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Abstract
In this paper we consider a standard class of the neural networks and propose an
investigation of the global asymptotic stability of these neural systems. The main aim
of this investigation is to define a novel Lyapunov functional having
quadratic-integral form and use it to reach a stability criterion for the under study
neural networks. Since some fundamental characteristics, such as nonlinearity,
including time-delays and neutrality, help us design a more realistic and applicable
model of neural systems, we will use all of these factors in our neural dynamical
systems. At the end, some numerical simulations are presented to illustrate the
obtained stability criterion and show the essential role of the time-delays in
appearance of the oscillations and stability in the neural networks.
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1 Introduction
During recent past, it has been shown that wide classes of the real world phenomena can be
stated as neural networks. This advantage makes the neural networks powerful resources
to study and investigate the mentioned phenomena. On the other hand, unifying various
categories of the real life problems in the framework of the neural networks helps us trans-
form these natural phenomena into essentially mathematical engineering problems. So,
we can restrict ourselves to investigating the neural networks instead of multi-oriented re-
searches on the aforementioned topics. In this way, the monographs [1, 14] can be helpful.
The concept of the neural networks will be more important in theory and in applications
if we combine them with time-delays to reach time-delay neural networks (the impor-
tance of the time-delay systems can be learned from the monograph [16]). Thanks to the
time-delay neural networks, one can study qualitative dynamics of some of the most im-
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portant bioscience problems, such as the dynamics of diabetes, population dynamics and
epidemiology, for instance, time-delay neural networks are capable of making a research
field the study of evolutionary dynamics of the COVID-19 pandemic virus. This ability can
be summarized in the fact that in time-delay dynamical systems derivatives of unknown
functions at particular times can be described in terms of the values of those functions at
previous times. In this case, the studied neural networks have great potential to describe
rising/falling oscillations, as well as stability/instability in their qualitative dynamics. Let
us proceed a bit further. If time-delays appear both in the state of the interconnecting neu-
rons and their derivatives, then the studied dynamical system is said to be a neutral-type
time-delay neural network It is expected that these advanced neural networks represent a
complete characterization of the neural systems having extended applications in engineer-
ing problems. Here, we suggest some of the recent most motivating research papers related
to the neutral-type time-delay neural networks and the cited bibliography therein for more
consultation on this topic; see [2–8, 11, 24, 25]. The nonlinear nature of the dynamical
systems makes them an excellent platform to study the real world phenomena and their
engineering refinements, so in the light of the nonlinear neutral-type time-delay neural
networks one can concentrate on engineering and artificial intelligence problems such as
intelligent recognition processes, including speech recognition, lip reading, handwriting
recognition, image recognition, pattern and sequence recognition, data processing, blind
signal separation, email spam filtering, signal processing, control problems, fixed point
computations, function approximation, optimization problems, and many other real life
problems. These applications and corresponding information can be represented in the
case that the states of neurons become stable. In other words, as has been proven, such
neural systems are required to have constant equilibrium points independent of the ini-
tial data that are globally asymptotically stable, see [26]. This is why stabilization of the
neural networks has recently attracted wide audience and witnessed day-to-day growing
investigations. In this way, the interested follower is advised to study the following papers:
[9, 10, 13, 15, 17–23, 26–44]. For convenience let us make a convention here. From now
on, we call the nonlinear neutral-type time-delay neural networks as the NNTDNNs.

At the end of this section, we state that the rest of the paper will be organized is follows.
In Sect. 2, we first define the main NNTDNNs that will be stabilized later. Also some
basic setting and discussions will be made here. Section 3, the main part of the paper,
includes the stability analysis to achieve global asymptotic stabilization of the main neural
system. Prior to this analysis, by the use of the coincidence degree theory, it will be shown
under which conditions the studied NNTDNN has at least one solution to be stabilized.
In Sect. 4, we present some numerical simulations to verify the validity of the presented
stability criterion. Finally, in Sect. 5, we summarize the solvability and stability criteria
presented in this paper.

2 Formulation and basic setting
Prior to presenting the stabilization process, we introduce the mathematical model of the
dynamical neural system that has described above. As stated, our neural network contains
multiple discrete time-delays in the states of the interconnecting neurons and further mul-
tiple discrete time-delays in the time derivatives of states of these neurons. Accordingly,
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our desired NNTDNN is introduced as follows:

ẏi(t) := –ciyi(t) +
n∑

j=1

aijgj
(
yj(t)

)
+

n∑

j=1

bijgj
(
yj(t – τij)

)

+
n∑

j=1

eijfj
(
ẏj(t – ζij)

)
+ ui, i = 1, 2, . . . , n,

(2.1)

with the following properties:
(P1) yi(t) denotes the state of the ith neuron;
(P2) n presents the number of the neurons;
(P3) ci is some positive real constant;
(P4) aij and bij are real constants;
(P5) eij is the neutral coefficient;
(P6) τij is the time delay of the neuron’s state;
(P7) ζij is the neutral time delay;
(P8) gj ∈ C(R,R) is a nonlinear activation function for which there exists a positive real

constant M1 such that |gj(x)| ≤ M1. In addition, gj obeys the Lipschitz-continuity
condition, that is, there exists a positive real constant lj such that

∣∣gj(v) – gj(w)
∣∣≤ lj|v – w|, v, w ∈R, v �= w,

(P9) fj ∈ C(R,R) is a given function with the property that there exists a positive real pos-
itive constant M2 such that |fj(x)| ≤ M2. Furthermore, fj is a Lipschitz-continuous
function, so that there exists a positive real constant mj such that

∣∣fj(v) – fj(w)
∣∣≤ mj|v – w|, v, w ∈R, v �= w,

(P10) ui is a constant (an external input);
(P11) η := max{τij | i, j = 1, 2, . . . , n} and k := max{ζij | i, j = 1, 2, . . . , n} with δ := max{η, k}.

At the end of the detailed statement of the neural model (2.1), we note that the accompa-
nying initial data of the neutral-type neural network (2.1) are introduced by

yj(t) = φj(t) ∈ C
(
[–δ, 0],R

)
, ẏj(t) = ψj(t) ∈ C

(
[–δ, 0],R

)
. (2.2)

This is an opportunity to describe the philosophy of the functional space corresponding to
the NNTDNN model (2.1). For the stabilization of the NNTDNN, (2.1) is required to be
solvable first, that is, the neutral-type neural system (2.1) has to have at least one solution
to be stabilized. So, prior to stability analysis, we have to apply an appropriate solvability
procedure that gives us a mathematical key to reach at least one solution of this NNTDNN
and, consequently, provides a plan to stabilize this solution. Our preferred solvability key
is the coincidence degree theory, which, in order to be applicable, must act on a relevant
periodic solution space. So, we introduce this periodic functional space as follows:

Y :=
{

y | y = (y1, y2, . . . , yn) ∈ C
(
R

n,R
)
, y(t + T) = y(t)

}
, (2.3)

‖y‖Y :=
n∑

i=1

‖yi‖∞, ‖yi‖∞ := max
t[0,T]

∣∣yi(t)
∣∣. (2.4)
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We believe that it is necessary to consult more on the neutral-type time delay neural net-
works, and on the importance of the time delays and stability methods. But at this moment
we provide a brief description of the coincidence degree theory. To find the complemen-
tary details, we refer the interested followers to [12], Chaps. IV and V). So, let us start as
follows.

Definition 2.1 Let Y and Z be real normed spaces. A linear mapping L : dom L ⊂ Y →Z
is called a Fredholm mapping provided it satisfies the following conditions:

(i) ker L has finite dimension,
(ii) Im L is closed and has finite codimension.

Let L be a Fredholm mapping. Then its index is given by

Ind L = dim ker L – codim Im L.

