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Abstract
In this paper, we develop an iterative algorithm whose architecture comprises a
modified version of the forward–backward splitting algorithm and the hybrid
shrinking projection algorithm. We provide theoretical results concerning weak and
strong convergence of the proposed algorithm towards a common solution of the
fixed point problem associated to a finite family of demicontractive operators, the
split equilibrium problem and the monotone inclusion problem in Hilbert spaces.
Moreover, we compute a numerical experiment to show the efficiency of the
proposed algorithm. As a consequence, our results improve various existing results in
the current literature.
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1 Introduction
The theory of mathematical optimization provides a quantitative optimal solution asso-
ciated with various real-world problems emerging in the fields of engineering, medicine,
economics, management, and industry and other branches of the sciences. One of the
main advantages of mathematical optimization is to provide effective iterative algorithms
and the corresponding analysis of these iterative algorithms. Moreover, the viability of
such iterative algorithms is evaluated in terms of computational performance and com-
plexity. As a consequence, the theory of mathematical optimization has not only emerged
as an independent subject to solve real-world problems but also serve as an interdisci-
plinary bridge between various branches of sciences.

Monotone operator theory is a fascinating field of research in nonlinear functional anal-
ysis and found valuable applications in the field of convex optimization, subgradients, par-
tial differential equations, variational inequalities, signal and image processing, evolution
equations and inclusions; see, for instance, [4, 12, 14, 30] and the references cited therein.
It is noted that the convex optimization problem can be translated into finding a zero of a
maximal monotone operator defined on a Hilbert space. On the other hand, the problem of
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finding a zero of the sum of two (maximal-) monotone operators is of fundamental impor-
tance in convex optimization and variational analysis [23, 27, 33]. The forward–backward
algorithm is prominent among various splitting algorithms to find a zero of the sum of two
maximal monotone operators [23]. The class of splitting algorithms has parallel comput-
ing architectures and thus reducing the complexity of the problems under consideration.
On the other hand, the forward–backward algorithm efficiently tackle the situation for
smooth and/or nonsmooth functions. It is worth mentioning that the forward–backward
algorithm has been modified by employing the heavy ball method [28] for convex opti-
mization problems.

Fixed point theory has been studied extensively in the current literature owing to its rich
abstract structures. These structures and subsequent tools elegantly manipulate various
mathematical problems from the areas such as control theory, game theory, mathematical
economics, image recovery signal processing and image processing. In 2015, the problem
of finding a common solution of the zero point problem and fixed point problem was
studied by Takahashi et al. [32]. It is well known that the class of demicontractive operators
[15] includes various classes of nonlinear operators and comparatively exhibits powerful
applications. Therefore, it is natural to study the fixed point problems associated with the
class of demicontractive operators.

The theory of equilibrium problems is a systematic approach to the study of a diverse
range of problems arising in the field of physics, optimization, variational inequalities,
transportation, economics, network and noncooperative games; see, for example, [5, 11–
13] and the references cited therein. The classical equilibrium problem theory has been
generalized in several interesting ways to solve real-world problems. In 2012, Censor et
al. [9] proposed a theory regarding split variational inequality problem (SVIP) which aims
to solve a pair of variational inequality problems in such a way that the solution of a vari-
ational inequality problem, under a given bounded linear operator, solves another varia-
tional inequality.

In 2011, Moudafi [26] suggested the concept of split monotone variational inclusions
(SMVIP) which includes, as a special case, split variational inequality problem, split com-
mon fixed point problem, split zeros problem, split equilibrium problem (SEP) and split
feasibility problem. These problems have already been studied and successfully employed
as a model in intensity-modulated radiation therapy treatment planning; see [6, 8]. This
formalism is also at the core of modeling of many inverse problems arising for phase re-
trieval and other real-world problems; for instance, in sensor networks in computerized
tomography and data compression; see, for example, [10, 12]. Some methods have been
proposed and analyzed to solve SEP and generalized SEP in Hilbert spaces; see, for exam-
ple, [2, 3, 16–22] and the references cited therein.

Inspired and motivated by the above-mentioned results and the ongoing research in this
direction, we aim to employ the modified inertial forward–backward algorithm to find a
common solution of fixed point problem associated to a finite family of demicontractive
operators, SEP and monotone inclusion problem in Hilbert spaces. The rest of the paper is
organized as follows: Section 2 contains preliminary concepts and results regarding fixed
point theory, equilibrium problem theory and monotone operator theory. Section 3 com-
prises weak and strong convergence results of the proposed algorithm. Section 4 deals with
the efficiency of the proposed algorithm by a numerical experiment together with theo-
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retical applications to the split feasibility problem, the split variational inequality problem
and the split minimization problem.

2 Preliminaries
In this section, we recall concepts and results regarding fixed point theory, equilibrium
problem theory and monotone operator theory. Throughout this paper, let H1 be a real
Hilbert space with the inner product and the associated norm 〈·, ·〉 and ‖ · ‖, respectively.
The symbols ⇀ and → denotes weak and strong convergence.

An operator PC is said to be metric projection of H1 onto nonempty, closed and convex
subset C, if for every x ∈H1, there exists a unique nearest point in C denoted by PCx such
that

‖x – PCx‖ ≤ ‖x – z‖, for all z ∈ C.

It is noted that PC is a firmly nonexpansive operator and PCx is characterized by the fol-
lowing property:

〈x – PCx, PCx – y〉 ≥ 0, for all x ∈H1 and y ∈ C.

Next, we recall the definitions of nonexpansive and related operators.

Definition 1 ([4]) Let C be a nonempty subset of H1, for an operator T : C → H1, we
denote by Fix(T) the set of fixed points of the operator T , that is, Fix(T) = {x ∈H1|x = Tx}.
The operator T is considered as:

1. nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C;

2. firmly nonexpansive if

‖Tx – Ty‖2 ≤ ‖x – y‖2 –
∥
∥(Id – T)x – (Id – T)y

∥
∥

2, ∀x, y ∈ C;

3. quasi-nonexpansive if Fix(T) 
= ∅ such that

‖Tx – y‖ ≤ ‖x – y‖, ∀x ∈ C, y ∈ Fix(T);

4. k-demicontractive if Fix(T) 
= ∅ and there exists k ∈ [0, 1) such that

‖Tx – y‖2 ≤ ‖x – y‖2 + k‖x – Ty‖2, ∀x ∈ C, y ∈ Fix(T).

