Ebola”. The Ebola virus can break the
internal organs of the human body and once infected with this virus, people’s blood will
flow out, with a lethal rate of between 50% and 90%. On July 17, 2019, the World Health
Organization (WHO) proclaimed that the Ebola virus outbreak in the African country
Congo (DRC) should attract global attention. On June 1, 2020, a new round of Ebola out-
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break broke out in Northwest of Congo. This is the 11th outbreak of Ebola in Congo (DRC)
since 1976.

At present, the total deaths caused by the Ebola virus in the world is approximately
12,999 [1]. In the latest outbreak, Guinea, Liberia, and Sierra Leone, the three countries
with the most severe epidemics, have claimed 14,000 lives. In addition to the three foreign
countries in West Africa, there were eight deaths in Nigeria, two deaths in Mali, and one
death in the United States due to Ebola infection. As a result, it is necessary to study the
spread of infection. After extensive search, at present, it is a mystery what is the reservoir
of the Ebola virus. Many experts believe that the reservoir includes fruit bats [2]. Once
you are exposed to the body fluids, secretions, tissues, and many more, you may be in-
fected with Ebola virus and have some symptoms within 2-21 days. During 4—10 days,
a person has the ability to spread pathogen. When people are infected with Ebola virus,
symptoms such as headache, general fever, stomach discomfort leading to vomiting and
bloody diarrhea will appear. Therefore, some diseases like malaria and typhoid are often
misdiagnosed as Ebola. There are also some mathematical models to study Ebola virus.
Rachah et al. [3] applied the optimization theory to research the impact of vaccination on
Ebola virus which spread among people. In [4], Althaus et al. used the SEIR model to elab-
orate the development trend of the EBOV epidemic, and the numerical solution obtained
by the predictive correction method is very close to the actual number of infections re-
ported in Guinea, Sierra Leone, and Liberia. Rachah et al. [5] explained the diffuse of Ebola
virus on the basis of the SEIR model and how to control Ebola virus in the most effective
way. Ndanguza et al. [6] used the Markov chain Monte Carlo algorithm to study the 1995
epidemic in the Democratic Republic of Congo using the number of symptomatic infec-
tions and deaths, demonstrating that the infection rate of Ebola virus is 99.95% and the
mortality rate is 98.6%.

The calculus invented by Newton and Leibniz plays a critical role in modern mathemat-
ics and classical mathematics. Fractional calculus is a theory with respect to differentiation
and integration of any order and is a generalization of integer order calculus. In the past
three centuries, researchers mainly studied the fractional calculus in the pure theoreti-
cal field of mathematics. However, with the development of modern engineering, we can
see the application of fractional order differential equations in various fields [7-9]. Then,
more and more scholars at home or abroad concentrate on exploring the theory of frac-
tional calculus. Now, there are a lot of scientific fields that involve the fractional order
differential equations. Both the theoretical analysis and numerical calculation of the frac-
tional order differential equations are particularly urgent. Because fractional calculus has a
memory function, this function ensures the influence of historical information on the past
and the future. Therefore, when studying the fractional order models, fractional calculus
can achieve our ideal results [10]. There are many kinds of viruses in the world. Combin-
ing the fractional calculus with biological infectious disease models can allow us to more
accurately understand the development of the epidemic. Then Area et al. [11] discussed
the fractional order Ebola system with the same order in terms of the Riemann—Liouville
fractional order derivative. Tulu [12] put forward a fractional order Ebola model in terms
of the Caputo fractional order derivative to simulate the number of deaths caused by Ebola
virus. Gonzalez-Parra [13] explained and understood influenza A (H1N1) with a nonlin-
ear fractional order model. Ariel [14] explored the Leptospira outbreak pattern from the
spread of Leptospirosis in the population and from animals to humans. Other than that,
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there are some other models, such as coronavirus [15—18], the anthrax disease [19], hu-
man liver [20], and so on. In many literatures, most of the models are normal with the
same order, and the parameters of the Ebola model are either existing or predicted. There
are two aspects that need to be improved: one is improving the fitting effect between the
numerical solution of these systems and the real data; the other is that different orders can
be considered.

In this article, we mainly study the fractional order Ebola system in terms of Caputo frac-
tional order derivative. Firstly, we research the fractional order Ebola system with the same
order, then a fractional order Ebola system with different orders is proposed. The GMMP
scheme [21] is the method that we take to get the numerical solution of the SEIR fractional
order Ebola system. This will make the calculation cost low. There are some other numer-
ical methods, such as g-homotopy analysis transform method (q-HATM) [15, 19, 20, 22],
the fractional Euler method (FEM) [23], discretized collocation method [24], variational
iteration method(VIM) [16], fractional natural decomposition method (FNDM) [17], and
so on. Then we adopt the MGAM method [25] to estimate the parameters of literature
[11]. With the new fractional orders and parameters, the numerical solution of the SEIR
fractional order Ebola system is closer to the real data than the models in other literature
sources.