Assume that L is a Fredholm mapping with zero index and there exist continuous projec-
tors P : Y → Y and Q : Z →Z such that

Im P = ker L, ker Q = Im L, Y = ker L ⊕ ker P, Z = Im L ⊕ Im Q.

So, one may derive that

L|dom L∩ker P : dom L ∩ ker P → Im L

is invertible. Let us denote the inverse by KP : Im L → dom L ∩ ker P. The generalized in-
verse of L denoted by KP,Q : Z → dom L ∩ ker P is defined by KP,Q = KP(I – Q).

If L is a Fredholm mapping with zero index, then for every isomorphism J : Im Q → ker L,
the mapping JQ + KP,Q : Z → dom L is an isomorphism and, for every u ∈ dom L,

(JQ + KP,Q)–1u =
(
L + J–1P

)
u.

Here, we define the L-compact operators that play an important role in the coincidence
degree theory.

Definition 2.2 Let L : dom L ⊂ Y →Z be a Fredholm mapping, E be a metric space, and
let N : E →Z be a mapping. Then N is called L-compact on E provided that QN : E →Z is
continuous and KP,QN : E → Y is compact on E. In addition, we say that N is L-completely
continuous if it is L-compact on every bounded E ⊂ Y .

Now, having all of these preliminaries, we present the main solvability result as follows.

Theorem 2.3 Let � ⊂ Y be open and bounded, L be a Fredholm mapping with zero in-
dex, and let N be L-compact on �. Furthermore, assume that the following conditions are
satisfied:

(i) Lu �= λNu for every (u,λ) ∈ ((dom L \ ker L) ∩ ∂�) × (0, 1);
(ii) Nu /∈ Im L for every u ∈ ker L ∩ ∂�;
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(iii) deg(JQN |ker L∩∂�,� ∩ ker L, 0) �= 0 with Q : Y → Y a continuous projector such that
ker Q = Im L and J : Im Q → ker L is an isomorphism.

Then, the equation Lu = Nu has at least one solution in dom L ∩ �.

We finalize this section with a quick overview of the stability tools for the time delay neu-
ral networks and complexities of the multiple essentially distinct time delays to stabilize
the corresponding neural systems. To this aim, let us consider the forthcoming cases:

(C1) If τij = τj and ζij = ζj, for i, j = 1, 2, . . . , n, then we have the following NNTDNNs:

ẏi(t) := –ciyi(t) +
n∑

j=1

aijgj
(
yj(t)

)
+

n∑

j=1

bijgj
(
yj(t – τj)

)

+
n∑

j=1

eijfj
(
ẏj(t – ζj)

)
+ ui, i = 1, 2, . . . , n.

(2.5)

(C2) If τij = τ and ζij = ζ , for i, j = 1, 2, . . . , n, then we get the following NNTDNNs:

ẏi(t) := –ciyi(t) +
n∑

j=1

aijgj
(
yj(t)

)
+

n∑

j=1

bijgj
(
yj(t – τ )

)

+
n∑

j=1

eijfj
(
ẏj(t – ζ )

)
+ ui, i = 1, 2, . . . , n.

(2.6)

The direct consequences of the NNTDNNs (2.5) and (2.6) is that both of these neural
networks can be represented in the vector matrix form:

ẏ(t) := –Cy(t) + Ag
(
y(t)

)
+ Bg

(
y(t – τ )

)
+ Ef

(
ẏ(t – ζ )

)
+ u, (2.7)

in which

C := diag(ci > 0), A := (aij)n×n, B := (bij)n×n︸ ︷︷ ︸
interconnection matrices

, E := A := (eij)n×n, (2.8)

and

y(t) :=
[
y1(t), y2(t), . . . , yn(t)

]T ,

g
(
y(t)

)
:=
[
g1
(
y1(t)

)
, g2
(
y2(t)

)
, . . . , gn

(
yn(t)

)]T ,

u := [u1, u2, . . . , un]T .

(2.9)

Furthermore, the vector matrices g(y(t – τ )) and f (ẏ(t – ζ )) for the two cases (C1) and (C2)
are respectively represented as follows:

(V1)

g
(
y(t – τ )

)
:=
[
g1
(
y1(t – τ1)

)
, g2
(
y2(t – τ2)

)
, . . . , gn

(
yn(t – τn)

)]T ,

f
(
ẏ(t – ζ )

)
:=
[
f1
(
ẏ1(t – ζ1)

)
, f2
(
ẏ2(t – ζ2)

)
, . . . , fn

(
ẏn(t – ζn)

)]T ,
(2.10)

and
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(V2)

g
(
y(t – τ )

)
:=
[
g1
(
y1(t – τ )

)
, g2
(
y2(t – τ )

)
, . . . , gn

(
yn(t – τ )

)]T ,

f
(
ẏ(t – ζ )

)
:=
[
f1
(
ẏ1(t – ζ )

)
, f2
(
ẏ2(t – ζ )

)
, . . . , fn

(
ẏn(t – ζ )

)]T .
(2.11)

Now, comparing the NNTDNN (2.1) with the vector matrix NNTDNNs (2.7)–(2.9), (2.10)
and (2.7)–(2.9), (2.11), we come to the conclusion that the NNTDNN (2.1) cannot be rep-
resented in the vector matrix form. This is the main complexity of the multiple essentially
distinct time delays. In the vector matrix case (2.7), establishing the stability conditions
is easier than deriving stability analysis for the NNTDNN (2.1). So, the stabilization tech-
niques such as LMI, that stands for the linear matrix inequality, are not applicable on the
NNTDNN (2.1). As instances of this these cases, we suggest the papers [19, 28–30, 36, 40],
and the cited bibliography therein for more consultation. In this case, it is reasonable that
we are interested in developing the classic mathematical techniques to reach improved
stabilization tools such as the novel Lyapunov functionals. Since the stability analysis of
the NNTDNNs is not widely investigated in the literature in comparison with the other
techniques, this is a good time to make new investigations on neural dynamical systems
like the NNTDNN (2.1).

3 Stability analysis
As stated in the introduction of the paper, for the stability analysis of the NNTDNN (2.1),
we need a criterion that guarantees the existence of at least one solution for the NNTDNN
(2.1) to be stabilized. So, we start with the solvability result as follows.

Theorem 3.1 Suppose that hypotheses (P8) and (P9) are satisfied. Then, the NNTDNN
(2.1) has at least one T-periodic solution.

Proof Our proof strategy is to show that all conditions of Theorem 2.3 are satisfied and,
consequently, we conclude that the neural system (2.1) has at least one solution. So, begin
with the definition of the basic operators L and N as follows:

L : dom L =
{

y(t) | y(t) ∈ Y , ẏ(t) ∈ Y
}⊂ Y −→ Y , L(y) := ẏ, (3.1)

and

N : Y −→ Y , N(y) :=
[
(N1x)(t), (N2x)(t), . . . , (Nnx)(t)

]T ,

(Nix)(t) = –ciyi(t) +
n∑

j=1

aijgj
(
yj(t)

)
+

n∑

j=1

bijgj
(
yj(t – τij)

)

+
n∑

j=1

eijfj
(
ẏj(t – ζij)

)
+ ui, i = 1, 2, . . . , n

= �i
(
t, y(t), y1(t – τi1), y2(t – τi2), . . . , yn(t – τin),

ẏ1(t – ζi1), ẏ2(t – ζi2), . . . , ẏn(t – ζin)
)
.

(3.2)
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Also, let us define the projectors P : Y −→ ker L and Q : Y −→ Y as follows:

Py = Qy :=
1
T

∫ T

0
y(t) dt. (3.3)

So, we get the following:

ker L := R
n, Im L :=

{
y
∣∣∣ y ∈ Y ,

∫ T

0
y(t) dt = 0, i = 1, 2, . . . , n

}
.