It follows immediately that a firmly nonexpansive operator is a nonexpansive operator.
We now define the concept of SEP. Let � : H1 → H2 be a bounded linear operator. Let

F1 : C × C →R and F2 : Q × Q →R be two bifunctions, then SEP is to find:

x∗ ∈ C such that F1
(

x∗, x
) ≥ 0 for all x ∈ C (1)
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and

y∗ = �x∗ ∈ Q such that F2
(

y∗, y
) ≥ 0 for all y ∈ Q. (2)

The solution set of the SEP (1) and (2) is denoted by

� :=
{

x∗ ∈ C : x∗ ∈ EP(F1) and �x∗ ∈ EP(F2)
}

. (3)

Now, we recall some important concepts related to monotone operator theory [4].
Let A : H1 → 2H1 be a set-valued operator. We denote its domain, range, graph and

zeros by DomA = {x ∈ H1|Ax 
= 0}, RanA = {u ∈ H1|(∃x ∈ H1)u ∈ Ax}, GraA = {(x, u) ∈
H1 × H1|u ∈ Ax} and ZerA = {x ∈ H1|0 ∈ Ax}, respectively. Let the set-valued operator
A is said to be monotone, if

〈x – y, u – v〉 ≥ 0, ∀(x, u), (y, v) ∈ GraA.

Moreover, A is said to be maximal monotone if its graph is not strictly contained in the
graph of any other monotone operator on H1. A well-known example of a maximal mono-
tone operator is the subgradient operator of a proper, lower semicontinuous convex func-
tion f : H1 → (–∞, +∞] defined by

∂f : H1 → 2H1 : x �→ {

u ∈H1|f (y) ≥ f (x) + 〈u, y – x〉,∀y ∈H1
}

.

For a maximal monotone operator, the associated resolvent operator with index m > 0 is
defined as

Jm = (Id + mA)–1,

where Id denotes the identity operator.
It is well known that the resolvent operator Jm is well-defined everywhere on Hilbert

space H1. Furthermore, Jm is single-valued and satisfies the firmly nonexpansiveness. Fur-
thermore, x ∈A–1(0) if and only if x = Jm(x).

Let f : H1 → R∪ {+∞} be a proper, convex and lower semicontinuous function and let
g : H1 →R be a convex, differentiable and Lipschitz continuous function, then the convex
minimization problem for f and g is defined as

min
x∈H1

{

f (x) + g(x)
}

. (4)

Definition 2 ([4]) Let B : H1 → H1 be a nonlinear operator. For γ > 0, the operator B is
said to be γ -inverse strongly monotone (γ -ism) if

〈x – y,Bx – By〉 ≥ γ ‖Bx – By‖2, ∀x, y ∈H1.

The γ -ism is also coined as γ -cocoercive operator. Moreover, γ -ism is 1
γ

-Lipschitz con-
tinuous. In connection with the problem (4), the monotone inclusion problem with re-
spect to a maximally monotone operator A and an arbitrary operator B is to find:

x∗ ∈ C such that 0 ∈Ax∗ + Bx∗. (5)
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In the sequel, we list some important results in the form of lemmas for the convergence
analysis.

Lemma 2.1 ([4]) Let C be a nonempty, closed and convex subset of a real Hilbert space H1.
Let T : C → C be an operator. Then the operator T is said to be demiclosed at zero, if for
any sequence (xk) in C that converges weakly to x and (Id – T)xk converges strongly to zero,
then x ∈ Fix(T).

Lemma 2.2 Let x, y ∈H1 and β ∈ R, then the following relations hold:
• ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
• ‖βx + (1 – β)y‖2 = β‖x‖2 + (1 – β)‖x‖2 – β(1 – β)‖x – y‖2.

Lemma 2.3 ([31]) Let E be a Banach space satisfying Opial’s condition and let {xn} be a
sequence in E. Let l, m ∈ E be such that limn→∞ ‖xn – l‖ and limn→∞ ‖xn – m‖ exist. If {xnk }
and {xmk } are subsequences of {xn} which converge weakly to l and m, respectively, then
l = m.

Lemma 2.4 ([24]) Let E be a Banach space. Let A : E → 2E be an m-accretive operator
and let B : E → E be an α-inverse strongly accretive operator. Then we have

a) For r > 0, Fix(TA,B
r ) = (A + B)–1(0),

b) for 0 < s ≤ r and x ∈ E, ‖x – TA,B
s x‖ ≤ 2‖x – TA,B

r ‖.

Lemma 2.5 ([24]) Let E be a uniformly convex and q-uniformly smooth Banach space for
some q ∈ (0, 2]. LetA : E → 2E be an m-accretive operator and letB : E → E be an α-inverse
strongly accretive operator. Then, given r > 0, there exists a continuous, strictly increasing
and convex function ϕq : R+ →R

+ with ϕq(0) = 0 such that for all x, y ∈ Br

∥
∥TA,B

r x – TA,B
r y

∥
∥

q ≤ ‖x – y‖q – r
(

αq – rq–1kq
)‖Ax – Ay‖q

– ϕq
(∥
∥
(

Id – JBr
)

(Id – rA)x –
(

Id – JBr
)

(Id – rA)y
∥
∥
)

,

where kq is the q-uniform smoothness coefficient of E.

Lemma 2.6 ([1]) Let {ξn}, {ηn} and {αn} be sequences in [0, +∞) satisfying

ξn+1 ≤ ξn + αn(ξn – ξn–1) + ηn, for all n ≥ 1,

provided that
∑∞

n=1 ηn < +∞ and 0 ≤ αn ≤ α < 1 for all n ≥ 1. Then the following two
relations hold:

⎧

⎨

⎩

a)
∑

n≥1[ξn – ξn–1]+ < +∞, where [t]+ = max{t, 0};
b) there exists ξ ∗ ∈ [0, +∞) such that limn→+∞ ξn = ξ ∗.