The composition of this article is as follows. In Sect. 2, three classical fractional deriva-
tives are introduced, and the expression of fractional order Ebola system is shown. In
Sect. 3, some properties of the fractional order Ebola model are introduced, including
the nonnegative solution, the basic reproduction number Ry, and the stabilities of equilib-
rium points. In Sect. 4, we introduce the GMMP method, including the stability and con-
vergence. In Sect. 5, we show the MGAM method for parameter estimation. In Sect. 6, the
numerical simulation of the SEIR fractional order Ebola model is studied and compared

with real data. In Sect. 7, we have a sum up for the paper.

2 Fractional derivatives and the SEIR fractional order Ebola systems

2.1 The three most commonly used fractional derivatives

Compared to the integer order calculus, the fractional order calculus has more advan-
tages. For example, fractional order calculus has a memory function and can catch the en-
tire properties of the function. Fractional calculus is a better description of the dynamical
behavior of a system. So it has a great influence on the development of scientific research
[26]. The most influential definitions for fractional order derivatives include Riemann—
Liouville (R-L), Caputo, and Griinwald—Letnikov (G-L) definition [27]. In 1847, the Ger-
man mathematician Riemann made further additions on this basis and formed the first

more complete definition of fractional calculus, i.e., the Riemann-Liouville definition

RLpf(t) = / (t=v)" " (v)dv, (1)

) di”

wheren—-1<a<n,neZ*, andI'(z f t“te ! dt is the gamma function.
The R-L definition has a high position in theoretical analysis. However, Caputo deriva-
tive with initial value conditions is more suitable for modern engineering applications, es-

pecially in viscoelastic theory and solid fluid mechanics. The expression of Caputo deriva-
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tive definition is explained in the following way:

D)= s [ =0 O, @

wheren—-1<a<nmneZ*.

For the purpose of getting numerical solutions of the fractional order differential equa-
tions, we introduce the concept of Griitnwald—Letnikov fractional order derivative. The
definition of Griinwald—Letnikov fractional order derivative is given as follows:

tz0) = im i Y1y () te- i

mh=t r=0

f (‘X)(t—a)k_a 1 g m—a m+1
Z r'k+1-a) +F(m+1_a)'/;(t v) f (v)dv, (3)

where 7 — 1 < o < n and f(£) has n-order continuous derivative on the interval [a, £].
By the definitions of fractional order derivative, we can obtain that the G-L fractional
derivative and the R-L derivative are equivalent, while the Caputo derivative and the R-L

derivative are not. Their difference can be shown as follows:
RLDYf(£) = DY (1) + Zr"‘(t ) (4)

wheren—-1<a<n neZt, andf(k)(a), (k=0,1,...,n — 1) are the initial conditions. We
tk—o(

I'k+l-a)*

In this paper, we prefer the Caputo operator and concentrate on the case # = 1, namely

also consider r§ =
a € (0,1). Thus, equation (4) becomes

REDef() = §DYf(E) + rif (a) (5)

o

where 0 < o < 1 and f(a) is the initial condition. We also consider r§ = e

2.2 The SEIR fractional order Ebola system

Firstly, the integer order model of Ebola epidemic is presented. According to the charac-
teristics of infectious disease models, it is better to divide the total human population N
into four sub-populations: S(¢) susceptible humans, E(t) exposed humans, () infection
humans, R(¢) removed humans. Using [11], the Ebola classical differential equation is as
follows:

ds(e) _ BS@)(qE() +1(2))

dt N ’
aE@) _ PSOGED +10) o
dt N
e
— =OEO-vI1®), X
dR() _ 1)

dr
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where g € [0, 1] is an adjustable factor. The parameters denote different meanings respec-
tively:

(i) y is the recovery rate;

(ii) 8 is the per-capita infectious rate;

(ili) B = pc, where p is the probability that a healthy person will be infected with Ebola
when exposed to an infected person, and c is the per-capita contact rate. Hence,
is an average number of people infected after touching with an infected person who
has already developed symptoms. It varies every day.

The parameters have been acquired from [11]. They are

y:;, §=—. (7)

And the initial conditions are as follows:

m

S(0) = AM % ,
100

E(0)=0, I(0)=15  R(0)=0. (8)
Among them AM = 18,805,278 is the total population of these countries, including
Guinea, Liberia, and Sierra Leone, and m is the number to be determined which is the
proportion of susceptible population to total population. So far, there has been no empir-
ical evidence that humans are completely immune to viruses. We can set 50 < m < 100,
R(0) > 0. It is a reasonable assumption.

