
Asl et al. Advances in Difference Equations        (2021) 2021:111 
https://doi.org/10.1186/s13662-021-03273-4

R E S E A R C H Open Access

High order algorithms for numerical solution
of fractional differential equations
Mohammad Shahbazi Asl1*, Mohammad Javidi1 and Yubin Yan2

*Correspondence:
mshahbazia@yahoo.com
1Department of Mathematics,
University of Tabriz, Tabriz, Iran
Full list of author information is
available at the end of the article

Abstract
In this paper, two novel high order numerical algorithms are proposed for solving
fractional differential equations where the fractional derivative is considered in the
Caputo sense. The total domain is discretized into a set of small subdomains and then
the unknown functions are approximated using the piecewise Lagrange interpolation
polynomial of degree three and degree four. The detailed error analysis is presented,
and it is analytically proven that the proposed algorithms are of orders 4 and 5. The
stability of the algorithms is rigorously established and the stability region is also
achieved. Numerical examples are provided to check the theoretical results and
illustrate the efficiency and applicability of the novel algorithms.
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1 Introduction
The subject of fractional calculus (theory of integration and differentiation of arbitrary or-
der) can be considered as an old yet novel topic. It has been an ongoing topic for more than
300 years; however, since the 1970s, it has been gaining increasing attention [1]. Firstly,
there were almost no practical applications of fractional calculus (FC), and it was consid-
ered by many as an abstract area containing only mathematical manipulations of little or
no use [2–4]. Recently, FC has been widely used in various applications in almost every
field of science, engineering, and mathematics, and it has gained considerable importance
due to its frequent applications in fluid flow, polymer rheology, economics, biophysics,
control theory, psychology, and so on [5, 6].

The main reason that fractional differential equations (FDEs) are being used to model
real phenomena is that they are nonlocal in nature, that is, a realistic model of a physical
phenomenon depends not only on the time instant but also on the previous time history
[7]. In other words, fractional derivative (FD) provides a perfect tool when it is used to
describe the memory and hereditary properties of various materials and processes [8, 9].
Some of the other main differences between fractional calculus and classical calculus are:
(i) FDEs are, at least, as stable as their integer order counterparts [10, 11]; (ii) using FDEs
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can help to reduce the errors arising from the neglected parameters in modeling real-
life phenomena [12, 13]; (iii) in some situations, the FDE models seem more consistent
with the real phenomena than the integer order models [14, 15]; (iv) modeling of real-life
processes with FD is more reliable and accurate than the classical derivative [16, 17]; (v)
fractional order models are more general [18] and in the limit results obtained from FC
coincide with those obtained from classical calculus [19], and so on.

The wide applicability of FC in the field of science and engineering motivates researchers
to try to find out the analytical or numerical solutions for FDEs. It is well known that the
analytical and closed solutions of FDEs cannot generally be obtained and if luckily ob-
tained always contain some infinite series (such as Mittag-Leffler function), which makes
evaluation very expensive [20, 21]. For this reason, necessarily, one may need an efficient
approximate and numerical technique for the solution of FDEs [22].

Odibat et al. constructed a numerical scheme for the numerical solution of FDEs based
on the modified trapezoidal rule and the fractional Euler method [23]. To present a nu-
merical solution scheme for the fractional differential equations, authors of [24] divided
total time into a set of small intervals and utilized quadratic interpolation polynomial be-
tween two successive intervals to approximate unknown functions. Cao and Xu applied
quadratic interpolation polynomial to construct a high order scheme based on the so-
called block-by-block approach for the fractional ordinary differential equations [25]. The
convergence order of this scheme is 3 + α for 0 < α ≤ 1 and 4 for α > 1. Diethelm proposed
an implicit numerical algorithm for solving FDEs by using piecewise linear interpolation
polynomials to approximate the Hadamard finite-part integral [26]. Yan et al. designed a
high order numerical scheme for solving a linear fractional differential equation defined
in terms of the Riemann–Liouville fractional derivative [27]. This method is based on a
direct discretisation of the fractional differential operator, and the order of convergence of
the method is O(h3–α). A high order fractional Adams-type method for solving nonlinear
FDEs is also obtained in this paper. Asl et al. [28] applied the piecewise cubic interpolation
polynomial to construct a numerical scheme for solving linear FDEs. The convergence or-
der of this scheme is O(h4–α) for 0 < α ≤ 1.

In recent years a lot of attention has been paid to finding effective numerical methods
to simulate the fractional partial differential equations, such as meshless methods [29–31]
and homotopy analysis method [32]. Dehghan et al. presented a fourth order numerical
method for solving a fractional partial integro-differential equation [33]. Authors of [34]
proposed a high accuracy numerical method to simulate a nonlinear fractional partial
integro-differential equation.

The present study proposes to develop two numerical algorithms for the numerical ap-
proximation of a class of FDEs which are expressed in terms of Caputo-type fractional
derivatives. In these algorithms the properties of the Caputo derivative are used to reduce
the FDE into a Volterra-type integral equation of the second kind. The outline of the pa-
per is as follows. Numerical algorithms are presented in Sect. 2 by using the piecewise
Lagrange interpolation polynomial of degree three and degree four. Section 3 deals with
the error analysis of the presented algorithms, and stability analysis of these algorithms
is given on Sect. 4. Linear stability analysis of the presented schemes is given in Sect. 5
to achieve stability region of these methods. To demonstrate the effectiveness and high
accuracy of the proposed methods, some numerical examples are provided in Sect. 6. The
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experimental orders of convergence are also investigated in this section. Finally, some con-
cluding remarks are given in Sect. 7.