Lemma 2.7 ([25]) Let C be a nonempty, closed and convex subset of a real Hilbert space
H1. For every x, y ∈H1 and a ∈R, the set

D =
{

v ∈ C : ‖y – v‖2 ≤ ‖x – v‖2 + 〈z, v〉 + a
}

is closed and convex.
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Assumption 2.8 Let C be a nonempty, closed and convex subset of a Hilbert space H1.
Let F1 : C × C →R be a bifunction satisfying the following conditions:

(A1): F1(x, x) = 0 for all x ∈ C;
(A2): F1 is monotone, i.e., F1(x, y) + F1(y, x) ≤ 0 for all x, y ∈ C;
(A3): for each x, y, z ∈ C, lim supt→0 F1(tz + (1 – t)x, y) ≤ F1(x, y);
(A4): for each x ∈ C, y �→ F1(x, y) is convex and lower semicontinuous.

Lemma 2.9 ([11]) Let C be a nonempty, closed and convex subset of a real Hilbert space
H1 and let F1 : C × C → R be a bifunction satisfying Assumption 2.8. For r > 0 and x ∈H1,
there exists z ∈ C such that

F1(z, y) +
1
r
〈y – z, z – x〉 ≥ 0, for all y ∈ C.

Moreover, define an operator TF
r : H1 → C by

TF1
r (x) =

{

z ∈ C : F1(z, y) +
1
r
〈y – z, z – x〉 ≥ 0, for all y ∈ C

}

,

for all x ∈H1. Then we have the following observations:
(1): for each x ∈H1, TF1

r (x) 
= ∅;
(2): TF1

r is single-valued;
(3): TF1

r is firmly nonexpansive;
(4): Fix(TF1

r ) = EP(F1);
(5): EP(F1) is closed and convex.

It is noted that if F2 : Q × Q → R is a bifunction satisfying Assumption 2.8, where Q
is a nonempty, closed and convex subset of a Hilbert space H2. Then, for each s > 0 and
w ∈H2, we define the operator

TF2
s (w) =

{

d ∈ C : F2(d, e) +
1
s
〈e – d, d – w〉 ≥ 0, for all e ∈ Q

}

.

Similarly, we have the following relations:
(1): for each w ∈H2, TF2

s (w) 
= ∅;
(2): TF2

s is single-valued;
(3): TF2

s is firmly nonexpansive;
(4): Fix(TF2

s ) = EP(F2);
(5): EP(F2) is closed and convex.

3 Algorithm and convergence analysis
In this section, we present an approach to the convergence analysis of inertial forward–
backward splitting method for solving the fixed point problem associated to a finite family
of demicontractive operators, SEP and monotone inclusion problem in Hilbert spaces.
First, we set the following hypotheses required in the sequel: LetH1,H2 be two real Hilbert
spaces and let C ⊆H1, Q ⊆H2 be nonempty, closed and convex subsets of Hilbert spaces
H1 and H2, respectively. We consider the following hypotheses:

(H1) Let F1 : C × C →R and F2 : Q × Q →R be two bifunctions satisfying
Assumption 2.8 such that F2 is upper semicontinuous;
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Algorithm 1 An inertially constructed forward–backward splitting algorithm
Initialization: Choose x0, x1 ∈ C, set k ≥ 1 and non-increasing sequences (βk), (λk) ⊂
(0, 1), (�k) ⊂ [0, 1), 0 < mk < 2γ and δ ∈ (0, 1

L ) such that L is the spectral radius of �∗
�.

Iterative Steps: Given xk ∈H1, calculate bk , �k , wk and xk+1 as follows:
Step 1. Compute

⎧

⎪⎪⎨

⎪⎪⎩

bk = xk + �k(xk – xk–1);

�k = TF1
uk (Id – δ�∗(Id – TF2

uk )�)bk ;

wk = (1 – βk)�k + βkSi�k .

If wk = �k = bk = xk then stop and xk is the solution of problem �. Otherwise,
Step 2. Compute

xk+1 = λkwk + (1 – λk)Jkwk ,

where Jk = (Id + mkA)–1(Id – mkB).
Set k =: k + 1 and go back to Step 1.

(H2) let � : H1 →H2 be a bounded linear operator;
(H3) let A : H1 → 2H1 be a maximal monotone operator and let B : H1 →H1 be a

γ -ism operator;
(H4) for i ∈ {1, 2, . . . , N}, let Si : H1 →H1 be a finite family of k-demicontractive

operators;
(H5) suppose that � := zer(A + B) ∩ � ∩ ⋂i=1

N Fix(Si).

Theorem 3.1 If � 
= ∅ with hypotheses (H1)–(H5), then the sequence (xk) generated by
Algorithm 1 converges weakly to an element x̄ ∈ �, provided the following conditions hold:

(C1)
∑∞

k=1 �k‖xk – xk–1‖ < ∞;
(C2) 0 < a∗ ≤ βk , λk ≤ b∗ < 1 and βk ∈ (0, 1 – k);
(C3) 0 < lim infk→∞ λk ≤ lim supk→∞ λk < 1;
(C4) lim infk→∞ uk > 0;
(C5) 0 < lim infk→∞ mk ≤ lim supk→∞ mk < 2γ .