The initial conditions indicate that the number of people infected was small at the be-
ginning. If preventive measures were taken promptly at that time, then the number of next
infections would be less. We can use the ODE45 function in Matlab to solve the solution
of nonlinear differential equation (6). Table 1 reveals the number of Ebola infections in
these countries, including Guinea, Liberia, and Sierra Leone from March 27 to Decem-
ber 1, 2014. We get the simulation result shown in Fig. 1, in which the root-mean-square

Table 1 These data are statistics on the number of people who have tested positive for Ebola in
Guinea, Liberia, and Sierra Leone, which is a cumulative process

Date Guin Lib S. Leone Total

27/03/2014 15 0 0 15
14/04/2014 71 0 0 71
26/04/2014 121 0 0 121
12/05/2014 138 6 0 144
27/05/2014 163 6 7 176
16/06/2014 254 18 92 364
02/07/2014 292 54 211 557
17/07/2014 301 76 368 745
30/07/2014 337 109 507 953
13/08/2014 376 190 733 1299
29/08/2014 482 322 935 1739
12/09/2014 678 654 1287 2619
01/10/2014 950 927 2076 3953
17/10/2014 1217 965 2977 5159
29/10/2014 1391 2515 3700 7606
14/11/2014 1647 2562 4683 8892
17/10/2014 1217 965 2977 5159
17/10/2014 1217 965 2977 5159
28/11/2014 1892 2753 5595 10,240
01/12/2014 1921 2801 5831 10,553




Pan et al. Advances in Difference Equations (2021) 2021:161 Page 6 of 21

12000
Numerical results
* Real data ¥
10000 *

. 8000

C

IS,

£

2

s 6000

(0]

©

(9]

€

= 4000

2000
0 I}
0 50 100 150 200 250
time (days)

Figure 1 The number of Ebola infections /(t) in Guinea, Liberia, and Sierra Leone compared with the
numerical results of classical model (6) obtained by ODE45 function. The values of the parameters are
B =0.2305, m =80, g = 0.0300 and the root-mean-square relative error is g(U) = 1.0061

relative error is g(U) = 1.0061, demonstrating that the effect of match could be improved
further to reflect the spread of Ebola. The fractional calculus has more physical signifi-
cance than the integer order calculus, the most important of which is that the fractional
order derivative offers good ideas for describing the memory and genetic characteristics of
different materials. Recently, many fractional order infectious disease systems have been
proposed [15, 16, 19, 28]. Hence, the fractional order Ebola system with the same order is

depicted as follows:

ASDES() = _ﬂS(t)(qu\([t) +1)
ASDEE(D) - ﬂS(t)(qu\(It) HO) _p
da§ DYI(E) = SE(2) - yI(2), ©)

rag DYR(2) = yI(8),

where ng* means the Caputo fractional order derivative with o € (0, 1).

Here, the expression of parameters 8, y, §, and g has been explained in classical model
(6) and N is the total population. However, we can see that units on the left of system (9)
are not same as those on the right. To be specific, they are going to be the dimensions of
(days)™ and the dimensions of (days)~!. If we take the left-hand side of this system (9) by
Lo Which has the dimension of (days)*~!, then we can have the same units (days)~* on both
sides of this system. Generally speaking, we can get A, = 1 in the fractional order system.
In this paper, we use the MGAM methods to find a suitable set of fractional orders and
parameters that make the fractional order Ebola system to provide numerical results that

agree well with the real data.
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3 The properties of the model

In this chapter, we analyze the basic properties and the stabilities of fractional order model
(9). The first thing to note is that when the initial values are nonnegative, the solutions of
model (9) are always nonnegative. Then, we present the basic reproduction number R
and provide the condition for the stabilities of the disease-free equilibrium (DFE).

3.1 The nonnegative solution of the model
Lemma 1 ([10]) The Laplace transform of the Caputo fractional derivative SD‘;‘f (t) has
the following form:

n

-1
L{SDYf ()5} =s*F(s) = Y s* 1 0(0), (10)
k=0

wheren —1 < a < n, F(s) = L{f(¢);s} = f0+°o e Stf (t) dt.

Lemma 2 ([29]; Generalized mean value theorem) Assume that f(t) € Cla,b] and
CDef(t) € Cla, b] for 0 < a < 1, then we obtain

— 1 C o a
S0 =f@)+ o DO - (1)

wherea <n <t forallte (a,b].

It follows from Lemma 2 that if D% f(¢y) > 0, to € (a, b), there is a neighborhood D of
tp such that f(¢) > f(a), Vt € D. If SDﬁ‘Of(to) <0, ¢ € (a, b), there is a neighborhood D of £,
such that f(¢) < f(a), Vt € D.

Theorem 1 The region 2, = (S,E,I,R);S > 0,E > 0,1 > 0,R > 0 is a positive invariant of
system (9).