2 Numerical algorithms
The present paper further discusses numerical algorithms for the initial value problem for
a FDE in the form

⎧
⎨

⎩

C
0 Dα

t y(t) = f (t, y(t)) = βy(t) + g(t), 0 ≤ t ≤ T ,

y(k)(t0) = y(k)
0 , k = 0, 1, . . . , �α� – 1,

(1)

where C
0 Dα

t denotes the Caputo fractional derivative(FD). The reason for choosing Caputo
derivative in (1) is partly due to the fact that the Caputo derivative of a constant is zero.
More importantly, the Caputo FD determines an ordinary derivative followed by a frac-
tional integral to obtain the preferred order of FDs. That means the Caputo FD allows us
to couple FDEs with traditional (local) boundary and initial conditions. These conditions
have clear physical interpretation and are familiar to us [8, 35, 36]. Motivated by these ad-
vantages, the Caputo FD has been applied to model various physical and real-life problems
such as epidemic model for HIV transmission [8, 9], symbiosis system [16], multi-pulse
splitting process [17], reaction–diffusion problems [37, 38], and tumor–host models [39].
Presented numerical algorithms are based on the analytical property that the initial value
problem (1) is equivalent to the Volterra integral equation [40, 41]

y(t) = h(t) +
1

�(α)

∫ t

0
(t – τ )α–1f

(
τ , y(τ )

)
dτ , (2)

where h(t) =
∑�α�–1

j=0
tj

j! y(j)(0), in the sense that a continuous function solves (2) if and only if
it solves (1). The piecewise Lagrange interpolation polynomials of degree three and degree
four are used to approximate the integral in (2). For an integer N and the given time T ,
the interval [0, T] is divided into tj = jh, j = 0, . . . , N , where h = T/N is the step length. The
numerical solution of Eq. (1) at the point tj is denoted by yj. For notational convenience,
let F(τ ) = f (τ , y(τ )) and Fj = f (tj, yj) = βyj + g(tj).

2.1 Numerical algorithm I
We start with computing the value of y(t) at t1, t2, and t3, simultaneously. Consider the
following integral for the first three steps (k = 0, 1, 2):

Ik+1 =
∫ tk+1

0
(tk+1 – τ )α–1F(τ ) dτ =

k∑

j=0

∫ tj+1

tj

(tk+1 – τ )α–1F(τ ) dτ

≈
k∑

j=0

∫ tj+1

tj

(tk+1 – τ )α–1F̃(τ ) dτ =
3∑

j=0

dk+1
j F(tj), (3)
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where F̃(τ ) is chosen to be the piecewise Lagrange cubic interpolation polynomial of F(τ )
associated with the nodes t0, t1, t2, and t3. In this way, we have

d̂1
j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

6α3 + 25α2 + 23α, j = 0,

6(3α2 + 10α + 6), j = 1,

–9α2 – 21α, j = 2,

–2α2 – 4α, j = 3,

, d̂2
j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2α+1α(α + 2)(3α + 1), j = 0,

3 × 2α+2(3α2 + 5α), j = 1,

3 × 2α+1(–3α2 + α + 6), j = 2,

2α+2α2 – α j = 3,

d̂3
j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3α+1(2α3 + α2 + 3α), j = 0,

2 × 3α+3α2, j = 1,

–3α+3(α2 – 3α), j = 2,

2 × 3α+1(α2 – 4α + 6) j = 3,

, dk+1
j =

hα

6α(α + 1)(α + 2)(α + 3)
d̂k+1

j .

(4)

To explain further, for y1, we have

y1 = h(t1) +
1

�(α)

3∑

j=0

∫ t1

t0

(t1 – τ )α–1L3,j(τ )Fj dτ = h(t1) +
1

�(α)

3∑

j=0

d1
j Fj,

where

L3,j(τ ) =
3∏

i=0
i�=j

τ – ti

tj – ti
, d1

j =
∫ t1

t0

(t1 – τ )α–1L3,j(τ ) dτ , j = 0, 1, 2, 3.

For this reason, after some elementary calculations, yk+1 for the first three steps k = 0, 1, 2
can be approximated as follows:

yk+1 = h(tk+1) +
1

�(α)

3∑

j=0

dk+1
j
(
βyj + g(tj)

)
,

(
�(α) – βdk+1

k+1
�(α)

)

yk+1 = h(tk+1) +
1

�(α)

3∑

j=0
j �=k+1

dk+1
j Fj +

dk+1
k+1

�(α)
g(tk+1), k = 0, 1, 2.

(5)

As it is mentioned above, the first three step solutions y1, y2, and y3 are coupled in (5), thus
need to be solved simultaneously. This procedure leads to a linear system of equations,
which can be solved explicitly by means of back-substitution.

To construct the scheme for the next steps, Ik+1, k ≥ 3, is discretized as follows:

Ik+1 ≈
[ 2∑

j=0

∫ tj+1

tj

F̃(τ ) +
k∑

j=3

∫ tj+1

tj

F̃j+1(τ )

]

(tk+1 – τ )α–1 dτ =
k+1∑

j=0

dk+1
j F(tj), (6)

in which, like in (3), for the first three integrals (j = 0, 1, 2, 3), F̃ is the piecewise Lagrange
cubic interpolation polynomial of F(τ ) associated with the nodes t0, t1, t2, and t3. For the
remaining integrals (j = 3, 4, . . . , k + 1), F̃j+1 is chosen to be the piecewise Lagrange cubic



Asl et al. Advances in Difference Equations        (2021) 2021:111 Page 5 of 23

interpolation polynomial of F(τ ) associated with the nodes tj–2, tj–1, tj, and tj+1. In this way,
for k ≥ 3, we have

d̂k+1
0 = (k + 1)α

[
6α3 + 25α2 + 23α + 12αk2 – k

(
11α2 + 31α + 6(k – 2)(k – 1)

)]

+ 2P(1)(k – 2)α+1,

d̂k+1
1 = 6(k + 1)α+1[3k(k – 3) – 5kα + 3α2 + 10α + 6

]
+

6
3

P(2)(k – 3)α+1

–
24
3

P(1)(k – 2)α+1,

d̂k+1
2 = –3(k + 1)α+1[6k(k – 2) – 8kα + 3α2 + 7α

]
+ 2P(3)(k – 4)α+1

–
24
3

P(2)(k – 3)α+1 + 12P(1)(k – 2)α+1,

d̂k+1
3 = 2(k + 1)α+1[α2 + 2α + 3k2 – 3αk – 3k

]
+ 2P(4)(k – 5)α+1 – 8P(3)(k – 4)α+1

+ 12P(2)(k – 3)α+1 – 8P(1)(k – 2)α+1,

d̂k+1
j = 2P(j – 3)(k – j + 2)α+1 – 8P(j – 2)(k – j + 1)α+1 + 12P(j – 1)(k – j)α+1

– 8P(j)(k – j – 1)α+1 + 2P(j + 1)(k – j – 2)α+1, 4 ≤ j ≤ k – 2,

d̂k+1
k–1 = 6d̂k+1

k+1 – 2α+4ϕ + 2 × 3α+1[α2 + 14α + 60
]
, d̂k+1

k = 2α+2ϕ – 4d̂k+1
k+1,

d̂k+1
k+1 = 2α2 + 16α + 36,

in which dk+1
j = hα

6α(α+1)(α+2)(α+3) d̂k+1
j and

ϕ = α2 + 11α + 36, P(j) = α(α + 2) + 3j2 – 3j(α + 2k + 1) + 3k2 + 3(α + 1)k.