Proof First we show that �∗(Id – TF2
uk )� is an 1

L -ism operator. For this, we utilize the firmly
nonexpansiveness of TF2

uk , which implies that (Id – TF2
uk ) is an 1-ism operator. Now, observe

that

∥
∥�

∗(Id – TF2
uk

)

�x – �
∗(Id – TF2

uk

)

�y
∥
∥

2 =
〈

�
∗(Id – TF2

uk

)

(�x – �y),�∗(Id – TF2
uk

)

(�x – �y)
〉

=
〈(

Id – TF2
uk

)

(�x – �y),�∗
�
(

Id – TF2
uk

)

(�x – �y)
〉

≤ L
〈(

Id – TF2
uk

)

(�x – �y),
(

Id – TF2
uk

)

(�x – �y)
〉

= L
∥
∥
(

Id – TF2
uk

)

(�x – �y)
∥
∥

2

≤ L
〈

x – y,�∗(Id – TF2
uk

)

(�x – �y)
〉

,
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for all x, y ∈ H1. So, we observe that �∗(Id – TF2
uk )� is an 1

L -ism. Moreover, Id – δ�∗(Id –
TF2

uk )h is nonexpansive provided δ ∈ (0, 1
L ). Now, we divided the rest of the proof into the

following three steps:
Step 1. Show that limk→∞ ‖xk – x̂‖ exists for every x̂ ∈ �.
For any x̂ ∈ �, we get

‖bk – x̂‖2 =
∥
∥xk + �k(xk – xk–1) – x̂

∥
∥

2

≤ ‖xk – x̂‖2 + �2
k‖xk – xk–1‖2

+ 2�k〈xk – x̂, xk – xk–1〉. (6)

Since TF1
uk x̂ = x̂ and using (6), we have

‖�k – x̂‖2 =
∥
∥TF1

uk

(

Id – δ�∗(Id – TF2
uk

)

�
)

bk – x̂
∥
∥

2

≤ ∥
∥bk – δ�∗(Id – TF2

uk

)

�bk – x̂
∥
∥

2

≤ ‖bk – x̂‖2 + δ2∥∥�∗(Id – TF2
uk

)

�bk
∥
∥

2

+ 2δ
〈

x̂ – bk ,�∗(Id – TF2
uk

)

�bk
〉

. (7)

Thus, we have

‖�k – x̂‖2 ≤ ‖bk – x̂‖2 + δ2〈
�bk – TF2

uk
�bk ,�∗

�
(

Id – TF2
uk

)

�bk
〉

+ 2δ
〈

x̂ – bk ,�∗(Id – TF2
uk

)

�bk
〉

. (8)

Moreover, we have

δ2〈
�bk – TF2

uk
�bk ,�∗

�
(

Id – TF2
uk

)

�bk
〉 ≤ Lδ2〈

�bk – TF2
uk
�bk ,�bk – TF2

uk
�bk

〉

= Lδ2∥∥�bk – TF2
uk
�bk

∥
∥

2. (9)

Note that

2δ
〈

x̂ – bk ,�∗(Id – TF2
uk

)

�bk
〉

= 2δ
〈

�(x̂ – bk),�bk – TF2
uk
�bk

〉

= 2δ
[〈

�x̂ – TF2
uk
�bk ,�bk – TF2

uk
�bk

〉

–
∥
∥�bk – TF2

uk
�bk

∥
∥

2]

≤ 2δ

[
1
2
∥
∥�bk – TF2

uk
�bk

∥
∥

2 –
∥
∥�bk – TF2

uk
�bk

∥
∥

2
]

= –δ
∥
∥�bk – TF2

uk
�bk

∥
∥

2. (10)

Utilizing (8)–(10), we have

‖�k – x̂‖2 ≤ ‖bk – x̂‖2 + Lδ2∥∥�bk – TF2
uk
�bk

∥
∥

2 – δ
∥
∥�bk – TF2

uk
�bk

∥
∥

2

≤ ‖bk – x̂‖2 + δ(Lδ – 1)
∥
∥�bk – TF2

uk
�bk

∥
∥

2. (11)
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Since δ ∈ (0, 1
L ), the estimate (11) implies that

‖�k – x̂‖2 ≤ ‖xk – x̂‖2 + �2
k‖xk – xk–1‖2 + 2�k〈xk – x̂, xk – xk–1〉. (12)

Furthermore, by using (6), (12) and (C2), we have

‖wk – x̂‖2 =
∥
∥(1 – βk)�k + βkSi�k – x̂

∥
∥

2

≤ (1 – βk)‖�k – x̂‖2 + βk‖Si�k – x̂‖2 – βk(1 – βk)
∥
∥(Id – Si)�k

∥
∥

2

≤ (1 – βk)‖�k – x̂‖2 + βk‖�k – x̂‖2 + βkk‖Si�k – �k‖2

– βk(1 – βk)
∥
∥(Id – Si)�k

∥
∥

2

≤ ‖�k – x̂‖2 – βk(1 – k – βk)
∥
∥(Id – Si)�k

∥
∥

2

≤ ‖xk – x̂‖2 + �2
k‖xk – xk–1‖2 + 2�k〈xk – x̂, xk – xk–1〉. (13)

Moreover, it follows from (6), (12), (13) and Lemma 2.5 that

‖xk+1 – x̂‖2 =
∥
∥λkwk + (1 – λk)Jkwk – x̂

∥
∥

2

≤ λk‖wk – x̂‖2 + (1 – λk)‖Jkwk – x̂‖2

= ‖wk – x̂‖2

≤ ‖xk – x̂‖2 + �2
k‖xk – xk–1‖2 + 2�k〈xk – x̂, xk – xk–1〉. (14)

From Lemma 2.6 and (C1), we conclude from the estimate (14) that limk→∞ ‖xk – x̂‖ exists.
Step 2. Show that xk ⇀ x̄ ∈ (A + B)–1(0).
Since x̂ = Jkx̂, therefore it follows from Lemma 2.2 and Lemma 2.5 that

‖xk+1 – x̂‖2 =
∥
∥λkwk + (1 – λk)Jkwk – x̂

∥
∥

2

≤ λk‖wk – x̂‖2 + (1 – λk)‖Jkwk – x̂‖2

≤ ‖wk – x̂‖2 – (1 – λk)mk(2γ – mk)‖Awk – Ax̂‖2

– (1 – λk)‖wk – mkAwk – Jkwk + mkAx̂‖
≤ ‖�k – x̂‖2 – βk(1 – k – βk)

∥
∥(Id – Si)�k

∥
∥

2

– (1 – λk)mk(2γ – mk)‖Awk – Ax̂‖2

– (1 – λk)‖wk – mkAwk – Jkwk + mkAx̂‖
≤ ‖bk – x̂‖2 – βk(1 – k – βk)