Proof From literature [30], the existence and uniqueness of the solution of system (9) on
the time interval (0, +00) can be obtained. On the hyper-planes of region ., we have

§DS|s-0 = O, (12)
Y S@)I(t)

CDE|zo = EOONY) N (13)

$D 1= = SE(2), (14)

ED*R|p-o = y1(2). (15)

We apply the Laplace transform to formula (10)
sYF(S) —s*715(0) = 0.

Thus, if S(0) belongs to the hyper-plane S = 0, then S(¢) = 0, £ > 0. Therefore, the hyper-
plane S = 0 is a positive invariant set. If (S(0), £(0), 1(0), R(0)) € €2,, according to Egs. (12)-
(15) and Lemma 2, the solution S(¢), E(t), I(t), R(t) cannot escape from the hyper-planes
of E=0,1=0, R=0;1ie., the region 2, is a positive invariant set. O
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3.2 The basic reproduction number Ry
According to system (9), we can easily get the disease-free equilibrium (DFE) as E, =
(N,0,0,0). The next-generation operator approach [31] is adopted to calculate Ry. We
first need to obtain the Jacobian matrices F (the new infection terms) and the Jacobian
matrices V (the remaining transfer term):

F:(ﬂq ﬁ), v:(‘S 0). (16)
5§ 0 0 y

V-1 is as follows:

190
vtz (8 1)' (17)
14

Ba B
Fvi=[?% 7v]. (18)
1 0

The calculation method of the basic reproduction number is as follows:
Ry=p(FV7),

where p denotes the spectral radius of a matrix FV~!. Therefore, we have

Ba+\ Bq + 45

R 19
0 % (19)
3.3 The stabilities of equilibrium points
The Jacobian matrix evaluated at DFE is
A 0
Ey) = , 20
J(Ep) ( s 0) (20)
where the matrices A and B are
0 C
A= s B={(0 0 , 21
(0 o V) (0 0 v) (21)
with the matrices C and F — V being given by
)
C=(-pa ), p_v=<ﬁq ﬂ). (22)
8 -y

Notice that the eigenvalues of the matrix J(Ey) consist of zero and A*, where A* represents
the eigenvalues of matrix F — V. The meaning of the matrix F is the new infection terms
and the matrix V is the remaining transfer term. For convenience, let the matrix F — V be
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the matrix D. The local stability of DFE is assessed by the eigenvalues of the characteristic
equation det(A*I — D) which is

()\*)2 +a) +b=0, (23)

wherea=y +8-Bq,b=8y —yBq—-3p.

This is a second order polynomial. Applying the Routh—Hurwitz criteria [32], if all co-
efficients of characteristic equation (23) are positive, the maximum real part of all the
eigenvalues of the matrix D are negative. Therefore, we give the following theorem.

Theorem 2 The disease-free equilibrium Ey of fractional order system (9) is locally stable
if Ry < 1 and the coefficient a of characteristic equation (23) satisfies a > 0. If Ry > 1, then
E, is unstable.

Proof According to the expression of Ry, when Ry < 1, we can obtain §y > yBq + 5. Thus,
the coefficient b of the characteristic equation (23) is positive. And, from the condition
a > 0. Based on the Routh—Hurwitz criteria, the maximum real part of all the eigenvalues
of the matrix D is negative. It is worth noting that the eigenvalues of the matrix J(Eyp)
involve zero. In response to this situation, literature [33] has already discussed. We can
obtain that the disease-free equilibrium E, of fractional order system (9) is locally stable.
On the contrary, if Ry > 1, based on the Routh—Hurwitz criteria, the coefficient » must be
negative. There is a positive number in the maximum real part of the eigenvalues of the
matrix J(Ep). Thus, the disease-free equilibrium E; of fractional order system (9) is not
stable. g

Next, we will research the global asymptotic stability at the disease-free equilibrium.

Theorem 3 The disease-free equilibrium Eq of fractional order system (9) is globally
asymptotically stable if Ry < 1 and the coefficient a of characteristic equation (23) satis-
fiesa>0.

Proof Since S < N for fractional order system (9), for the second equation of system (9),
we have

SDYE(t) < BqE(t) + BI(t) — SE(2). (24)
For comparison, define a linear system given by (24) with equality, namely

§DYE(t) = BGE() + BI(t) - SE(). (25)
Now, we observe the following system:

6 DYE(t) = BqE(t) + BI(t) — SE(2),
§DYI() = SE(®) - y1(®). (26)
It has the coefficient matrix F — V. Through the discussion of Theorem 2, system (26) satis-

fies lim;_, o E = 0 and lim;_, o [ = 0. With the help of comparison theorem [34], and noting
(24), it follows that these limits also hold for the second and third equations of fractional
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order system (9). For the remaining equations of system (9), we have lim;_, R = 0 and
lim;_,» S = N. Thus, for Ry < 1 and the coefficient a of characteristic equation (23) satisfy-
ing a > 0, the disease-free equilibrium E, = (N, 0,0, 0) is globally asymptotically stable. [J

Remark 1 Because the disease-free equilibrium and the endemic equilibrium point of
fractional order system (9) are the same, the stabilities analysis to the endemic equilib-
rium point can refer to the process of disease-free equilibrium.