The following special cases should be excluded:

⎧
⎨

⎩

d̂4
2 = –3[4α+1(3α2 – 17α + 18) – 2d̂k+1

k+1],

d̂4
3 = 2[4α+1(α2 – 7α + 18) – 2d̂k+1

k+1],
(7)

d̂5
3 = 2

[
5α+1(α2 – 10α + 36

)
– 2α+3ϕ + 3d̂k+1

k+1
]
. (8)

In this way, after some explicit calculations, yk+1 for k ≥ 3 can be approximated as follows:

yk+1 = h(tk+1) +
1

�(α)

k+1∑

j=0

dk+1
j
(
βyj + g(tj)

)
,

(
�(α) – βdk+1

k+1
�(α)

)

yk+1 = h(tk+1) +
1

�(α)

( k∑

j=0

dk+1
j Fj + dk+1

k+1g(tk+1)

)

, k ≥ 3.

(9)

Summing up the above arguments, we have the following novel scheme:

(
�(α) – βdk+1

k+1
�(α)

)

yk+1 =

⎧
⎪⎨

⎪⎩

h(tk+1) + 1
�(α)

∑3
j=0

j �=k+1
dk+1

j Fj + dk+1
k+1

�(α) g(tk+1) if k = 0, 1, 2,

h(tk+1) + 1
�(α) (

∑k
j=0 dk+1

j Fj + dk+1
k+1g(tk+1)) if k ≥ 3.

(10)
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2.2 Numerical algorithm II
Consider the following integral for the first four steps (k = 0, 1, 2, 3):

Ik+1 =
∫ tk+1

0
(tk+1 – τ )α–1F(τ ) dτ =

k∑

j=0

∫ tj+1

tj

(tk+1 – τ )α–1F(τ ) dτ

=
k∑

j=0

∫ tj+1

tj

(tk+1 – τ )α–1F̃(τ ) dτ =
4∑

j=0

bk+1
j F(tj), (11)

where F̃(τ ) is the piecewise Lagrange interpolation polynomial of degree four associated
with the nodes t0, t1, t2„ t3, and t4. Therefore, one can achieve the following weights:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b̂1
0 = α[12α3 + 95α2 + 230α + 165],

b̂1
1 = 4[12α3 + 82α2 + 157α + 72],

b̂1
2 = –6α[6α2 + 35α + 47],

b̂1
3 = 4α[4α2 + 22α + 27],

b̂1
4 = –α[3α2 + 16α + 19],

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b̂2
0 = 2α+1α[6α3 + 35α2 + 55α + 20],

b̂2
1 = 2α+5α[3α2 + 14α + 14],

b̂2
2 = 3 × 2α+3(α + 1)(α + 3)(4 – 3α),

b̂2
3 = 2α+5α[α2 + 2α – 2],

b̂2
4 = 2α+1α[–3α2 – 5α + 4],

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b̂3
0 = 3α+1α[4α3 + 15α2 + 20α + 15],

b̂3
1 = 4 × 3α+2α[4α2 + 10α + 3],

b̂3
2 = 2 × 3α+3α[–2α2 + α + 9],

b̂3
3 = 4 × 3α+1[4α3 – 6α2 – α + 24],

b̂3
4 = –3α+2α[α2 – 2α + 3],

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b̂4
0 = 4α+1α2[3α2 + 5α + 20],

b̂4
1 = 4α+3α[3α2 + α + 4],

b̂4
2 = 3 × 4α+2α[–3α2 + 11α – 4],

b̂4
3 = 4α+3α[α2 – 5α + 12],

b̂4
4 = –4α+1(α – 2)(3α2 – 11α + 36),

(12)

here bk+1
j = hα

12α(α+1)(α+2)(α+3)(α+4) b̂k+1
j . Hence yk+1 for the first four steps k = 0, 1, 2, 3 can be

determined as follows:

yk+1 = h(tk+1) +
1

�(α)

4∑

j=0

bk+1
j
(
Ayj + g(tj)

)
,

(
�(α) – βbk+1

k+1
�(α)

)

yk+1 = h(tk+1) +
1

�(α)

4∑

j=0
j �=k+1

bk+1
j Fj +

bk+1
k+1

�(α)
g(tk+1), 0 ≤ k ≤ 3.

(13)
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It is obvious that the first four step solutions y1, y2, y3, and y4 are coupled in (13), thus need
to be solved simultaneously. This procedure leads to a linear system of equations, which
can be solved explicitly by means of back-substitution.

To design the scheme for the next steps, Ik+1, k ≥ 4 is discretized as follows:

Ik+1 =

[ 3∑

j=0

∫ tj+1

tj

F̃(τ ) +
k∑

j=4

∫ tj+1

tj

F̃j+1(τ )

]

(tk+1 – τ )α–1 dτ =
k+1∑

j=0

bk+1
j F(tj), (14)

in which, as in (11), for the first four integrals (j = 0, 1, 2, 3), F̃ is a piecewise Lagrange
interpolation polynomial of degree four associated with the nodes t0, t1, t2, t3, and t4. For
the remaining integrals (j = 4, 5, . . . , k + 1), F̃j+1 is the piecewise Lagrange interpolation
polynomial of degree four associated with the nodes tj–3, tj–2, tj–1, tj, and tj+1. In this way,
for k ≥ 4, we have the following weights:

b̂k+1
0 = (k + 1)α

[
12α4 + 5α2(7k2 – 31k + 46

)
– 5α(k – 3)

(
6k2 – 13k + 11

)

+ 5α3(19 – 5k) + 12k(k – 3)(k – 2)(k – 1)
]

– P(2)(k – 3)α+1,

b̂k+1
1 = –4(k + 1)α+1[h2(–2) – 15(α + 4)

(
α2 + 4α + 3k2 – αk + 3k + 6

)]