∥
∥(Id – Si)�k

∥
∥

2

– (1 – λk)mk(2γ – mk)‖Awk – Ax̂‖2

– (1 – λk)‖wk – mkAwk – Jkwk + mkAx̂‖
≤ ‖xk – x̂‖2 + 2θk〈xk – xk–1, bk – x̂〉 – βk(1 – k – βk)

∥
∥(Id – Si)�k

∥
∥

2

– (1 – λk)mk(2γ – mk)‖Awk – Ax̂‖2

– (1 – λk)‖wk – mkAwk – Jkwk + mkAx̂‖. (15)
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As limk→∞ ‖xk – x̂‖ exists, therefore utilizing, (C1), (C4), (C5) and (15), we get

lim
k→∞

(1 – λk)mk(2γ – mk)‖Awk – Ax̂‖ = 0. (16)

Also from (15), we get

lim
k→∞

‖wk – mkAwk – Jkwk + mkAx̂‖ = 0. (17)

Using (16), (17) and the triangle inequality

‖wk – mkAwk – Jkwk + mkAx̂‖ ≤ ‖wk – Jkwk‖ + mk‖Awk – Ax̂‖,

we get

lim
n→∞‖Jkwk – wk‖ = 0. (18)

Since lim infk→∞ mk > 0 there exists m > 0 such that mk ≥ m for all k ≥ 0. It follows from
Lemma 2.4(b) that

∥
∥TA,B

m wk – wk
∥
∥ ≤ 2‖Jkwk – wk‖.

Now utilizing (18), the above estimate implies that

lim
k→∞

∥
∥TA,B

m wk – wk
∥
∥ = 0. (19)

As a consequence, we have

lim
k→∞

‖xk+1 – wk‖ = lim
k→∞

(

1 – a∗)‖Jkwk – wk‖ = 0. (20)

Again, from (15), we have

‖xk+1 – x̂‖2 ≤ ‖xk – x̂‖2 + 2θk〈xk – xk–1, bk – x̂〉 – βk(1 – k – βk)
∥
∥(Id – Si)�k

∥
∥

2.

Rearranging the above estimate and using (C1), (C2), we get

lim
k→∞

∥
∥(Id – Si)�k

∥
∥ = 0. (21)

This implies that

lim
k→∞

‖wk – �k‖ = lim
k→∞

b∗∥∥(Id – Si)�k
∥
∥ = 0. (22)

Again, by Lemma 2.2, Lemma 2.6 and (11), we have

‖xk+1 – x̂‖2 ≤ ‖xk – x̂‖2 + 2�k〈xk – xk–1, bk – x̂〉 + δ(Lδ – 1)
∥
∥�bk – TF2

uk
�bk

∥
∥

2.
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Rearranging the above estimate, we have

–δ(Lδ – 1)
∥
∥�bk – TF2

uk
�bk

∥
∥

2 ≤ ‖xk – x̂‖2 – ‖xk+1 – x̂‖2 + �2
k‖xk – xk–1‖2

+ 2�k〈xk – x̂, xk – xk–1〉. (23)

Since δ(Lδ – 1) < 0, it follows from (C1) and (23) that

lim
k→∞

∥
∥�bk – TF2

uk
�bk

∥
∥ = 0. (24)

Note that TF1
uk is firmly nonexpansive and Id – δ�∗(Id – TF2

uk )� is nonexpansive, therefore
we have

‖�k – x̂‖2 =
∥
∥TF1

uk

(

bk – δ�∗(Id – TF2
uk

)

�bk
)

– TF1
uk

x̂
∥
∥

2

≤ 〈

TF1
uk

(

bk – δ�∗(Id – TF2
uk

)

�bk
)

– TF1
uk

x̂, bk – δ�∗(Id – TF2
uk

)

�bk – x̂
〉

=
〈

�k – x̂, bk – δ�∗(Id – TF2
uk

)

�bk – x̂
〉

=
1
2
{‖�k – x̂‖2 +

∥
∥bk – δ�∗(Id – TF2

uk

)

�bk – x̂
∥
∥

2

–
∥
∥�k – bk + δ�∗(Id – TF2

uk

)

�bk
∥
∥

2}

≤ 1
2
{‖�k – x̂‖2 + ‖bk – x̂‖2 –

∥
∥�k – bk + δ�∗(Id – TF2

uk

)

�bk
∥
∥

2}

=
1
2
{‖�k – x̂‖2 + ‖bk – x̂‖2 –

(‖�k – bk‖2 + δ2∥∥�∗(Id – TF2
bk

)

�bk
∥
∥

2

– 2δ
〈

�k – bk ,�∗(Id – TF2
uk

)

�bk
〉)}

.

So, we have

‖�k – x̂‖2 ≤ ‖bk – x̂‖2 – ‖�k – bk‖2 + 2δ
〈

�k – bk ,�∗(Id – TF∗
uk

)

�bk
〉

. (25)

Therefore, we have

‖�k – bk‖2 ≤ ‖bk – x̂‖2 – ‖�k – x̂‖2 + 2δ‖�k – bk‖
∥
∥�

∗(Id – TF2
uk

)

�bk
∥
∥. (26)

Utilizing (24) and (C2), we have

lim
k→∞

‖�k – bk‖ = 0. (27)

From the definition of (bk) and (27), we have

lim
k→∞

‖�k – xk‖ = 0. (28)

By the definition of (bk) and (C1), we have

lim
k→∞

‖bk – xk‖ = lim
k→∞

�k‖xk – xk–1‖ = 0. (29)
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Since (xk) is bounded and H1 is reflexive, νω(xk) = {x ∈ H1 : xkn ⇀ x, (xkn ) ⊂ (xk)} is
nonempty. Let x̄ ∈ νω(xk) be an arbitrary element. Then there exists a subsequence (xkn ) ⊂
(xk) converging weakly to x̄. Let x̂ ∈ νω(xk) and (xkm ) ⊂ (xk) be such that xkm ⇀ x̂. From
(24), we also have �kn ⇀ x̄ and �km ⇀ x̂. Since TA,B

m is nonexpansive, from (19) and
Lemma 2.1, we have x̂, x̄ ∈ (A + B)–1(0). By applying Lemma 2.3, we obtain x̂ = x̄.