Besides,

Im P = ker L, ker Q = Im L,

that is,

Ind L := dim ker L – codim Im L = n – n = 0.

So, this proves that L is a Fredholm operator of index zero. Next, we show the L-
compactness of the operator N . To this aim, we first define the operator KP : Im L −→
ker P ∩ dom L as

(KPy)(t) :=
[
(KPy)1(t), (KPy)2(t), . . . , (KPy)2(t)

]T ,

in which

(KPy)i(t) :=
∫ T

0
yi(t) dt –

1
T

∫ T

0

∫ t

0
yi(s) ds, y = (y1, y2, . . . , yn) ∈ Im L, i = 1, 2, . . . , n.

Since we do not want to waste the time and space for proving straightforward exercises, so,
for a given open and bounded subset � of Y , we come to the conclusion that both QN and
KP(I – Q)N are continuous, and QN(�) and KP(I – Q)N(�) are both relatively compact,
that is, the operator N is L-compact. In accordance with Theorem 2.3, it is time to prove
that the condition (i) is satisfied. The plan is as follows. We will show that if Lu = λNu,
then u ∈ �, for a given open and bounded subset �, that is, we will prove the counterpart
of the assumption (i). So, let us begin with

Ly = λNy, λ ∈ (0, 1), (3.4)

where y = (y1, y2, . . . , yn) ∈ Y is an arbitrary solution of the operator equation (3.4). Equiv-
alently, one has

ẏi(t) := λ�i
(
t, y(t), y1(t – τi1), y2(t – τi2), . . . , yn(t – τin),

ẏ1(t – ζi1), ẏ2(t – ζi2), . . . , ẏn(t – ζin)
)
, i = 1, 2, . . . , n.
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Integrating both sides of the recent neural system over the interval [0, T], for i = 1, 2, . . . , n,
yields

yi(T) – yi(0) = 0

:= λ

∫ T

0
�i
(
t, y(t), y1(t – τi1), y2(t – τi2), . . . , yn(t – τin),

ẏ1(t – ζi1), ẏ2(t – ζi2), . . . , ẏn(t – ζin)
)

dt.

(3.5)

The left-hand side of the equality (3.5) implies that there exists si ∈ [0, T], for i = 1, 2, . . . , n,
such that

�i
(
si, y(si), y1(si – τi1), y2(si – τi2), . . . , yn(si – τin),

ẏ1(si – ζi1), ẏ2(si – ζi2), . . . , ẏn(si – ζin)
)

= 0.
(3.6)

Consequently, comparing (3.6) with (3.2), we arrive at the following equality:

yi(si) =
n∑

j=1

aij

ci
gj
(
yj(si)

)
+

n∑

j=1

bij

ci
gj
(
yj(si – τij)

)
+

n∑

j=1

eij

ci
fj
(
ẏj(si – ζij)

)
+

ui

ci
. (3.7)

Hence, we get that

∣∣yi(si)
∣∣≤

n∑

j=1

|aij|
ci

∣∣gj
(
yj(si)

)∣∣ +
n∑

j=1

|bij|
ci

∣∣gj
(
yj(si – τij)

)∣∣ +
n∑

j=1

|eij|
ci

∣∣fj
(
ẏj(si – ζij)

)∣∣ +
|ui|
ci

.

Turning to the hypotheses (P8) and (P9) leads us to the following inequality:

∣∣yi(si)
∣∣≤

n∑

j=1

{
M1(|aij| + |bij|) + M2|eij|

ci

}
+

|ui|
ci

. (3.8)

In order to reach the desired conclusion, we have to multiply both sides of the operator
equation (3.4) and then integrate over the interval [0, T]. In this case, it follows that

∫ T

0
ẏ2

i (t) dt = λ

∫ T

0

{
–ciyi(t)ẏi(t) +

n∑

j=1

aijgj
(
yj(t)

)
ẏi(t) +

n∑

j=1

bijgj
(
yj(t – τij)

)
ẏi(t)

+
n∑

j=1

eijfj
(
ẏj(t – ζij)

)
ẏi(t) + uiẏi(t)

}
dt

= λ

∫ T

0

{ n∑

j=1

aijgj
(
yj(t)

)
ẏi(t) +

n∑

j=1

bijgj
(
yj(t – τij)

)
ẏi(t)

+
n∑

j=1

eijfj
(
ẏj(t – ζij)

)
ẏi(t) + uiẏi(t)

}
dt.

(3.9)
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Therefore, we come to the conclusion that

∫ T

0
ẏ2

i (t) dt ≤
∫ T

0

∣∣∣∣∣

n∑

j=1

aijgj
(
yj(t)

)
ẏi(t) +

n∑

j=1

bijgj
(
yj(t – τij)

)
ẏi(t)

+
n∑

j=1

eijfj
(
ẏj(t – ζij)

)
ẏi(t) + uiẏi(t)

∣∣∣∣∣dt

≤
∫ T

0

{{ n∑

j=1

|aij|
∣∣gj
(
yj(t)

)∣∣ +
n∑

j=1

|bij|
∣∣gj
(
yj(t – τij)

)∣∣

+
n∑

j=1

|eij|
∣∣fj
(
ẏj(t – ζij)

)∣∣ + |ui|
}
∣∣ẏi(t)

∣∣
}

dt

≤
{ n∑

j=1

[
M1
(|aij| + |bij|

)
+ M2|eij|

]
+ |ui|

}∫ T

0

∣∣ẏi(t)
∣∣dt.

(3.10)

In continuation, thanks to the inequality

(∫ T

0

∣∣w(t)
∣∣dt
)2

≤ T
∫ T

0

∣∣w(t)
∣∣2 dt,

we have
(∫ T

0

∣∣ẏi(t)
∣∣dt
)2

≤ T
∫ T

0

∣∣ẏi(t)
∣∣2 dt

≤ T

{ n∑

j=1

[
M1
(|aij| + |bij|

)
+ M2|eij|

]
+ |ui|

}∫ T

0

∣∣ẏi(t)
∣∣dt.

(3.11)

Equivalently, it has shown that

∫ T

0

∣∣ẏi(t)
∣∣dt ≤ T

{ n∑

j=1

[
M1
(|aij| + |bij|

)
+ M2|eij|

]
+ |ui|

}
. (3.12)

We combine here the inequalities (3.8) and (3.12), and then arrive at the following inequal-
ity:

∣∣yi(t)
∣∣≤ (c–1

i + T
)
{ n∑

j=1

[
M1
(|aij| + |bij|

)
+ M2|eij|

]
+ |ui|

}
. (3.13)

Thus,

‖yi‖∞ = max
t∈[0,T]

{∣∣yi(t)
∣∣ | i = 1, 2, . . . , n

}≤ (c–1 + T
)
{ n∑

j=1

[
M1
(|aij| + |bij|

)
+ M2|eij|

]
+ ξ

}
,

in which
⎧
⎨

⎩
c–1 := max{c–1

i | i = 1, 2, . . . , n},
ξ := max{|ui| | i = 1, 2, . . . , n}.
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In this case, we have proved that

‖y‖Y =
n∑

i=1

‖yi‖∞ ≤ (c–1 + T
)
{ n∑

i=1

n∑

j=1

[
M1
(|aij| + |bij|

)
+ M2|eij|

]
+ nξ

}
. (3.14)

Let γ := A + ε, with

ε > 1, A :=
(
c–1 + T

)
{ n∑

i=1

n∑

j=1

[
M1
(|aij| + |bij|

)
+ M2|eij|

]
+ nξ

}
.