4 Numerical method for the fractional order differential equation
4.1 Description of the GMMP method
Simply, system (9) can be expressed as the form of A © $D%y(t) = f(t,¥(t)), where y(t) =
(S(t), E(2),1(t),R(t))T. We consider a uniform grid in [a,t], a =ty <t; <ty <--- <ty = ¢,
tis1 —t; = At = h. Meanwhile, y(¢) is assumed to be continuous in each finite interval (a, t)
witht<T.

Based on the classical notation of finite differences

hiaAZy(t) = hia (y(xn) - Z C‘,iy(xnk)), (27)
k=0

where ¢} = (=D (Z) is the binomial coefficient and « € (0, 1).
Then, both Riemann-Liouville and Griinwald—Letnikov fractional order derivatives
could be rewritten as the following formula:

1 1 o3 1 o
a Diy(®) = JDYy() = lim -2 Afy(e) ~ 22 ATy (@), (28)

It is worth noting that the difference term rj between the Caputo and Riemann-—
Liouville fractional order derivative (5) also works on the uniform grid. Thus, the Caputo
fractional order derivative can be expressed as follows:

SDYy(t) ~ hia (y(xn) - Z Ciy(xn_k)> —ryy(a), (29)

k=0

where ¢{ = (—1)"(%) is the binomial coefficient, y(a) is the initial condition, and r% =

76 (£n) = @i _1(n)™. The meaning of the function w is @, = 11:((’:5:3, w,v € NgU{-1}. And
r%y(a) tends to zero when n — oo.

The first step is to obtain the difference grid according to the solution area, and the
continuous solution domain of the differential equation is expressed as a finite number
of grids; the second step is to obtain the difference quotient by calculation, which is used
to replace the differential term in the differential equation; the third step is in the discrete
case getting the difference equation, which contains a finite number of unknown variables.
This is the basic process of the Gorenflo-Mainardi—Moretti—Paradisi scheme (GMMP).
You can see [21, 35, 36] for details. In general, the fractional order nonlinear equation can

be presented using Caputo operator

A SDIy) =f(ty®), 0<t<T,

P ) =yg(), k=0,1,...,n-1, (30)

where $D? represents the Caputo operator.
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We combine (29) with (30) to get the formula that
y(x,) =h* @ A Of L,y x,,) chy(x,, 1)+ hEryo. (31)

Through the above simple reasoning, the solution form (31) of the fractional order non-
linear equation has been obtained. Any Caputo fractional order differential equation with
initial value problem can be numerically solved by formula (31). We need to bring in the
specific equations and use the Matlab software (R2016a) to solve them. It is worth men-
tioning that the code we used was written by ourselves. Since there is an unknown variable
y(x,) on both sides of (31), we choose the Newton algorithm to gain the value of y(x,,) via
equation (31).

4.2 Stability of the GMMP method
If the GMMP method is not stable, it may lead to absurd numerical solutions. Therefore,

it is necessary to study the stability of the GMMP method. To present the stability of the
GMMP method, we consider the following fractional differential equation:

EDgy(e) =£ (6, 9(8)) = my(e), (32)

where m > 0 is the coefficient and y(0) = yj is the initial condition. Applying equation (31),
we obtain

y(x) = (1= (h* @ 2)m {chy(x,, 0 +hargyo}. (33)

The X is used to make sure that both sides of this equation have the same dimension which
is explained in fractional order system (9). Generally speaking, we can get A = 1. Thus,
equation (33) becomes

y(x,) = (1 - mh®)” [chy(xn §) +h® ‘,",yo]. (34)
k=0
Lemma 3 ([37]) Assume that {£,}, {p,}, and {n,} are nonnegative sequences and
n-1
Ei=pu+ Z ni& forn=>0. (35)
i=0

Then it holds that

n-1 n-1
&= pu+ mei H (1+mn) forn=0. (36)
j j=i+l

Lemma 4 ([37]) Assume that o € (0,1) for all the coefficients ¢ > 0 defined in (27) shows
the properties

1

m) (k — OO). (37)

O<chy< - <cf<--<cf<cg=a and cﬁ:O(
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What is more, the coefficients r; and the new coefficients explained by S¢, = > i _oct(n -

k)** have the following properties when n > 0:

a=850<85 < <8,.1<5,<1,

1

O<ry<ry 1 <---<r{<ry =

Theorem 4 The numerical solutions (31) obtained by the MGAM method are absolute
stable if the condition |(1 — mh®)™! < 1] is satisfied.