Step 3. Show that x̄ ∈ �.
Let x̄ ∈ EP(F1). For any y ∈H1, we have

F1(�k , y) +
1
uk

〈

y – �k ,�k – xk – δ�∗(Id – TF2
uk
�bk

)〉 ≥ 0.

This implies that

F1(�k , y) +
1
uk

〈y – �k ,�k – xk〉 –
1
uk

〈

y – �k , δ�∗(Id – TF2
uk
�bk

)〉 ≥ 0.

From Assumption 2.8(A2), we have

1
uk

〈y – �k ,�k – xk〉 –
1
uk

〈

y – �k , δ�∗(Id – TF2
uk
�bk

)〉 ≥ –F1(�k , y) ≥ F1(y,�k).

So, we have

1
ukn

〈y – �kn ,�kn – xkn〉 –
1

ukn

〈

y – �kn , δ�∗(Id – TF2
uk
�bkn

)〉 ≥ F(y,�kn ). (30)

Utilizing (28) and (C2), we get �kn ⇀ x̄. Moreover, from (24) and Assumption 2.8(A4), we
get

F(y, x̄) ≤ 0, for all y ∈H1.

Let yt = ty + (1 – t)x̄ for some 1 ≥ t > 0 and y ∈ H1. Since x̄ ∈ H1, consequently, yt ∈ H1

and hence F1(yt , x̄) ≤ 0. Using Assumption 2.8((A1) and (A4)), it follows that

0 = F1(yt , yt)

≤ tF1(yt , y) + (1 – t)F1(yt , x̄)

≤ t
(

F1(yt , y)
)

.

This implies that

F1(yt , y) ≥ 0, for all y ∈ C.

Letting t → 0, we have

F1(x̄, y) ≥ 0, for all y ∈ C.

Thus, x̄ ∈ EP(F1). Similarly, we can show that x̄ ∈ EP(F2). Since � is a bounded linear op-
erator, we have �xkn ⇀ �x̄. It follows from (26) that

TF2
ukn

�bkn ⇀ �x̄ as n → ∞. (31)
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Now, from Lemma 2.7 we have

F2
(

TF2
ukn

�bkn , y
)

+
1

ukn

〈

y – TF2
ukn

�bkn , TF2
ukn

�bkn – �bkn

〉 ≥ 0,

for all y ∈ H1. Since F2 is upper semicontinuous in the first argument and from (31), we
have

F2(�x̄, y) ≥ 0,

for all y ∈H1. This implies that �x̄ ∈ EP(F2). Therefore, x̄ ∈ �.
Step 4. From (21) and by using the demiclosed principle for Si (it is evident that xkn ⇀ x̄

and limk→∞ ‖(Id – Si)xkn‖ = 0), we have x̄ ∈ ⋂i=1
N Fix(Si) and hence x̄ ∈ �. This completes

the proof. �

Now, we establish strong convergence results of Algorithm 2.

Theorem 3.2 If � 
= ∅ with hypotheses (H1)–(H5), then the sequence (xk) generated by
Algorithm 2 converges strongly to an element x̄ ∈ P�x1, provided the conditions (C1)–(C5)
hold.

Proof The proof is divided into the following steps:
Step 1. Show that the sequence {xk} defined in Algorithm 2 is well-defined.
We know that (A + B)–1(0), � and Fix(Si) are closed and convex by Lemma 2.4 and

Lemma 2.9. Moreover, from Lemma 2.7 we see that Ck+1 is closed and convex for each k ≥

Algorithm 2 An inertially constructed forward–backward splitting algorithm
Initialization: Choose x0, x1 ∈ C, set k ≥ 1 and non-increasing sequences (βk), (λk) ⊂
(0, 1), (�k) ⊂ [0, 1), 0 < mk < 2γ and δ ∈ (0, 1

L ) such that L is the spectral radius of �∗
�.

Step 1. Compute

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

bk = xk + �k(xk – xk–1);

�k = TF1
uk (Id – δ�∗(Id – TF2

uk )�)bk ;

wk = (1 – βk)�k + βkSi�k ;

yk = λkwk + (1 – λk)Jkwk ;

where Jk = (Id + mkA)–1(Id – mkB).
If yk = bk = �k = wk = xk then stop and xk is the solution of problem �. Otherwise,

Step 2. Compute

Ck+1 =
{

z ∈ Ck :

‖yk – z‖2 ≤ ‖xk – x̂‖2 + �2
k‖xk – xk–1‖2 + 2�k〈xk – x̂, xk – xk–1〉

}

,

xk+1 = PCk+1 x1, ∀k ≥ 1.

Set k =: k + 1 and go back to Step 1.
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1. Hence the projection PCk+1 x1 is well-defined. For any x̂ ∈ �, it follows from Algorithm 2
and the estimates (6), (12) and (13) that

‖yk – x̂‖2 = λk‖wk – x̂‖2 + (1 – λk)‖Jkwk – x̂‖2

≤ ‖wk – x̂‖2

≤ (1 – βk)‖�k – x̂‖2 + βk‖Si�k – x̂‖2

≤ ‖�k – x̂‖2 – βk(1 – k – βk)
∥
∥(Id – Si)�k

∥
∥

2

≤ ‖xk – x̂‖2 + �2
k‖xk – xk–1‖2 + 2�k〈xk – x̂, xk – xk–1〉. (32)

It follows from the estimate (32) that � ⊂ Ck+1. Summing up these facts, we conclude that
Ck+1 is nonempty, closed and convex for all k ≥ 1, and hence the sequence (xk) is well-
defined.

Step 2. Show that limk→∞ ‖xk – x1‖ exists.
Since � is nonempty closed and convex subset of H1, there exists a unique x∗ ∈ � such

that x∗ = P�x1. From xk+1 = PCk+1 x1, we have ‖xk+1 – x1‖ ≤ ‖x∗ – x1‖, for all x̄ ∈ � ⊂ Ck+1.
In particular ‖xk+1 – x1‖ ≤ ‖P�x1 – x1‖. This proves that the sequence (xk) is bounded. On
the other hand, from xk = PCk x1 and xk+1 = PCk+1 x1 ∈ Ck+1, we get

‖xk – x1‖ ≤ ‖xk+1 – x1‖.