Then, if we define

� :=
{

y ∈ Y | ‖y‖Y < γ
}

,

we have proved that, if Ly = λNy, λ ∈ (0, 1), then, y ∈ � ∩ dom L. Equivalently, for each
y ∈ ∂� ∩ dom L and λ ∈ (0, 1), we have Ly �= λNy. So, the condition (i) in Theorem 2.3 is
satisfied.

Next, we are going to prove the condition (ii) in Theorem 2.3. To this end, suppose
y ∈ ∂� ∩ ker L is a constant vector y = (y1, y2, . . . , yn) ∈ R

n, with ‖y‖Y = γ . Then, it follows
that

‖QNy‖Y =
n∑

i=1

‖QNiy‖∞ =
n∑

i=1

∥∥∥∥
1
T

∫ T

0
(Niy)(t) dt

∥∥∥∥∞

=
n∑

i=1

∥∥∥∥∥
1
T

∫ T

0

{
–ciyi(t) +

n∑

j=1

aijgj
(
yj(t)

)

+
n∑

j=1

bijgj
(
yj(t – τij)

)
+

n∑

j=1

eijfj
(
ẏj(t – ζij)

)
+ ui

}
dt

∥∥∥∥∥∞

=
n∑

i=1

∥∥∥∥∥
1
T

∫ T

0

{
–ciyi(t) +

n∑

j=1

(aij + bij)gj(yj) +
n∑

j=1

eijfj(0) + ui

}
dt

∥∥∥∥∥∞

≥ c
n∑

i=1

‖yi‖∞ –
n∑

i=1

n∑

j=1

{(|aij| + |bij|
)
M1 + |eij|M2

}

– nξ
(
c := min{ci | i = 1, 2, . . . , n})

= c

{
(
c–1 + T

)
{ n∑

i=1

n∑

j=1

[
M1
(|aij| + |bij|

)
+ M2|eij|

]
+ nξ

}
+ ε

}

–

{ n∑

i=1

n∑

j=1

{(|aij| + |bij|
)
M1 + |eij|M2

}
+ nξ

}
.

After some manipulation, we get that for each y ∈ ∂� ∩ ker L,

‖QNy‖Y ≥ c

{
ε + T

{ n∑

i=1

n∑

j=1

[
M1
(|aij| + |bij|

)
+ M2|eij|

]
+ nξ

}}
> 0. (3.15)
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The latter inequality proves that Ny /∈ Im L, for each y ∈ ∂� ∩ ker L. So, this has proven
that the condition (ii) in Theorem 2.3 holds.

Here, we are in such a position to complete the existence analysis by showing that the
condition (iii) in Theorem 2.3 is also fulfilled. To this aim, let us define

H(λ, y) := –λCy + (1 – λ)JQNy, (λ, y) ∈ [0, 1] × �, (3.16)

in which the isomorphism J : Im Q −→ ker L stands for the identity operator and

C := diag(c1, c2, . . . , cn) ∈ Mn×n.

So, for each y ∈ ∂� ∩ ker L, it follows that

∥∥H(λ, y)
∥∥

Y :=
n∑

i=1

∥∥H(λ, yi)
∥∥∞ :=

n∑

i=1

max
t∈[0,T]

{∣∣H
(
λ, yi(t)

)∣∣},

such that

H
(
λ, yi(t)

)
:= –λciyi(t) +

(1 – λ)
T

∫ T

0

{
–ciyi(t) +

n∑

j=1

aijgj
(
yj(t)

)

+
n∑

j=1

bijgj
(
yj(t – τij)

)
+

n∑

j=1

eijfj
(
ẏj(t – ζij)

)
+ ui

}
dt.

So, we get

∣∣H
(
λ, yi(t)

)∣∣≥ ciyi(t) –
1 – λ

T

∫ T

0

{ n∑

j=1

{(|aij| + |bij|
)
M1 + |eij|M2

}
+ |ui|

}
dt.

Therefore, similar to the previous step, one may derive that

∥∥H(λ, y)
∥∥

Y ≥ c

{
ε + T

{ n∑

i=1

n∑

j=1

[
M1
(|aij| + |bij|

)
+ M2|eij|

]
+ nξ

}}
> 0,

that is, for each y ∈ ∂�∩ ker L, one has H(λ, y) �= 0T . Then, by the use of degree invariance
under a homotopy, we arrive at

deg
(
JQN |ker L∩∂�,� ∩ ker L, 0T) = deg

(
H(0, ·),� ∩ ker L, 0T)

= deg
(
H(1, ·),� ∩ ker L, 0T)

= deg
(
–Cy,� ∩ ker L, 0T) �= 0.

So, the condition (iii) in Theorem 2.3 is fulfilled. Since all conditions of Theorem 2.3 are
satisfied, we come to the conclusion that the NNTDNN (2.1) has at least one solution.
This completes the proof. �

This situation is at the borderline between the solvability and stability of the NNTDNN
(2.1), meaning that it just remains to handle the uniqueness of the existing solution (equi-
librium point in view of the dynamical systems) of the NNTDNN (2.1). To this aim, wee
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just need a little bit of creativity to introduce the transformation z(t) := y(t) – y∗ where
y∗ = (y∗

1, y∗
2, . . . , y∗

n)T ∈ R
n stands for a given equilibrium point of the NNTDNN (2.1). In

this case, the NNTDNN (2.1) can be restated as the following transformed NNTDNN:

żi(t) := –cizi(t) +
n∑

j=1

aijGj
(
zj(t)

)
+

n∑

j=1

bijGj
(
zj(t – τij)

)

+
n∑

j=1

eijFj
(
żj(t – ζij)

)
, i = 1, 2, . . . , n.

(3.17)

The golden point of the NNTDNN (3.17) is that this neural network has the origin as
its unique equilibrium point. This property enables us now to manage the claimed global
asymptotic stability analysis. Prior to presenting the stability analysis, we point out that in
the new NNTDNN (3.17), all properties of the NNTDNN (2.1) hold, just in the properties
(P8) and (P9) the Lipschitz-continuities will be transformed into the following ones. So,
the NNTDNN (3.17) has the following properties:

(Pnew) Comparing both of the neural networks (2.1) and (3.17), we have

(Pi,new) = (Pi), i = 1, 2, . . . , 7, 10, 11; (3.18)

(P8,new)

⎧
⎨

⎩
|Gi(zi(t))| ≤ li|zi(t)|, i = 1, 2, . . . , n,

Gi(zi(t)) := gi(zi + y∗
i ) – gi(y∗

i ), with Gi(0) = 0, i = 1, 2, . . . , n.
(3.19)

Furthermore,
(P9,new)

⎧
⎨

⎩
|Fi(zi(t))| ≤ mi|zi(t)|, i = 1, 2, . . . , n,

Fi(zi(t)) := fi(zi + y∗
i ) – fi(y∗

i ), with Fi(0) = 0, i = 1, 2, . . . , n.
(3.20)

Now, we are ready to state and prove the main stability result as the following theorem.