– P(3)(k – 4)α+1 + 5P(2)(k – 3)α+1,

b̂k+1
2 = 6(k + 1)α+1[h2(–2) – (α + 4)

(
9α2 + 37α + 42k2 – 8αk + 60k + 72

)]

– P(4)(k – 5)α+1 + 5P(3)(k – 4)α+1 – 10P(2)(k – 3)α+1,

b̂k+1
3 = –4(k + 1)α+1[h2(–2) – (α + 4)

(
7α2 + 32α + 39k2 – 3αk + 69k + 72

)]

– P(5)(k – 6)α+1 + 5P(4)(k – 5)α+1 – 10P(3)(k – 4)α+1 + 10P(2)(k – 3)α+1,

b̂k+1
4 = (k + 1)α+1[h2(–2) – 6(α + 4)

(
α2 + 5α + 6k2 + 12k + 12

)]
– P(6)(k – 7)α+1

+ 5P(5)(k – 6)α+1 – 10P(4)(k – 5)α+1 + 10P(3)(k – 4)α+1 – 5P(2)(k – 3)α+1,

b̂k+1
j = – P(j + 2)(–j + k – 3)α+1 + P(j – 3)(–j + k + 2)α+1 – 5P(j – 2)(–j + k + 1)α+1

+ 10P(j – 1)(k – j)α+1 + 5P(j + 1)(–j + k – 2)α+1 – 10P(j)(–j + k – 1)α+1,

5 ≤ j ≤ k – 3,

b̂k+1
k–2 = 2α+2[5ψ2 + 2α

(
3α3 + 71α2 + 674α + 2520

)]
– 5 × 3α+2ψ1 – 10b̃k+1

k+1,

b̂k+1
k–1 = 10

[
b̂k+1

k+1 – 2αψ2
]

+ 3α+2ψ1, b̂k+1
k = 2α+1ψ2 – 5b̂k+1

k+1,

b̂k+1
k+1 = 3α3 + 38α2 + 173α + 288,

where bk+1
j = hα

12α(α+1)(α+2)(α+3)(α+4) b̂k+1
j and

P(j) = 3α3 + α
(
18j2 – 36jk – 41j + 18k2 + 41k + 19

)
+ α2(–11j + 11k + 16)

– 12(j – k – 2)(j – k – 1)(j – k),

ψ1 = α3 + 20α2 + 157α + 480, ψ2 = 3α3 + 49α2 + 304α + 720.
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The following special cases should be excluded:

⎧
⎪⎪⎨

⎪⎪⎩

b̂5
2 = –10[3 × 5α(6α3 – 41α2 + 91α – 96) + b̂k+1

k+1],

b̂5
3 = 10[5α(8α3 – 68α2 + 278α – 288) + b̂k+1

k+1],

b̂5
4 = –5[5α(3α3 – 28α2 + 143α – 288) + b̂k+1

k+1],

(15)

⎧
⎨

⎩

b̂6
3 = 10(2α+1ψ2 – b̂k+1

k+1) + 2α+53α+1(α3 – 12α2 + 68α – 120),

b̂6
4 = 10(–2αψ2 + b̂k+1

k+1) – 2α+13α+2(α3 – 13α2 + 88α – 240),
(16)

b̂7
4 = 7α+1(–3α3 + 50α2 – 421α + 1440

)
– 5 × 3α+2ψ1 + 5 × 2α+2ψ2 – 10b̂k+1

k+1. (17)

Therefore yk+1 for k ≥ 4 can be approximated as follows:

yk+1 = h(tk+1) +
1

�(α)

k+1∑

j=0

bk+1
j
(
βyj + g(tj)

)
,

(
�(α) – βbk+1

k+1
�(α)

)

yk+1 = h(tk+1) +
1

�(α)

( k∑

j=0

bk+1
j Fj + bk+1

k+1g(tk+1)

)

, k ≥ 4.

(18)

Thus a new numerical algorithm II is described by (13) and (18) with the weights bk+1
j

defined as above.

3 Error analysis
For numerical algorithm I, the truncation error at step k + 1 is defined by [25]

rk+1(h) := y(tk+1) – ỹk+1, (19)

where ỹk+1 is an approximation to y(tk+1), evaluated by using algorithm I (10) with exact
previous solutions, i.e., for k ≥ 3,

ỹk+1 = h(tk+1) +
1

�(α)

k+1∑

j=0

dk+1
j F(tj). (20)

For numerical algorithm II (18), the definition of truncation error is the same as (19), where
ỹk+1 for k ≥ 4 is as follows:

ỹk+1 = h(tk+1) +
1

�(α)

k+1∑

j=0

bk+1
j F(tj). (21)

Theorem 1 Let rk+1(h) be the truncation error defined in (19). If F(τ ) ∈ C4[0, T] for some
suitable chosen T , then for numerical algorithm I (10) there exists a positive constant C > 0,
independent of h, such that

∣
∣rk+1(h)

∣
∣≤ Ch4.
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Proof By the definition of truncation error (19) we have

∣
∣rk+1(h)

∣
∣ =
∣
∣y(tk+1) – ỹk+1

∣
∣.

We compute y(tk+1) and ỹk+1 from (2) and (20), respectively, which yields

∣
∣rk+1(h)

∣
∣ =

∣
∣
∣
∣
∣
h(tk+1) +

1
�(α)

∫ tk+1

0
(tk+1 – τ )α–1F(τ ) dτ

– h(tk+1) –
1

�(α)

k+1∑

j=0

dk+1
j F(tj)

∣
∣
∣
∣
∣
.