This implies that (xk) is nondecreasing and hence

lim
k→∞

‖xk – x1‖ exists. (33)

Step 3. Show that x̄ ∈ (A + B)–1(0).
In order to proceed, we first calculate the following estimates which are required in the

sequel:

‖xk+1 – xk‖2 = ‖xk+1 – x1 + x1 – xk‖2

= ‖xk+1 – x1‖2 + ‖xk – x1‖2 – 2〈xk – x1, xk+1 – x1〉
= ‖xk+1 – x1‖2 + ‖xk – x1‖2 – 2〈xk – x1, xk+1 – xk + xk – x1〉
= ‖xk+1 – x1‖2 – ‖xk – x1‖2 – 2〈xk – x1, xk+1 – xk〉
≤ ‖xk+1 – x1‖2 – ‖xk – x1‖2.

Taking lim sup on both sides of the above estimate and utilizing (33), we have
lim supk→∞ ‖xk+1 – xk‖2 = 0. That is,

lim
k→∞

‖xk+1 – xk‖ = 0. (34)

Note that xk+1 ∈ Ck+1, therefore we have

‖yk – xk+1‖ ≤ ‖xk – xk+1‖ + 2�k‖xk – xk–1‖ – 2�k〈xk – xk+1, xk–1 – xk〉.
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Utilizing (34) and (C1), the above estimate implies that

lim
k→∞

‖yk – xk+1‖ = 0. (35)

From (34), (35) and the triangular inequality

‖yk – xk‖ ≤ ‖yk – xk+1‖ + ‖xk+1 – xk‖,

we get

lim
k→∞

‖yk – xk‖ = 0. (36)

Also, from Lemma 2.2 and (21), we have

‖yk – x̂‖2 = λk‖wk – x̂‖2 + (1 – λk)‖Jkwk – x̂‖2 – λk(1 – λk)‖Jkwk – wk‖2

≤ ‖wk – x̂‖2 – λk(1 – λk)‖Jkwk – wk‖2

≤ (1 – βk)‖�k – k̂‖2 + βk‖Si�k – x̂‖2 – λk(1 – λk)‖Jkwk – wk‖2

≤ ‖�k – x̂‖2 – βk(1 – k – βk)
∥
∥(Id – Si)�k

∥
∥

2

– λk(1 – λk)‖Jkwk – wk‖2

≤ ‖bk – x̂‖2 – λk(1 – λk)‖Jkwk – wk‖2

≤ ‖xk – x̂‖2 + 2�k〈xk – xk–1, bk – x̂〉 – λk(1 – λk)‖Jkwk – wk‖2.

Rearranging the above estimate, we have

a∗(1 – b∗)‖Jkwk – wk‖2 ≤ ‖xk – x̂‖2 – ‖yk – x̂‖2 + 2�k〈xk – xk–1, bk – x̂〉
≤ (‖xk – x̂‖ + ‖yk – x̂‖)‖xk – yk‖ + 2�k〈xk – xk–1, bk – x̂〉.

The above estimate, by using (C1) and (36), implies that

lim
k→∞

‖Jkwk – wk‖ = 0. (37)

Making use of (37), we have the following estimate:

lim
k→∞

‖yk – wk‖ = lim
k→∞

(

1 – a∗)‖Jkwk – wk‖ = 0. (38)

Reasoning as above, utilizing the estimate (37), the estimate (38) implies that

lim
k→∞

‖wk – xk‖ = 0. (39)

In a similar fashion, we have

lim
k→∞

∥
∥TA,B

m wk – wk
∥
∥ = 0. (40)

Reasoning as above (Theorem 3.1, Step 2), we have the desired result.
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Step 4. Show that x̄ ∈ �.
See proof of Step 3 in Theorem 3.1.
Step 5. Show that x̄ ∈ ⋂i=1

N Fix(Si).
See proof of Step 4 in Theorem 3.1.
Step 6. Show that x̄ = P�x1.
Let x = P�x1 imply that x = P�x1 ∈ Ck+1. Since xk+1 = PCk+1 x1 ∈ Ck+1, we have

‖xk+1 – x1‖ ≤ ‖x – x1‖.

On the other hand, we have

‖x – x1‖ ≤ ‖x̄ – x1‖
≤ lim inf

k→∞
‖xk – x1‖

≤ lim sup
k→∞

‖xk – x1‖

≤ ‖x – x1‖.

That is,

‖x̄ – x1‖ = lim
k→∞

‖xk – x1‖ = ‖x – x1‖.

Therefore, we conclude that limk→∞ xk = x̄ = P�x1. This completes the proof. �

The following remark gives us a stopping criterion of Algorithm 2.

Remark 3.3 We remark here that the condition (C1) is easily implemented in numerical
computation since the value of ‖xk – xk–1‖ is known before choosing �k . The parameter
�k can be taken as 0 ≤ �k ≤ �̂k ,

�̂k =

⎧

⎨

⎩

min{ νk
‖xk –xk–1‖ ,�} if xk 
= xk–1;

� otherwise,

where {νk} is a positive sequence such that
∑∞

k=1 νk < ∞ and �k = � ∈ [0, 1).

4 Numerical experiment and results
This section shows the effectiveness of Algorithm 2 by the following given example.

Example 4.1 Let H1 = H2 = R be the set of all real numbers, with the inner product de-
fined by 〈x, y〉 = xy, for all x, y ∈R and the usual induced norm | · |. Let F1 : R×R→R be a
bifunction defined as F1(x, y) = 2x(y – x) and let F2 : R×R →R be a bifunction defined as
F2(p, q) = p(q – p). For all x ∈ R, let the operators �,A,B : R → R be defined as �(x) = 3x,
Ax = 4x and Bx = 3x, respectively. Let Si : R → R be a finite family of demicontractive
operators defined by

Si(x) =

⎧

⎨

⎩

– x
i , x ∈ [0,∞);

x, x ∈ (–∞, 0).