Theorem 3.2 Suppose the nonlinear neutral-type time-delay neural network (3.17) satis-
fies the properties (P1,new)–(P11,new). If α is a positive constant such that 0 < α < 1, then the
origin of the NNTDNN (3.17) is globally asymptotically stable provided that the following
conditions are satisfied for each i = 1, 2, . . . , n:

ε1,i := α
(
c2

i + δl2
i
)

+
1 – α

2

n∑

j=1

{|aij| + |bij| + |eij| + l2
i |aji|

}

– l2
i

n∑

j=1

n∑

k=1

{|aji||bjk| + |aji||cjk| + |aki||akj|
}

> 0,

(3.21)

ε2,i = –ci
1 – α

2

n∑

j=1

|bji| +
n∑

j=1

n∑

k=1

{|ajk||bji| + |bjk||bji| + |ejk||cji|
}

> 0, (3.22)
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ε3,i := –ci
1 – α

2

n∑

j=1

|eji| +
n∑

j=1

n∑

k=1

{|ajk||eji| + |bjk||eji| + |ejk||eji|
}

> 0. (3.23)

Proof The main strategy to prove this theorem is to define the following quadratic-integral
Lyapunov functional:

V
(
z(t), ż(t), t

)
:= V1

(
z(t), ż(t), t

)
+ V2

(
z(t), ż(t), t

)
, (3.24)

V1
(
z(t), ż(t), t

)
:=

(1 + α)
2

n∑

i=1

cim2
i z2

i (t) +
1
n

n∑

i=1

n∑

j=1

∫ t

t–ζij

F2
j
(
żj(s)

)
ds, (3.25)

V2
(
z(t), ż(t), t

)
:= δ

n∑

i=1

n∑

j=1

∫ t

t–τji

G2
j
(
zj(s)

)
ds. (3.26)

In this case, one has

V̇1
(
z(t), ż(t), t

)
:= (1 + α)

n∑

i=1

cim2
i zi(t)żi(t) +

1
n

n∑

i=1

n∑

j=1

F2
j
(
żj(t)

)

–
1
n

n∑

i=1

n∑

j=1

F2
j
(
żj(t – ζij)

)
(3.27)

and

V̇2
(
z(t), ż(t), t

)
:= δ

n∑

i=1

n∑

j=1

G2
j
(
żj(t)

)
– δ

n∑

i=1

n∑

j=1

G2
j
(
żj(t – τij)

)
. (3.28)

We continue keeping in the mind the following key point:

1
n

n∑

i=1

n∑

j=1

F2
j
(
żj(t)

)
=

n∑

j=1

F2
j
(
żj(t)

)
=

n∑

i=1

F2
i
(
żi(t)

)
. (3.29)

Thanks to this key point, and concentrating on the first two parts of V̇1, given by (3.27), it
follows that

(1 + α)
n∑

i=1

cim2
i zi(t)żi(t) +

1
n

n∑

i=1

n∑

j=1

F2
j
(
żj(t)

)

= (1 + α)
n∑

i=1

cim2
i zi(t)żi(t) +

n∑

i=1

F2
i
(
żi(t)

)

≤ (1 + α)
n∑

i=1

cim2
i zi(t)żi(t) +

n∑

i=1

m2
i ż2

i (t) (the property (P9,new))

=
n∑

i=1

m2
i
{
αcizi(t) +

(
żi(t) + cizi(t)

)}
żi(t)

=
n∑

i=1

m2
i

{
αcizi(t) +

n∑

j=1

aijGj
(
zj(t)

)
+

n∑

j=1

bijGj
(
zj(t – τij)

)
+

n∑

j=1

eijFj
(
żj(t – ζij)

)
}

żi(t)
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= –α

n∑

i=1

m2
i c2

i z2
i (t) (3.30)

+ (α – 1)
n∑

i=1

m2
i cizi(t)

n∑

j=1

aijGj
(
zj(t)

)
(3.31)

+ (α – 1)
n∑

i=1

m2
i cizi(t)

n∑

j=1

bijGj
(
zj(t – τij)

)
(3.32)

+ (α – 1)
n∑

i=1

m2
i cizi(t)

n∑

j=1

eijFj
(
żj(t – ζij)

)
(3.33)

+ 2
n∑

i=1

m2
i

( n∑

j=1

aijGj
(
zj(t)

)
)( n∑

j=1

bijGj
(
zj(t – τij)

)
)

(3.34)

+ 2
n∑

i=1

m2
i

( n∑

j=1

aijGj
(
zj(t)

)
)( n∑

j=1

eijFj
(
żj(t – ζij)

)
)

(3.35)

+ 2
n∑

i=1

m2
i

( n∑

j=1

bijGj
(
zj(t – τij)

)
)( n∑

j=1

eijFj
(
żj(t – ζij)

)
)

(3.36)

+
n∑

i=1

m2
i

( n∑

j=1

aijGj
(
zj(t)

)
)( n∑

j=1

aijGj
(
zj(t)

)
)

(3.37)

+
n∑

i=1

m2
i

( n∑

j=1

bijGj
(
zj(t – τij)

)
)( n∑

j=1

bijGj
(
zj(t – τij)

)
)

(3.38)

+
n∑

i=1

m2
i

( n∑

j=1

eijFj
(
żj(t – ζij)

)
)( n∑

j=1

eijFj
(
żj(t – ζij)

)
)

. (3.39)

In continuation, we are going to bound the multiple series (3.31)–(3.39) one-by-one as
follows:

(α – 1)
n∑

i=1

m2
i cizi(t)

n∑

j=1

aijGj
(
zj(t)

)

= (α – 1)
n∑

i=1

n∑

j=1

m2
i ciaijzi(t)Gj

(
zj(t)

)

≤ (1 – α)
n∑

i=1

n∑

j=1

m2
i ci|aij|

∣∣zi(t)
∣∣∣∣Gj

(
zj(t)

)∣∣

≤ 1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|aij|z2

i (t) +
1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|aij|G2

j
(
zj(t)

)

≤ 1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|aij|z2

i (t) +
1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|aij|l2

j z2
j (t)

(according to the property (P8,new))

=
1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|aij|z2

i (t) +
1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|aji|l2

i z2
i (t).
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Therefore, we get

(α – 1)
n∑

i=1

m2
i cizi(t)

n∑

j=1

aijGj
(
zj(t)

)≤ 1 – α

2

n∑

i=1

n∑

j=1

m2
i ci
(|aij| + l2

i |aji|
)
z2

i (t). (3.40)

Let us now consider (3.32). Then,

(α – 1)
n∑

i=1

m2
i cizi(t)

n∑

j=1

bijGj
(
zj(t – τij)

)

= (α – 1)
n∑

i=1

n∑

j=1

m2
i cibijzi(t)Gj

(
zj(t – τij)

)

≤ (1 – α)
n∑

i=1

n∑

j=1

m2
i ci|bij|

∣∣zi(t)
∣∣∣∣Gj

(
zj(t – τij)

)∣∣

≤ 1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|bij|z2

i (t) +
1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|bij|G2

j
(
zj(t – τij)

)

≤ 1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|bij|z2

i (t) +
1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|bij|l2

j z2
j (t – τij)

(according to the property (P8,new))

=
1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|bij|z2

i (t) +
1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|bji|l2

i z2
i (t – τji),

that is,

(α – 1)
n∑

i=1

m2
i cizi(t)

n∑

j=1

aijGj
(
zj(t – τij)

)

≤ 1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|bij|z2

i (t) +
1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|bji|l2

i z2
i (t – τji).

(3.41)

At this step, if we consider (3.33) and arrive at

(α – 1)
n∑

i=1

m2
i cizi(t)

n∑

j=1

eijFj
(
żj(t – ζij)

)

= (α – 1)
n∑

i=1

n∑

j=1

m2
i cieijzi(t)Fj

(
żj(t – ζij)

)

≤ (1 – α)
n∑

i=1

n∑

j=1

m2
i ci|eij|

∣∣zi(t)
∣∣∣∣Fj

(
żj(t – ζij)

)∣∣

≤ 1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|eij|z2

i (t) +
1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|eij|F2

j
(
żj(t – ζij)

)
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≤ 1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|eij|z2

i (t) +
1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|eij|m2

j z2
j (t – ζij)

(according to the property (P9,new))

=
1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|eij|z2

i (t) +
1 – α

2

n∑

i=1

n∑

j=1

m4
i ci|eji|ż2

i (t – ζji).