Proof Because c¢{ and % in (34) are positive and the initial value y, can be negative or
positive, the values y(x,) can be replaced by their absolute values |y(x,)|. Combining the

condition |(1 — mh®)™! < 1|, equation (34) becomes

)| < Y lymai)] + s Iyol. (39)
k=0

Let &, = |y(®4)], pu =75 |Y0l, nu = c§. Based on Lemma 3, the following result is gained:
n n
)] <D rei T+ )+ ol (40)

k=0 j=k+1

It follows from Lemma 4 that rf <1 and 0 < ¢f < Sj, < 1. Thus, the product in (40) is

deduced by
1_[ (1+ c;",_j) <| [+ CZ_;) < exp(Sg,n) <exp(l), (41)
j=k+1 j=0

and the sum is deduced by

n

> o <Se, <L (42)
k=0

Thus, it follows from equations (41) and (42) that

|y(xn)| <exp(l) + 75 |yol. (43)

As you can see, there exists a constant K such that exp(1) + r%|yo| < K for all # > 0. Equa-

tion (43) can be rewritten as
()| < K. (44)

Thus, the numerical solutions (31) obtained by MGAM method are absolute stable. [
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4.3 Convergence of the GMMP method

To present the convergence of the GMMP method, we also consider specific function (32).
We define the global error |e,| between the true value y, and the approximate value y(x,)
as

len| =19 + pul, (45)

where g, = ¥, —y(%,) and p,, = y(x,) — y(x,)) with y(%,)) = (1 = mh*) {7 _o ¥ Vnoic + K290}

Theorem 5 ([37]) The numerical solutions (31) obtained by the MGAM method are con-

vergent when the global error |e,| satisfies

n-1

leal <C Y |gu-ikl + 1pal, (46)
k=0

where C < (1 — mh®) L exp((1 — mh*)™?).

Proof 1t follows from [37, Theorem 6.2] that we obtain

Pul < (1= mh®) Zc,<|enk| (47)

Combining with (45), the following result is valid:
o n-1
leal < (1=mh®) " " cklenil + |qul- (48)
k=0

Using Lemma 3, (46) holds. From Lemma 4, we can get ¢{ = Ooh'**) for h — 0, n — oo.
And according to [37, Corollary 6.1], g, = O(h***), h — 0 is deduced. Thus, for equation
(46), the convergence order is expected to be one. O

5 Parameter estimation method for fractional order nonlinear dynamic system
The reported Ebola cases are those who tested positive for Ebola virus by a laboratory.
Now, the testing methods recommended by the WHO are as follows: automatic or semi-
automatic nucleic acid testing for routine diagnostic management is adopted. If nucleic
acid testing is not possible in remote areas, rapid antigen testing can be used. It is recom-
mended to use rapid antigen detection methods during screening as part of monitoring
activities, but reactivity testing should be confirmed by nucleic acid testing.

In order for the numerical solution of the fractional order model to be closer to the real
number of infected people, we must estimate and correct the original parameters. At this
time, a fractional order dynamical system could be depicted as the following form with
uncertain parameters:

AOSDY(t) =f(th(t), 0<t=<T, (49)

O (a) = y(k) k=0,1,...,n-1,



Pan et al. Advances in Difference Equations (2021) 2021:161 Page 14 of 21

where y = (y1,¥2,...,y,)" and f = (A1, f3,...,f,)" are n-dimensional vector functions, and
h; (i =1,2,...,n) represents uncertain parameters u; (i = 1,2,...,p), p is the number of
parameters.

In literature [11], the author used the predictor-corrector PECE method of Adams—
Bashforth—Moulton to solve numerically the fractional order differential equations. In or-
der to make the numerical solutions of fractional order differential equations fit well with
the real data, the author should find the best value of the parameter g that minimizes the
L, norm between the real data and the model, defined by

where ¢; is the cumulative number of infected people according to the data at day j and ¢; is
the prediction proposed by the model. If the value of £ is smaller, it means that the number
of infections predicted by this model is closer to the real data. However, the author still
did not explain how to find the optimal value g, and there will be a big error in judging the
results of fitting with real data based on the value of &.

Next, in this paper, we need to find the optimal parameters to make the numerical so-
lution of the fractional order Ebola system as close as possible to the number of people
infected with Ebola adopting MGAM algorithm. This process is very complicated and re-
quires strict calculations, and we use Matlab (R2016a) to write code to realize it. The steps
are as follows:

(i) For certain parameters, the GMMP method can be adopted to get the numerical
solution y() of fractional order differential equation (9). This result cannot be used as
our final data. Next, we look for the optimal result.

(i) D is composed of many closed intervals as Cartesian products and it is bounded. So
there is no doubt that (i1, us, ..., u,,) € D.