We have, by (6),

∣
∣rk+1(h)

∣
∣≤ 1

�(α)

∣
∣
∣
∣
∣

k∑

j=0

∫ tj+1

tj

(tk+1 – τ )α–1F(τ ) dτ

–
2∑

j=0

∫ tj+1

tj

(tk+1 – τ )α–1F̃(τ ) dτ –
k∑

j=3

∫ tj+1

tj

(tk+1 – τ )α–1F̃j+1(τ ) dτ

∣
∣
∣
∣
∣

≤ 1
�(α)

[ 2∑

j=0

∫ tj+1

tj

(tk+1 – τ )α–1∣∣F(τ ) – F̃(τ )
∣
∣dτ

+
k∑

j=3

∫ tj+1

tj

(tk+1 – τ )α–1∣∣F(τ ) – F̃j+1(τ )
∣
∣dτ

]

,

where F̃(τ ) and F̃j+1 are defined by (6). Thus, according to the property of cubic interpo-
lation polynomials,

∣
∣rk+1(h)

∣
∣≤ 1

�(α)

[ 2∑

j=0

∫ tj+1

tj

(tk+1 – τ )α–1
∣
∣
∣
∣
F (4)(ξ1(τ ))

4!
(τ – t0)(τ – t1)(τ – t2)(τ – t3)

∣
∣
∣
∣dτ

+
k∑

j=3

∫ tj+1

tj

(tk+1 – τ )α–1
∣
∣
∣
∣
F (4)(ξj(τ ))

4!
(τ – tj–2)(τ – tj–1)(τ – tj)(τ – tj+1)

∣
∣
∣
∣dτ

]

,

where ξ1(τ ) ∈ [t0, t3] and ξj(τ ) ∈ [tj–2, tj+1].

∣
∣rk+1(h)

∣
∣≤ 1

�(α)

[ 2∑

j=0

‖F (4)‖∞
4!

∣
∣(τ̃j – t0)(τ̃j – t1)(τ̃j – t2)(τ̃j – t3)

∣
∣
∫ tj+1

tj

(tk+1 – τ )α–1 dτ

+
k∑

j=3

‖F (4)‖∞
4!

∣
∣(τ̃j – tj–2)(τ̃j – tj–1)(τ̃j – tj)(τ̃j – tj+1)

∣
∣
∫ tj+1

tj

(tk+1 – τ )α–1 dτ

]

.

Here, τ̃j ∈ [tj, tj+1] and the second integral mean value theorem is used. By the definition
of tj = jh and after evaluating the integrals in the above inequality, we get

∣
∣rk+1(h)

∣
∣≤ 1

�(α)

[
‖F (4)‖∞

4!
(3h)4

2∑

j=0

1
α

[
(tk+1 – tj)α – (tk+1 – tj+1)α

]



Asl et al. Advances in Difference Equations        (2021) 2021:111 Page 10 of 23

+
‖F (4)‖∞

4!
(3h)4

k∑

j=3

1
α

[
(tk+1 – tj)α – (tk+1 – tj+1)α

]
]

,

∣
∣rk+1(h)

∣
∣≤ 1

�(α)
1
α

‖F (4)‖∞
4!

(3h)4
k∑

j=0

[
(tk+1 – tj)α – (tk+1 – tj+1)α

]
.

The series in the above expression can be easily summed up, which yields

∣
∣rk+1(h)

∣
∣≤34‖F (4)‖∞

4!�(α + 1)
h4(tk+1 – t0)α =

(
34‖F (4)‖∞Tα

4!�(α + 1)

)

h4. �

Theorem 2 Let rk+1(h) be the truncation error defined in (19). If F(τ ) ∈ C5[0, T] for some
suitable chosen T , then for numerical algorithm II (13) and (18) there exists a positive con-
stant C > 0, independent of h, such that

∣
∣rk+1(h)

∣
∣≤ Ch5.

Proof The proof is similar to the proof of Theorem 1. We omit the proof here. �

4 Stability analysis
The stability of a numerical scheme mainly refers to that if there is a perturbation in the
initial condition, then the small change causes small errors in the numerical solution [40,
41]. Suppose that yk+1 and ỹk+1 are numerical solutions in (10), and the initial conditions
are given by y(i)

0 and ỹ(i)
0 respectively. If there exists a positive constant C independent of h

such that

|yk+1 – ỹk+1| ≤ Cα,T‖y0 – ỹ0‖∞, (22)

then we conclude that scheme (10) is stable [42]. It is similar to defining the numerical sta-
bility for numerical algorithm II (13) and (18). Assume that F(τ ) is sufficiently smooth and
Cα > 0 is independent of all discretization parameters. Firstly, we introduce two lemmas
which will be used in stability analysis.

Lemma 1 For the weights of novel scheme (10), we have

k+1∑

j=0

∣
∣dk+1

j
∣
∣≤ CαTα , (23)

where Cα only depends on α.

Proof For dk+1
0 , we have

∣
∣dk+1

0
∣
∣ =

∣
∣
∣
∣
∣

2∑

j=0

∫ tj+1

tj

(tk+1 – τ )α–1 τ – t1

t0 – t1

τ – t2

t0 – t2

τ – t3

t0 – t3
dτ

∣
∣
∣
∣
∣

≤
2∑

j=0

∫ tj+1

tj

∣
∣(tk+1 – τ )α–1∣∣

∣
∣
∣
∣
τ – t1

t0 – t1

τ – t2

t0 – t2

τ – t3

t0 – t3

∣
∣
∣
∣dτ
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≤
2∑

j=0

∣
∣
∣
∣
τ̃j – t1

t0 – t1

τ̃j – t2

t0 – t2

τ̃j – t3

t0 – t3

∣
∣
∣
∣

∫ tj+1

tj

(tk+1 – τ )α–1 dτ , τ̃j ∈ [tj, tj + 1],

∣
∣dk+1

0
∣
∣≤ 1

6h3

∣
∣(ξ1h – h)(ξ1h – 2h)(ξ1h – 3h)

∣
∣ 1
α

[
(tk+1)α – (tk+1 – t1)α

]

+
1

6h3

∣
∣(ξ2h – h)(ξ2h – 2h)(ξ2h – 3h)

∣
∣ 1
α

[
(tk+1 – t1)α – (tk+1 – t2)α

]

+
1

6h3

∣
∣(ξ3h – h)(ξ3h – 2h)(ξ3h – 3h)

∣
∣ 1
α

[
(tk+1 – t2)α – (tk+1 – t3)α

]
,

where j – 1 ≤ ξj ≤ j, j = 1, 2, 3. Therefore we have

∣
∣dk+1

0
∣
∣≤ 1

6h3
1
α

tα
k+1
(
6h3 + 2h3 + 2h3)≤ 5

3α
Tα .