Equivalently,

(α – 1)
n∑

i=1

m2
i cizi(t)

n∑

j=1

eijFj
(
żj(t – ζij)

)

≤ 1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|eij|z2

i (t) +
1 – α

2

n∑

i=1

n∑

j=1

m4
i ci|eji|ż2

i (t – ζji).

(3.42)

Now, it is time to estimate the triple group (3.34)–(3.36). So, we begin with (3.34) as fol-
lows:

2
n∑

i=1

m2
i

n∑

j=1

aijGj
(
zj(t)

) n∑

j=1

bijGj
(
zj(t – τij)

)

= 2
n∑

i=1

m2
i

n∑

j=1

aijGj
(
zj(t)

) n∑

k=1

bikGk
(
zk(t – τik)

)

= 2
n∑

i=1

n∑

j=1

n∑

k=1

m2
i aijbikGj

(
zj(t)

)
Gk
(
zk(t – τik)

)

≤ 2
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |aij||bik|

∣∣Gj
(
zj(t)

)∣∣∣∣Gk
(
zk(t – τik)

)∣∣

≤
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |aij||bik|

∣∣G2
j
(
zj(t)

)∣∣ +
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |aij||bik|G2

k
(
zk(t – τik)

)

=
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |aji||bjk|

∣∣G2
i
(
zi(t)

)∣∣ +
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |ajk||bki|G2

i
(
zi(t – τki)

)

≤
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |aji||bjk|l2

i z2
i (t) +

n∑

i=1

n∑

j=1

n∑

k=1

m2
i |ajk||bki|l2

i z2
i (t – τki)

(according to the property (P8,new))

=
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |aji||bjk|l2

i z2
i (t) +

n∑

i=1

n∑

j=1

n∑

k=1

m2
i |ajk||bji|l2

i z2
i (t – τji).

Hence, we have shown that

2
n∑

i=1

m2
i

n∑

j=1

aijGj
(
zj(t)

) n∑

j=1

bijGj
(
zj(t – τij)

)

≤
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |aji||bjk|l2

i z2
i (t) +

n∑

i=1

n∑

j=1

n∑

k=1

m2
i |ajk||bji|l2

i z2
i (t – τji).

(3.43)
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Here we take a look at (3.35). In this case,

2
n∑

i=1

m2
i

n∑

j=1

aijGj
(
zj(t)

) n∑

j=1

eijFj
(
żj(t – ζij)

)

= 2
n∑

i=1

m2
i

n∑

j=1

aijGj
(
zj(t)

) n∑

k=1

eikFk
(
żk(t – ζik)

)

= 2
n∑

i=1

n∑

j=1

n∑

k=1

m2
i aijeikGj

(
zj(t)

)
Fk
(
żk(t – ζik)

)

≤ 2
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |aij||eik|

∣∣Gj
(
zj(t)

)∣∣∣∣Fk
(
żk(t – ζik)

)∣∣

≤
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |aij||eik|

∣∣G2
j
(
zj(t)

)∣∣ +
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |aij||eik|F2

k
(
żk(t – ζik)

)

=
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |aji||ejk|

∣∣G2
i
(
zi(t)

)∣∣ +
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |akj||eki|F2

i
(
żi(t – ζki)

)

≤
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |aji||ejk|l2

i z2
i (t) +

n∑

i=1

n∑

j=1

n∑

k=1

m4
i |ajk||eji|ż2

i (t – ζji)

(according to (P8,new)–(P9,new)).

Thus, it yields

2
n∑

i=1

m2
i

n∑

j=1

aijGj
(
zj(t)

) n∑

j=1

eijFj
(
żj(t – ζij)

)

≤
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |aji||ejk|l2

i z2
i (t) +

n∑

i=1

n∑

j=1

n∑

k=1

m4
i |ajk||eji|ż2

i (t – ζji).

(3.44)

Next, we focus on (3.36). So, we have the following:

2
n∑

i=1

m2
i

n∑

j=1

bijGj
(
zj(t – τij)

) n∑

j=1

eijFj
(
żj(t – ζij)

)

= 2
n∑

i=1

m2
i

n∑

j=1

bijGj
(
zj(t – τij)

) n∑

k=1

eikFk
(
żk(t – ζik)

)

= 2
n∑

i=1

n∑

j=1

n∑

k=1

m2
i bijeikGj

(
zj(t – τij)

)
Fk
(
żk(t – ζik)

)

≤ 2
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |bij||eik|

∣∣Gj
(
zj(t – τij)

)∣∣∣∣Fk
(
żk(t – ζik)

)∣∣

≤
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |bij||eik|G2

j
(
zj(t – τij)

)
+

n∑

i=1

n∑

j=1

n∑

k=1

m2
i |bij||eik|F2

k
(
żk(t – ζik)

)
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=
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |bji||ejk|G2

i
(
zi(t – τji)

)
+

n∑

i=1

n∑

j=1

n∑

k=1

m2
i |bkj||eki|F2

i
(
żi(t – ζki)

)

≤
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |bji||ejk|l2

i z2
i (t – τji) +

n∑

i=1

n∑

j=1

n∑

k=1

m4
i |bjk||eji|ż2

i (t – ζji)

(based on (P8,new)–(P9,new)).

So, in a compact form, we get the following inequality:

2
n∑

i=1

m2
i

n∑

j=1

bijGj
(
zj(t – τij)

) n∑

j=1

eijFj
(
żj(t – ζij)

)

≤
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |bji||ejk|l2

i z2
i (t – τji) +

n∑

i=1

n∑

j=1

n∑

k=1

m4
i |bjk||eji|ż2

i (t – ζji).

(3.45)

Now we prepare ourselves to complete the mentioned unification process by estimation
of the last triple series (3.37)–(3.39). To this aim, we first consider (3.37). Then, we have

n∑

i=1

m2
i

( n∑

j=1

aijGj
(
zj(t)

)
)( n∑

j=1

aijGj
(
zj(t)

)
)

=
n∑

i=1

m2
i

( n∑

j=1

aijGj
(
zj(t)

)
)( n∑

k=1

aijGj
(
zj(t)

)
)

=
n∑

i=1

n∑

j=1

n∑

k=1

m2
i aijaikGj

(
zj(t)

)
Gk
(
zk(t)

)

≤
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |aki||akj|G2

i
(
zi(t)

)

≤
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |aki||akj|l2

i z2
i (t) (based on the property (P8,new)).

Thus, it follows that

n∑

i=1

m2
i

( n∑

j=1

aijGj
(
zj(t)

)
)( n∑

j=1

aijGj
(
zj(t)

)
)

≤
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |aki||akj|l2

i z2
i (t). (3.46)

Prior to the final step, we have the triple (3.38) that gives us the following:

n∑

i=1

m2
i

( n∑

j=1

bijGj
(
zj(t – τij)

)
)( n∑

j=1

bijGj
(
zj(t – τij)

)
)

=
n∑

i=1

m2
i

( n∑

j=1

bijGj
(
zj(t – τij)

)
)( n∑

k=1

bikGk
(
zk(t – τik)

)
)

=
n∑

i=1

n∑

j=1

n∑

k=1

m2
i bijbikGj

(
zj(t – τij)

)
Gk
(
zk(t – τik)

)
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≤
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |bij||bik|

∣∣Gj
(
zj(t – τij)

)∣∣∣∣Gk
(
zk(t – τik)

)∣∣

≤ 1
2

n∑

i=1

n∑

j=1

n∑

k=1

m2
i |bij||bik|G2

j
(
zj(t – τij)

)
+

1
2

n∑

i=1

n∑

j=1

n∑

k=1

m2
i |bij||bik|G2

k
(
zk(t – τik)

)

=
1
2

n∑

i=1

n∑

j=1

n∑

k=1

m2
i |bji||bjk|G2

i
(
zi(t – τji)

)
+

1
2

n∑

i=1

n∑

j=1

n∑

k=1

m2
i |bkj||bki|G2

i
(
zi(t – τki)

)

=
1
2

n∑

i=1

n∑

j=1

n∑

k=1

m2
i |bji||bjk|G2

i
(
zi(t – τji)

)
+

1
2

n∑

i=1

n∑

j=1

n∑

k=1

m2
i |bjk||bji|G2

i
(
zi(t – τji)

)

=
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |bji||bjk|G2

i
(
zi(t – τji)

)

≤
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |bji||bjk|l2

i z2
i (t – τji) (based on the property (P8,new)).