D= [u(lmin)’u(lmax)] « [u(zmin)’u(zmax)] e X [u(min),u(max)]' (50)
Take step length /; to refine the interval [u;mi“), ul(,max)], (j=1,2,...,m),and get

GD)={UeD:uy=ul™ + ki x hyyi=1,2,...,mj=0,1,...,M;}. (51)

This means that we need to find the optimal parameters U = (u1, uy, ..., U,,) in G(D).
(iii) Calculate the root-mean-square relative error function

a2 6) %))
g(u”) = ggg)){\/ } (52)

N+1

where y() is the numerical solution of fractional order system equation (33) for given
parameters U = (u1, Uy, ..., Uy), and ¥; is the actual data. Then we can estimate the precise
parameters U* within the given domain G(D). In this paper, we selected the number of
people infected with Ebola at 20 time points. So, we can choose N as 20.

(iv) If the step /; is inappropriate, it will be difficult for us to find the optimal result
in the grid G(D). Here is a method, when you do not get better g({/*) under the first set
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step, you need to adjust the step /; to get another g({/**). Next, as long as they satisfy
lg(*)| < 8 or ||U* — U**| < &, where § and ¢ are small error parameters, this proves
we find an approximate estimate of the parameter vector which is **. Otherwise, let
u* = U**, turn to the first step (i).

6 Fitting the numerical solution of the fractional order Ebola model with real
data

Unlike the classical differential equation theory, solving the fractional order differential
equations is very difficult. The solutions obtained by the classical method are only ap-
proximate solutions. There are many methods to solve the fractional order differential
equations, such as the Mellin transform method, power series method, and Babenko’s
symbolic calculus method [10]. Therefore, in this section, we use the GMMP method to
give the numerical results and the MGAM method is used to acquire the parameters for
the SEIR fractional order Ebola model. With the new parameters and orders, the results
demonstrate that it matches closer with the real data than the SEIR integer-order Ebola
system (6). From this, a conclusion can be gained which is the new parameters and orders
are more precise. Meanwhile, the fractional order Ebola system with different orders (53)
using the Caputo fractional order derivative is studied. We also use the MGAM algorithm
to gain new orders and parameters. With the new parameters and orders, the fractional
order Ebola system with different orders fits very well with the real data.

6.1 SEIR fractional Ebola epidemic model with the same orders

From Sect. 5, we should be aware that the parameters that need to be estimated are the
Ebola transmissibility 8, the fractional order «, ¢, and m. The unknown parameter vector
is written as U = («, B, g, m). The choice of parameter intervals to narrow the target value
is crucial for the result. In light of the reality, the intervals and the step /4; are chosen in
the following way:

O<a=u <1, 0<B=u <1, 0<g=u3<1, 50 < m = uy < 100,
and
hy=hy=h3="hy=0.01.

The initial value has not been changed and the time is chosen as ¢ = 250 days. In Sect. 4,
we have used the modified GMMP method to obtain the numerical solution and use the

parameter estimation method again in Sect. 5. We acquire the results U* as follows:
o =u; =0.9887, B =uy =0.7274, q =us =0.8463, m = uy =58,

with g(U*) = 0.4146. The simulation results in Fig. 2 show that the parameter value UJ*
obtained by using the MGAM method makes the fractional order Ebola system fit very
well with the real data compared with Fig. 1. We compare Fig. 1 with Fig. 2 to prove that
our method is effective, as shown in Fig. 3. By observing how the parameters influence
the variety of infected people I(t) when other parameters are unchanged, we can draw the
conclusion that the parameter measured by the MGAM method is the ideal parameter.
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Figure 2 The number of Ebola infections /(t) in Guinea, Liberia, and Sierra Leone compared with the
numerical results of fractional order system (9) obtained by the MGAM method and g(U*) = 04146
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Figure 3 The fitting results of SEIR integer-order Ebola system (6) in which the root-mean-square relative
error is g(U) = 1.0061 and fractional-order Ebola system (9) in which the root-mean-square relative error is
g(U*) = 04146 with real data

The results show that the four parameters have an impact on the number of infected peo-
ple I(¢). The influence of orders and parameters is reflected in Fig. 4, which shows that our

estimated parameters are indeed the ideal parameters.

6.2 SEIR fractional order Ebola epidemic model with different orders
Many fractional order epidemic models have the same order [38, 39]. Hence, the frac-

tional order Ebola system with different orders using Caputo derivatives is studied as