Using similar analysis it can be shown that for j = 1, 2, 3, k – 1, k, k + 1 there exists Cα , which
has dissimilar values at each case, such that the following inequality holds:

∣
∣dk+1

j
∣
∣≤ CαTα , j = 1, 2, 3, k – 1, k, k + 1. (24)

For j = 4, 5, . . . , k – 2, we have

k–2∑

j=4

∣
∣dk+1

j
∣
∣≤

k–2∑

j=4

[∫ tj

tj–1

∣
∣(tk+1 – τ )α–1∣∣

∣
∣
∣
∣
τ – tj–3

tj – tj–3

τ – tj–2

tj – tj–2

τ – tj–1

tj – tj–1

∣
∣
∣
∣dτ

+
∫ tj+1

tj

∣
∣(tk+1 – τ )α–1∣∣

∣
∣
∣
∣
τ – tj–2

tj – tj–2

τ – tj–1

tj – tj–1

τ – tj+1

tj – tj+1

∣
∣
∣
∣dτ

+
∫ tj+2

tj+1

∣
∣(tk+1 – τ )α–1∣∣

∣
∣
∣
∣
τ – tj–1

tj – tj–1

τ – tj+1

tj – tj+1

τ – tj+2

tj – tj+2

∣
∣
∣
∣dτ

+
∫ tj+3

tj+2

∣
∣(tk+1 – τ )α–1∣∣

∣
∣
∣
∣
τ – tj+1

tj – tj+1

τ – tj+2

tj – tj+2

τ – tj+3

tj – tj+3

∣
∣
∣
∣dτ

]

,

k–2∑

j=4

∣
∣dk+1

j
∣
∣≤

k–2∑

j=4

[∣
∣
∣
∣
τ̃1 – tj–3

3h
τ̃1 – tj–2

2h
τ̃1 – tj–1

h

∣
∣
∣
∣

∫ tj

tj–1

(tk+1 – τ )α–1 dτ

+
∣
∣
∣
∣
τ̃2 – tj–2

2h
τ̃2 – tj–1

h
τ̃2 – tj+1

–h

∣
∣
∣
∣

∫ tj+1

tj

(tk+1 – τ )α–1 dτ

+
∣
∣
∣
∣
τ̃3 – tj–1

h
τ̃3 – tj+1

–h
τ̃3 – tj+2

–2h

∣
∣
∣
∣

∫ tj+2

tj+1

(tk+1 – τ )α–1 dτ

+
∣
∣
∣
∣
τ̃4 – tj+1

–h
τ̃4 – tj+2

–2h
τ̃4 – tj+3

–3h

∣
∣
∣
∣

∫ tj+3

tj+2

(tk+1 – τ )α–1 dτ

]

,

where τ̃1 ∈ [tj–1, tj], τ̃2 ∈ [tj, tj+1], τ̃3 ∈ [tj+1, tj+2], and τ̃4 ∈ [tj+2, tj+3]. Hence, the above equa-
tion has the simplified form

k–2∑

j=4

∣
∣dk+1

j
∣
∣≤
∣
∣
∣
∣
6h3

6h3

∣
∣
∣
∣

1
α

k–2∑

j=4

[
(tk+1 – tj–1)α – (tk+1 – tj)α

]
+

k–2∑

j=4

[
(tk+1 – tj)α – (tk+1 – tj+1)α

]
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+
k–2∑

j=4

[
(tk+1 – tj+1)α – (tk+1 – tj+2)α

]
+

k–2∑

j=4

[
(tk+1 – tj+2)α – (tk+1 – tj+3)α

]

=
1
α

[[
(tk+1 – t3)α – (tk+1 – tk–2)α

]
+
[
(tk+1 – t4)α – (tk+1 – tk–1)α

]

+
[
(tk+1 – t5)α – (tk+1 – tk)α

]
+ (tk+1 – t6)α

]
,

k–2∑

j=4

∣
∣dk+1

j
∣
∣≤ 1

α
(tk+1 – t3)α + (tk+1 – t4)α + (tk+1 – t5)α + (tk+1 – t6)α –

[
tα
3 + tα

2 + tα
1
]

≤ 4
α

tα
k+1.

Combining all the above results, by choosing sufficiently large Cα and also sufficiently
small T , one can get (23) to complete the proof of the lemma. �

Lemma 2 For the weights of the novel scheme (18), we have

k+1∑

j=0

∣
∣dk+1

j
∣
∣≤ CαTα , (25)

where Cα only depends on α.

Proof The idea of the proof is similar to that of Lemma 1, so it is omitted. �

Theorem 3 Assume that yj (j = 1, 2, . . . , k) are the solutions of scheme (10). Then the pre-
sented scheme (10) is stable.

Proof Suppose that yk+1 and ỹk+1 are numerical solutions in (10) and the initial conditions
are given by y(i)

0 and ỹ(i)
0 respectively. We shall use mathematical induction. Assume that

|yj – ỹj| ≤ Cα,T‖y0 – ỹ0‖∞ (26)

is true for (j = 0, 1, . . . , k). We must prove that this also holds for j = k + 1. Note that, by
assumptions of the given initial conditions, the induction basis (j = 0) is presupposed.

|yk+1 – ỹk+1| ≤
�α�–1∑

i=0

ti
k+1
i!
∣
∣y(i)

0 – ỹ(i)
0
∣
∣ +

1
�(α)

( k∑

j=0

∣
∣dk+1

j
∣
∣
∣
∣f (tj, yj) – f (tj, ỹj)

∣
∣

+
∣
∣dk+1

k+1
∣
∣
∣
∣f (tk+1, yk+1) – f (tk+1, ỹk+1)

∣
∣

)

≤ C1‖y0 – ỹ0‖∞ +
|β|

�(α)

( k∑

j=0

∣
∣dk+1

j
∣
∣|yj – ỹj| +

∣
∣dk+1

k+1
∣
∣|yk+1 – ỹk+1|

)

.

Utilizing Lemma 1, one can get

|yk+1 – ỹk+1| ≤ C1‖y0 – ỹ0‖∞ +
|β|

�(α)

(
C1,αTα max

0≤j≤k
|yj – ỹj| + Ck+1,αTα|yk+1 – ỹk+1|

)
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≤ 1
1 – (|β|Ck+1,αTα)/�(α)

(

C1‖y0 – ỹ0‖∞ +
|β|

�(α)
C1,αTα max

0≤j≤k
|yj – ỹj|

)

.

Now, for sufficiently small T , one can end the proof using mathematical induction (26)
and by choosing constant Cα,T sufficiently large. �

Theorem 4 Assume that yj (j = 1, 2, . . . , k) are the solutions of algorithm II (13) and (18).
Then the presented algorithm II is stable.