Equivalently, it has demonstrated that

n∑

i=1

m2
i

( n∑

j=1

bijGj
(
zj(t – τij)

)
)( n∑

j=1

bijGj
(
zj(t – τij)

)
)

≤
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |bji||bjk|l2

i z2
i (t – τji).

(3.47)

This is the final step, where we estimate the triple series (3.39). Hence, one has

n∑

i=1

m2
i

( n∑

j=1

eijFj
(
żj(t – ζij)

)
)( n∑

j=1

eijFj
(
żj(t – ζij)

)
)

=
n∑

i=1

m2
i

( n∑

j=1

eijFj
(
żj(t – ζij)

)
)( n∑

k=1

eikFk
(
żk(t – ζik)

)
)

=
n∑

i=1

n∑

j=1

n∑

k=1

m2
i eijeikFj

(
żj(t – ζij)

)
Fk
(
żk(t – ζik)

)

≤
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |eij||eik|

∣∣Fj
(
żj(t – ζij)

)∣∣∣∣Fk
(
zk(t – ζik)

)∣∣

≤ 1
2

n∑

i=1

n∑

j=1

n∑

k=1

m2
i |eij||eik|F2

j
(
żj(t – ζij)

)
+

1
2

n∑

i=1

n∑

j=1

n∑

k=1

m2
i |eij||eik|F2

k
(
żk(t – ζik)

)

=
1
2

n∑

i=1

n∑

j=1

n∑

k=1

m2
i |eji||ejk|F2

i
(
żi(t – ζji)

)
+

1
2

n∑

i=1

n∑

j=1

n∑

k=1

m2
i |ekj||eki|F2

i
(
żi(t – ζki)

)

=
1
2

n∑

i=1

n∑

j=1

n∑

k=1

m2
i |eji||ejk|F2

i
(
żi(t – ζji)

)
+

1
2

n∑

i=1

n∑

j=1

n∑

k=1

m2
i |ejk||eji|F2

i
(
żi(t – ζji)

)
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=
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |eji||ejk|F2

i
(
żi(t – ζji)

)

≤
n∑

i=1

n∑

j=1

n∑

k=1

m4
i |eji||ejk|ż2

i (t – ζji) (based on the property (P9,new)).

In a compact form, we have proven that

n∑

i=1

m2
i

( n∑

j=1

eijFj
(
żj(t – ζij)

)
)( n∑

j=1

eijFj
(
żj(t – ζij)

)
)

≤
n∑

i=1

n∑

j=1

n∑

k=1

m4
i |eji||ejk|ż2

i (t – ζji).

(3.48)

Now, let us compare (3.31)–(3.39) with (3.40)–(3.48) and then gather the obtained data
into (3.27). In this case, we come to the conclusion that

V̇1
(
z(t), ż(t), t

)

:= (1 + α)
n∑

i=1

cim2
i zi(t)żi(t) +

1
n

n∑

i=1

n∑

j=1

F2
j
(
żj(t)

)
–

1
n

n∑

i=1

n∑

j=1

F2
j
(
żj(t – ζij)

)

≤ –α

n∑

i=1

m2
i c2

i z2
i (t)

+
1 – α

2

n∑

i=1

n∑

j=1

m2
i ci
(|aij| + l2

i |aji|
)
z2

i (t)

+
1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|bij|z2

i (t) +
1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|bji|l2

i z2
i (t – τji)

+
1 – α

2

n∑

i=1

n∑

j=1

m2
i ci|eij|z2

i (t) +
1 – α

2

n∑

i=1

n∑

j=1

m4
i ci|eji|ż2

i (t – ζji)

+
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |aji||bjk|l2

i z2
i (t) +

n∑

i=1

n∑

j=1

n∑

k=1

m2
i |ajk||bji|l2

i z2
i (t – τji)

+
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |aji||ejk|l2

i z2
i (t) +

n∑

i=1

n∑

j=1

n∑

k=1

m4
i |ajk||eji|ż2

i (t – ζji)

+
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |bji||ejk|l2

i z2
i (t – τji) +

n∑

i=1

n∑

j=1

n∑

k=1

m4
i |bjk||eji|ż2

i (t – ζji)

+
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |aki||akj|l2

i zi(t)

+
n∑

i=1

n∑

j=1

n∑

k=1

m2
i |bji||bjk|l2

i z2
i (t – τji)

+
n∑

i=1

n∑

j=1

n∑

k=1

m4
i |eji||ejk|ż2

i (t – ζji).

(3.49)
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Since

V̇
(
z(t), ż(t), t

)
:= V̇1

(
z(t), ż(t), t

)
+ V̇2

(
z(t), ż(t), t

)
, (3.50)

then, in the light of (3.27), (3.28), and some simplifications, we arrive at

V̇
(
z(t), ż(t), t

)

≤
n∑

i=1

m2
i

{
–α
(
c2

i + δl2
i
)

+
1 – α

2

n∑

j=1

{|aij| + |bij| + |eij| + l2
i |aji|

}

+ l2
i

n∑

j=1

n∑

k=1

{|aji||bjk| + |aji||cjk| + |aki||akj|
}
}

z2
i (t)

+
n∑

i=1

l2
i

{
ci

1 – α

2

n∑

j=1

|bji| –
n∑

j=1

n∑

k=1

{|ajk||bji| + |bjk||bji| + |ejk||cji|
}
}

× z2
i (t – τji)

+
n∑

i=1

m4
i

{
ci

1 – α

2

n∑

j=1

|eji| –
n∑

j=1

n∑

k=1

{|ajk||eji| + |bjk||eji| + |ejk||eji|
}
}

× ż2
i (t – ζji)

= –
n∑

i=1

m2
i ε1,iz2

i (t) –
n∑

i=1

l2
i ε2,iz2

i (t – τji) –
n∑

i=1

m4
i ε3,iż2

i (t – ζji).

(3.51)

Since, for each i = 1, 2, . . . , n, the constants m2
i , l2

i , ε1,i, ε2,i, and ε3,i all are positive, this
is a direct consequence of the inequality (3.51), that is, V̇ (z(t), ż(t), t) < 0, except that for
each i, j = 1, 2, . . . , n, zi(t) := 0, zi(t – τij) := 0, and żi(t – ζij) := 0, that is, the origin z(t) =
[z1(t), z2(t), . . . , zn(t)]T = [0, 0, . . . , 0]T is asymptotically stable. Besides, if ‖z(t)‖Y → ∞,
then, according to (3.24) and (3.25), V̇ (z(t), ż(t), t) → ∞, that is, the Lyapunov functional
(3.24)–(3.26) is radially unbounded. So, the origin z(t) := 0 is globally asymptotically sta-
ble. This completes the stability analysis of the NNTDNN (3.17). �

4 Numerical simulations
This section is devoted to the numerical applications illustrating the implementability of
the stability criterion presented in Theorem 3.2.