Pan et al. Advances in Difference Equations (2021) 2021:161 Page 17 of 21

12000 12000
* Real data * Real data -
0=0.9877 3=0.7264 ys
10000 =0.9887 10000 [
=0.9897 //
, 8000 ,» B8000F
2 2
© o
€ £
2 2
< 60001 £ 6000
3 3
© ks
2 2
15 €
= 4000 = 4000
2000 2000
* *
0 EV S X n L L ] 0 ¥ k¥ I L L Il
0 50 100 150 200 250 0 50 100 150 200 250
time(days) time(days)
12000 12000
* Real data —~ % Real data g
q=0.8443 / - m=56 «
10000 | |~ g=0.8463 / 10000 [ [——m=58 /
———q=0.8483  me60
, 8000 ,» B8000F
2 2
© ©
£ £
2 2
< 60001 £ 6000
3 3
© ©
2 2
15 €
= 4000 = 4000
2000 2000
0 e K 3 Il 0 ¥ k¥
0 50 100 150 200 250 0 50 100 150 200 250
time(days) time(days)
Figure 4 The influence of &, B, g, m on the number of Ebola infections /(t), when the remaining parameters
are fixed
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Figure 5 The number of Ebola infections /(t) in Guinea, Liberia, and Sierra Leone compared with the
numerical results of fractional order system (53) obtained by the MGAM method and g(U*) = 0.2744

follows:

BS()(gE(2) +1(2))

Moy SDES(E) = — N

’
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Figure 6 The fitting results of integer order system (6), fractional order Ebola system (9) which has the same
order, and fractional order Ebola system (53) which has different orders with the real data. Their
root-mean-square relative errors are g(U) = 1.0061, g(U*) = 0.4146, and g(U*) = 0.2744 respectively

Ay D2 E(t) = —ﬂs(t)(qi(;) +HE) SE(t),
hass DPI(E) = SE(¢) — yI(2), (53)

Aago DYUR(2) = yI(2),

where B, y, 8, q are the same as in (6), N is the total population, and « € (0,1). We
have introduced the parameter Ao, (i = 1,2,3,4) to ensure that the dimensions of both
sides of fractional order equations (53) are equal. For convenience, we have taken 1, = 1
(i = 1,2,3,4) in fractional order system (53). From Sect. 5, we should be aware that the
parameters that need to be estimated are o1, oy, o3, a4, 8, ¢, m. The unknown parameter
vector is written as U = (o1, o, 03, 04, B, ¢, m). The choice of parameter intervals to narrow
the target value is crucial for the result. In light of the reality, the intervals and the step /;
are chosen in the following way:

0<oy=u; <1, 0<am=upy <1, 0<az=u3z =<1, O0<ay=us <1,

0<B=us<1, 0<g=us<1, 50 <m =u; <100,
and

hy=hy=hs=hy=hs=he=h;=00L.
We get the results U* as follows:

a1 =Uy = 0.9153, Oy =Uy = 0.9918, 03 = U3 = 0.7000, Olg = Ug = 0.9567,
B =us=0.7213, q = ug = 0.9999, m=u; =58,

with g(U*) = 0.2744. The simulation results show that the parameter value {/* obtained
by using the MGAM method makes the fractional order Ebola system fit very well with
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Figure 7 The influence of a1, &y, a3, B, g, m on the number of Ebola infections /(t), when the remaining
parameters are fixed

the real data, which is shown in Fig. 5. To prove that the fractional order Ebola model
of different orders (53) is better than that of the same order (9), we made a comparison,
see Fig. 6. By observing how the parameters influence the variety of infected people I(t)
when other parameters are unchanged, we can obtain the conclusion that the method is
very good and the parameter we estimated is indeed the ideal parameter. The results show
that when o4 changed, the number of infected people I(£) basically did not change, while
other parameters had a certain impact on I(£). The influence of orders and parameters is
reflected in Fig. 7.

7 Conclusion

In this paper, we researched fractional order Ebola mathematical models with the same
order or different orders. The nonnegative solution, the basic reproduction number Ry,
and the stabilities of equilibrium points for the SEIR fractional order Ebola system are an-
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alyzed. Considering the numerical solution acquired from the GMMP scheme, which is
stable and convergent, we use the MGAM method to estimate the parameters of the SEIR
fractional order Ebola system. With the new fractional orders and parameters, Fig. 2 and
Fig. 5 show that the numerical solutions fit well with the real data, which proves that the
GMMP scheme and the MGAM are efficient and valid for parameter estimation. The real
data begins at the Ebola infection that broke out in the countries of Guinea, Liberia, and
Sierra Leone in 2014. By comparing the fitting effects illustrated in Fig. 3 and Fig. 6 of in-
teger order Ebola model (6) and fractional order Ebola models (9), (53) with the real data,
we can conclude that we have indeed made improvements on the basis of literature [11].
Figure 4 and Fig. 7 show the effect of every parameter on the number of infected humans
I(t) with the other parameters fixed. In addition, from the root-mean-square relative er-
ror g(U*) = 0.4146 of fractional order model (9), in which the order is the same, and the
root-mean-square relative error g(U*) = 0.2744 of fractional order model (53), in which
the orders are different, we get the conclusion that the fractional order Ebola model with
different orders can provide a better fitting with the real data than other models. However,
there is still some work that needs to be done. Next, we will improve this model to satisfy
a type of infectious disease.
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