Proof The proof is similar to Theorem 3. �

5 Linear stability analysis
Following the ideas of [43, 44], consider the following test problem to investigate stability
region of the presented methods:

C
0 Dα

t y(t) = λy(t), y(t0) = y0, 0 < α < 1, (27)

where λ ∈ C is a complex number. The new method (13) and (18) gives the following
iteration formula for solving (27):

yk+1 = y0 +
1

�(α)

k+1∑

i=0

hα

12α(α + 1)(α + 2)(α + 3)(α + 4)
b̂k+1

j λyj. (28)

Denoting z = λhα , we get

z = 12�(α + 5)
yk+1 – y0
∑k+1

i=0 b̂k+1
j yj

. (29)

Let yj = ξ j, then by assuming ξ = eiθ with 0 ≤ θ ≤ 2π we get the following stability region
for scheme (10):

S =
{

z : z = 12�(α + 5)
ξ k+1 – ξ 0

∑k+1
j=0 b̂k+1

k+1–jξ
j

}

. (30)

The stability region of algorithm I (10) can be achieved in a quite similar way. The stability
region of numerical algorithm I is obtained in Figs. 1 and 2 by choosing k = 2000, and
that of numerical algorithm II is shown in Figs. 3 and 4 by choosing k = 500. The stability
region in Figs. 1 and 3 is inside of the boundary, and it is outside of the boundary in Figs.
2 and 4.

6 Numerical results
To check the numerical errors between the exact and the numerical solution, numerical
experiments are carried out in this section. The presented examples have exact solutions
and also have been solved by other numerical methods from literature. This allows one
to compare the numerical results obtained by the presented schemes with the analytical
solutions or those obtained by other methods. We also aim to graphically investigate the
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Figure 1 Stability region of numerical algorithm I

convergence order of the presented algorithms using the idea of [27] and [28]. The exper-
imental orders of convergence (EOC) of the algorithms are measured by

EOC = log2

(
E(h)

E(h/2)

)

,

where E(h) is the absolute error |y(tj) – yj| at t = 1 for the step size h. By the results of
Theorems 1 and 2, we have

∣
∣E(h)

∣
∣ =
∣
∣y(tj) – yj

∣
∣≤ Chorder ⇒ log2

(∣
∣E(h)

∣
∣
)

= log2(C) + (order) × log2(h),

where (order) is 4 for the presented algorithm (10) and is 5 for the presented algorithm
(13) and (18). Before proceeding, we first define some notations. Let Y = log2(|E(h)|) and
X = log2(h), also we use algorithm I to denote the presented algorithm (10) and algorithm
II to denote the presented algorithm (13) and (18). We use EI and EII to denote the absolute
error of algorithm I and algorithm II respectively. To graphically examine the order of
convergence, we shall plot the straight line y = (order) × x and also the function Y = Y (X).
The parallelism of these two lines can confirm the results of Theorems 1 and 2. Numerical
computations are carried out with the help of MATLAB R2014a on an Intel(R) Core(TM)2
Duo CPU (2.67 GHz, 4 GB RAM) Windows 7 system.

Example 1 Consider the following fractional differential equation:

C
0 Dα

t y(t) = βy(t) + g(t), y(0) = 0, (31)
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Figure 2 Stability region of numerical algorithm I

Figure 3 Stability region of numerical algorithm II

where

β = –1, g(t) =
�(ν + 1)

�(ν + 1 – α)
tν–α + tν , ν > 0.

The exact solution is y(t) = tν . At the time t = 1, for different step sizes h and different
α, the approximate solutions for equation (31) are obtained for two values of ν = 4 and
ν = 3.45 by using the presented algorithms.

First, we choose ν = 4, which for this case y(t) is a sufficiently smooth function. The
absolute errors of the presented algorithms and of the method reported in Ref. [45] are
shown in Table 1. This table shows that novel schemes are valid methods in solving a frac-
tional differential equation. Although the convergence ratios in Table 1 are a bit slower,
they are not too far from our analytical results. This can be mainly due to some round-off
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Figure 4 Stability region of numerical algorithm II

Table 1 The absolute errors of the presented algorithm I (EI), algorithm II (EII), and the numerical
method of [45] for (31) with α = 0.1, ν = 4

Algorithm II Algorithm I Method of [45]

h EII Ratio CPU EI Ratio CPU E

1/5 3.5631e-06 – 0.0021 1.9302e-04 – 0.0015 –
1/10 1.3548e-07 4.71 0.0028 1.3809e-05 3.81 0.0044 3.64e-01
1/20 4.7060e-09 4.85 0.0062 9.4607e-07 3.87 0.0067 1.70e-01
1/40 1.9210e-10 4.61 0.0199 6.3530e-08 3.90 0.0180 7.13e-02

errors during the computations of the algorithms. In Figs. 5–6, we plot the experimentally
determined orders of convergence (EOC) for different values of α at the time t = 1. Fig-
ure 5 shows the straight line y = 4x and the function Y = Y (X), where E(h) is computed
by algorithm I. One can see that these two lines are exactly parallel for different values of
α, which implies that the EOC of algorithm I indeed is O(h4). Figure 6 shows the straight
line y = 5x and the function Y = Y (X), where E(h) is computed by algorithm II. One can
see that these two lines are parallel for different values of α, which implies that the EOC
of algorithm II indeed is O(h5).