Example 4.1 Let us consider the NNTDNN

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ(t) := –x(t) + 2 sin(x(t)) – 1
2 sin(x(t – 0.1)) – 1

2 sin(x(t – 5))

– 1
2 ẋ(t – 0.1) – 1

2 ẋ(t – 0.4),

ẏ(t) := –y(t) + 2 sin(y(t)) – 1
2 sin(x(t – 3)) – 1

2 sin(x(t – 1))

– 1
2 ẏ(t – 1) – 1

2 ẏ(t – 0.4).

(4.1)
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Indeed, the neural dynamical system (4.1) is a reduced version of the NNTDNN (3.17) for
n = 2, having the following coefficient matrices:

C :=

[
c
c

]
, A :=

[
a a
a a

]
, B :=

[
b b
b b

]
,

E :=

[
e e
e e

]
, c = a := 1, b = e := –

1
2

.

(4.2)

Furthermore, the time delays and activation functions have been chosen as follows:

⎧
⎨

⎩
τ11 := 0.1, τ12 := 5, τ21 := 3, τ22 := 1,

ζ11 := 0.1, ζ12 := 0.4, ζ21 := 1, ζ22 := 0.4,
and

⎧
⎨

⎩
Gi(w) := sin(w), i = 1, 2,

Fi(w) := w, i = 1, 2.

(4.3)

In this case, li = mi := 1, i = 1, 2, and δ := 5. Having the above mentioned data in hand, it is
easy to check that, for α = 0.25 and each i = 1, 2,

ε1,i > 0, ε2,i > 0, ε3,i > 0. (4.4)

Since all conditions of Theorem 3.2 are satisfied, we come to the conclusion that the origin
of the NNTDNN (4.1) is globally asymptotically stable, as can be observed in the following
numerical simulation (see Fig. 1).

Figure 1 Global asymptotical stability of the origin in the NNTDNN (4.1)
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Example 4.2 In this simulation we choose n = 4 in the NNTDNN (3.17) and consider the
following neural network:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) := –x(t) – sin(x(t – 0.1)) – sin(x(t – 0.2)) – sin(x(t – 0.3)) – sin(x(t – 5))

– 1
16 ẋ(t – 0.1) – 1

16 ẋ(t – 0.02) – 1
16 ẋ(t – 0.03) – 1

16 ẋ(t – 0.4),

ẏ(t) := –y(t) – sin(2x(t – 0.1)) – sin(2y(t – 0.2)) – sin(2y(t – 0.3))

– sin(2y(t – 4)) – 1
16 ẏ(t – 0.1) – 1

16 ẏ(t – 0.02) – 1
16 ẏ(t – 0.03)

– 1
16 ẏ(t – 0.4),

ż(t) := –z(t) – sin(4z(t – 0.3)) – sin(4z(t – 0.04)) – sin(4z(t – 0.05))

– sin(4z(t – 1)) – 1
16 ż(t – 0.1) – 1

16 ż(t – 0.02) – 1
16 ż(t – 0.03)

– 1
16 ż(t – 0.4),

ẇ(t) := –w(t) – sin(w(t – 0.4)) – sin(w(t – 0.6)) – sin(w(t – 0.8))

– sin(w(t – 2)) – 1
16 ẇ(t – 0.1) – 1

16 ẇ(t – 0.02) – 1
16 ẇ(t – 0.03)

– 1
16 ẇ(t – 0.4).

(4.5)

In this case, we can summarize the coefficients of the neural network (4.5) as follows:

C :=

⎡

⎢⎢⎢⎣

c
c
c
c

⎤

⎥⎥⎥⎦ , A :=

⎡

⎢⎢⎢⎣

a a a a
a a a a
a a a a
a a a a

⎤

⎥⎥⎥⎦ , B := –

⎡

⎢⎢⎢⎣

b b b b
b b b b
b b b b
b b b b

⎤

⎥⎥⎥⎦ ,

E := –
1

16

⎡

⎢⎢⎢⎣

e e e e
e e e e
e e e e
e e e e

⎤

⎥⎥⎥⎦ , c = b = e := 1, a := 0.

(4.6)

Besides, the time delays of the NNTDNN (4.6) are as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ11 := 0.1, τ12 := 0.2, τ13 := 0.3, τ14 := 5,

τ21 := 0.1, τ22 := 0.2, τ23 := 0.3, τ24 := 4,

τ31 := 0.3, τ32 := 0.04, τ33 := 0.05, τ34 := 1,

τ41 := 0.4, τ42 := 0.6, τ43 := 0.8, τ44 := 2,

ζ11 := 0.1, ζ12 := 0.02, ζ13 := 0.03, ζ14 := 0.4,

ζ21 := 0.1, ζ22 := 0.02, ζ23 := 0.03, ζ24 := 0.4,

ζ31 := 0.1, ζ32 := 0.02, ζ33 := 0.03, ζ34 := 0.4,

ζ41 := 0.1, ζ42 := 0.02, ζ43 := 0.3, ζ44 := 0.04.

(4.7)

So, we get that δ := 5. Finally, according to the neural dynamical system (4.5), we have
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G1(z) = G4(z) := sin(z) ⇒ l1 = l4 := 1,

G2(z) := sin(2z) ⇒ l2 := 2,

G3(z) := sin(4z) ⇒ l3 := 3,

Fi(v) := v ⇒ mi := 1, i = 1, 2, 3, 4.

(4.8)
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Figure 2 Global asymptotical stability of the origin in the NNTDNN (4.5)

Keeping the aforementioned setting and choosing α = 0.5, with a direct computation, it is
concluded that

ε1,i, ε2,i, ε3,i, ε4,i > 0, i = 1, 2, 3, 4, (4.9)

that is, the origin of the NNTDNN (4.5) is globally asymptotically stable, as is shown in
Fig. 2.

5 Concluding remarks
We finalize this paper with a compact description of the managed investigation. In this
paper, the nonlinear neutral-type time-delayed neural network (2.1) has been studied.
The main aim of our investigation was to introduce a novel Lyapunov functional to stabi-
lize this neural dynamical system. Since the NNTDNN (2.1) cannot be represented in the
vector matrix form, such as the matrix neural network (2.7), it cannot be stabilized with
some standard stability tools such as the linear matrix inequalities technique. Therefore,
the quadratic-integral Lyapunov functional (3.24)–(3.26) has been introduced as the ba-
sic stability key for the global asymptotical stabilization of the NNTDNN (2.1). In what
follows, we summarize the steps of our investigation:

(S1) In this paper, we consider a mathematical model of the n interconnecting neurons
(2.1).

(S2) This neural network model is nonlinear, that makes it more suitable for studying the
real world phenomena.

(S3) This neuro-system is of neutral type, meaning that not only the neuron states but
also the states of their derivatives appear in the nonlinearities which makes it a more
accurate mathematical statement of the studied model.

(S4) This model includes multiple time delays, which have important roles in the
(dis)appearance of the stability and oscillation within the model (as illustrated in
the numerical simulations).
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(S5) In this paper, we apply the coincidence degree theory to solve the neural dynamical
system (2.1), which is a rare mathematical solvability tool for the neural networks.

(S6) After guaranteeing the existence of at least one solution for the NNTDNN (2.1), in
order to reach a unique solution, we have transformed the neuro-system (2.1) to the
NNTDNN (3.17) that has the origin as its unique solution.

(S7) In this paper, we have defined the new quadratic-integral Lyapunov functional (3.24)-
(3.26) including all of the time delays to globally asymptotically stabilization of the
transformed neuro-system (3.17).

(S8) At the end of the stability analysis, some numerical simulations have been presented,
which justify the implementability of the presented stability criterion.
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