Second, we choose ν = 3.45, which for this case y(t) ∈ C3[0, 1], so it is not a sufficiently
smooth function. This case enables us to check the efficiency of the presented algorithms
when the solution is not sufficiently smooth, namely y(t) /∈ C4[0, 1] for algorithm I and
y(t) /∈ C5[0, 1] for algorithm II. The absolute errors of the presented algorithms for α =
0.2 are presented in Table 2. From Table 2 we see that for this case the method has still
high accuracy and has acceptable convergence ratios. Figures 7–8 show the EOC of the
algorithms for different values of α at the time t = 1. As explained in the later case (ν = 4),
from Figs. 7–8, again we can confirm the results of Theorems 1 and 2.
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Figure 5 The experimentally determined orders of convergence for algorithm I at t = 1 for (31) with ν = 4

Figure 6 The experimentally determined orders of convergence for algorithm II at t = 1 for (31) with ν = 4

Example 2 Consider the following fractional differential equation:

C
0 Dα

t y(t) =
24

�(5 – α)
t4–α –

3
�(4 – α)

t3–α –
1
2

t3 – y(t) + t4, y(0) = 0. (32)

The exact solution is y(t) = t4 – 1
2 t3. Table 3 shows the absolute errors of the presented

schemes and the method reported in Ref. [46] at the time t = 1. From this table it is ob-
served that the error of the presented method has decreased significantly. In Figs. 9–10,
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Table 2 The absolute errors of the presented algorithm I (EI) and algorithm II (EII) for (31) with
α = 0.2, ν = 3.45

Algorithm II Algorithm I

h EII Ration CPU time(s) EI Ration CPU time(s)

1/5 6.8126e-06 – 0.0021 5.9853e-05 – 0.0012
1/10 2.7965e-07 4.61 0.0032 3.9525e-06 3.92 0.0021
1/20 9.9336e-09 4.82 0.0065 2.6190e-07 3.92 0.0051
1/40 3.3460e-10 4.89 0.0195 1.7182e-08 3.93 0.0171

Figure 7 The experimentally determined orders of convergence for algorithm I at t = 1 for (31) with ν = 3.45
(y(t) is not sufficiently smooth)

we plot the EOC for different values of α at the time t = 1. Figure 9 examines the EOC of
algorithm I. The details of this figure are explained in Example 1 (Figure 5). We can see
that the lines y = 4x and Y = Y (X) are exactly parallel, which verifies the results of Theo-
rem 1. Figure 10 examines the EOC of algorithm II. The details of this figure are explained
in Example 1 (Figure 6). We can see that the lines y = 5x and Y = Y (X) are parallel, which
verifies the results of Theorem 2.

Example 3 In this example we aim to examine the validity and efficiency of the presented
methods when they are applied to solve a fractional order system of differential equations.
Consider the following initial value problem:

⎧
⎪⎪⎨

⎪⎪⎩

C
0 Dα

t x(t) = –x(t),
C
0 Dα

t y(t) = 2x(t) + y(t) – 9z(t),
C
0 Dα

t z(t) = 3x(t) + 6y(t) + z(t).

(33)
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Figure 8 The experimentally determined orders of convergence for algorithm II at t = 1 for (31) with ν = 3.45
(y(t) is not sufficiently smooth)

The exact solution of this system is [47]

⎛

⎜
⎝

x(t)
y(t)
z(t)

⎞

⎟
⎠ = c1

⎛

⎜
⎝

58
–31

6

⎞

⎟
⎠Eα

(
–tα
)

+
c2

2

⎛

⎜
⎝

0
0
2

⎞

⎟
⎠
(
Eα

(
(1 + 3

√
6)tα

)
+ Eα

(
(1 – 3

√
6)tα

))

–
c2

2i

⎛

⎜
⎝

0√
6

0

⎞

⎟
⎠
(
Eα

(
(1 + 3

√
6)tα

)
– Eα

(
(1 – 3

√
6)tα

))

+
c3

2

⎛

⎜
⎝

0√
6

0

⎞

⎟
⎠
(
Eα

(
(1 + 3

√
6)tα

)
+ Eα

(
(1 – 3

√
6)tα

))

+
c3

2i

⎛

⎜
⎝

0
2
0

⎞

⎟
⎠
(
Eα

(
(1 + 3

√
6)tα

)
– Eα

(
(1 – 3

√
6)tα

))
.

Under the initial conditions (x(0), y(0), z(0)) = (–3, 5, 0), we have

(c1, c2, c3) = (–0.05172, 0.15517, 1.38664).

We solve system (33) using the presented algorithms numerically. Figure 11 shows the
difference between the curves of exact and approximate solutions for α = 0.925 with h =
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Table 3 Absolute errors of the present presented algorithm I (EI), algorithm II (EII), and the numerical
methods of [46], with α = 0.3 for (32)

Algorithm II Algorithm I Method of [46]

h EII Ratio CPU EI Ratio CPU E

1/5 2.0268e-05 – 0.0020 3.9338e-04 – 0.0013 –
1/10 8.8773e-07 4.51 0.0029 2.6193e-05 3.91 0.0022 1.4571e-04
1/20 3.0045e-08 4.88 0.0064 1.7205e-06 3.93 0.0057 2.3118e-05
1/40 1.0533e-09 4.83 0.0205 1.1167e-07 3.95 0.0176 3.6127e-06

Figure 9 The experimentally determined orders of convergence for algorithm I at t = 1 for (32)

1/80. It is observed that the numerical solutions obtained by algorithm I and algorithm
II are in excellent agreement with the exact solution. Figure 12(a) shows the exact and
approximate solutions of system (33) obtained by algorithm I for t = 50 with α = 0.95,
h = 1/40. Figure 12(b) shows the exact and approximate solutions of system (33) obtained
by algorithm II for t = 50 with α = 0.975, h = 1/40. From Fig. 12 it is observed that the
numerical solutions are at very good agreement with the exact solution and the presented
algorithms are still valid and capable of solving problems in a large scale computational
domain.

7 Conclusion
This paper provides two high order numerical schemes with theoretically proved conver-
gence order of 4 and 5 for solving FDEs. The properties of the Caputo derivative are used
to reduce FDEs into a Volterra integral equation. After dividing the total domain into a set
of grid points, the piecewise Lagrange interpolation polynomials of degree three and de-
gree four are utilized to approximate unknown functions. The stability and error estimate
of the methods are investigated. Moreover, graphical illustrations for the stability region
of the schemes are derived. In the numerical results, the accuracy and convergence orders
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Figure 10 The experimentally determined orders of convergence for algorithm II at t = 1 for (32)

Figure 11 Comparison of solutions for IVP (33) (α = 0.925, h = 1/80)

of the developed algorithms have been studied. Numerical results confirm the theoreti-
cal results of the algorithms. Furthermore, we extended the presented algorithms to solve
a 3D fractional order system of equations. It is shown that the algorithms are valid and
efficient for solving a linear fractional system, and it is observed that the algorithms are
capable of solving large domain problems. In the future, we shall try to follow this idea to
construct higher order schemes for solving nonlinear FDEs.
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Figure 12 Comparison of solutions for IVP (33) (t = 50, h = 1/40)
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