Then the sequence (xk) generated by Algorithm 2 strongly converges to a point in �.
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Proof It is easy to prove that the bifunctions F1 and F2 satisfy Assumptions 2.8 and F2

is upper semicontinuous with � = 0. Moreover, � is bounded linear operator on R with
the adjoint operator �∗ such that ‖�‖ = ‖�∗‖ = 3, A is a maximal monotone operator and
B is a monotone and γ -Lipschitz operator for some γ > 0 with (A + B)–1(0) = {0}. Note
that Si is a finite family of 1–i2

(1+i)2 -demicontractive operators with
⋂i=1

N Fix(Si) = {0}. Hence
� = (A+B)–1(0) ∩�∩⋂i=1

∞ Fix(Si) = 0. Choose � = 0.5, uk = k
5k+1 , βk = 1

100k+1 , λk = 1
100k+1 ,

δ = 0.04, L = 3 and m = 0.01. Since
⎧

⎨

⎩

min{ 1
k2‖xk –xk–1‖ , 0.5} if xk 
= xk–1;

0.5 otherwise.

For the rest of the numerical experiment, we proceed as follows:
Step 1. Find z ∈ F2 such that F2(z, y) + 1

u 〈y – z, z – �x〉 ≥ 0 for all y ∈ F2. We write

F2(z, y) +
1
u

〈y – z, z – �x〉 ≥ 0 ⇔ z(y – z) +
1
u

〈y – z, z – �x〉 ≥ 0

⇔ uz(y – z) + (y – z)(z – �x) ≥ 0

⇔ (y – z)
(

(1 + u)z – �x
) ≥ 0,

for all y ∈ F2. Thus, by Lemma 2.9(2), we know that TF2
u �x is single-valued for each x ∈ F1.

Hence z = �x
1+u .

Step 2. Find g ∈ F1 such that g = x – δ�∗(I – TF2
r )�x. From Step 1, we get

g = x – δ�∗(I – TF2
u

)

�x = x – δ�∗(I – TF2
u

)

�x

= x – δ

(

3x –
3(�x)
1 + u

)

= (1 – 3δ)x +
3δ

1 + u
(�x).

Step 3. Find p ∈ F1 such that F1(p, q) + 1
u 〈p – q, p – g〉 ≥ 0 for all q ∈ F1. From Step 2, we

have

F(p, q) +
1
u

〈q – p, p – g〉 ≥ 0 ⇔ (2p)(q – p) +
1
u

〈q – p, p – g〉 ≥ 0

⇔ u(2p)(q – p) + (q – p)(p – g) ≥ 0

⇔ (q – p)
(

(1 + 2u)p – g
) ≥ 0,

for all q ∈ F1. Similarly, by Lemma 2.9(2), we obtain p = g
1+2u = (1–3δ)x

1+2u + 3δ�x
(1+u)(1+2u) .

Step 4. Compute the numerical results for xk+1.
We provide a numerical test of a comparison between our Inertial Forward–Backward

Splitting Algorithm (IFBSA) defined in Algorithm 2 (i.e., �k 
= 0) and the Forward–
Backward Splitting Algorithm (FBSA) (i.e., �k = 0). The stopping criterion is defined as
Error = Ek = ‖xk+1 – xk‖ < 10–6. The different choices of x0 and x1 are given in tables and
figures.

The error plotting Ek and (xk) against �k 
= 0 and �k = 0 for each choice in Table 1 is
shown in Fig. 1. �
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Table 1 Numerical results for Example 4.1

No. of iter. CPU (sec)

�k = 0 �k 
= 0 �k = 0 �k 
= 0

Choice 1. x0 = (5), x1 = (2) and N = 20 55 46 0.083838 0.064682
Choice 1. x0 = (5), x1 = (2) and N = 4 53 44 0.094593 0.078660
Choice 2. x0 = (–7), x1 = (–3) and N = 20 64 54 0.087539 0.064254
Choice 2. x0 = (–7), x1 = (–3) and N = 4 59 49 0.140981 0.069864

Figure 1 Graph of IFBSA and FBSA plotted for Choice 1 with N = 20

Figure 2 Graph of IFBSA and FBSA plotted for Choice 2 with N = 20

We can see from Table 1 and Figs. 1 and 2 that IFBSA performs better as compared to
FBSA. Elaborating the behavior of this algorithm with respect to Table 1, the error analysis



Arfat et al. Advances in Difference Equations        (2021) 2021:124 Page 19 of 23

Figure 3 Comparison between trajectories of Algorithm 2 for Choice 1 with N = 20 and N = 4

Figure 4 Comparison between trajectories of Algorithm 2 for Choice 2 with N = 20 and N = 4

is depicted in Figs. 1 and 2 whereas the number of iterations required to converge the
sequence (xk) towards the common solution are expressed in Figs. 3 and 4. Summarizing
these facts, we say that the IFBSA exhibits a reduction in the error, time and the number
of iterations of the function as compared to the FBSA.

5 Applications
In this section, we illustrate the theoretical results which we have obtained in the previous
section.
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5.1 Split feasibility problems
Let H1 and H2 be two real Hilbert spaces and � : H1 →H2 be a bounded linear operator.
Let C and Q be closed, convex and nonempty subsets of H1 and H2, respectively. The split
feasibility problem aims to find x̄ ∈ C such that Sx̄ ∈ Q. We represent the solution sets by
ω := C ∩ �

–1(Q) = {ȳ ∈ C : �ȳ ∈ Q}. Censor and Elfving [7] introduced it to solve inverse
problems and their application to medical image reconstruction and radiation therapy in
a finite dimensional Hilbert space. For the set C, recall the function

bC(x̄) :=

⎧

⎨

⎩

0, x̄ ∈ C;

∞, otherwise.

The proximal operator of bC is the metric projection on C,

proxbC = arg min
p̄∈C

‖p̄ – x̄‖

= PC(x̄).

Let PQ be the projection of H2 onto a nonempty, convex and closed subset Q. Take: f (x̄) =
1
2‖�x̄ – PQ�x̄‖2 and g(x̄) = bC(x̄). Then we compute the split feasibility problem from the
following result.

Corollary 5.1 Let H1, H2 be two Hilbert spaces and let C ⊆H1 and Q ⊆H2 be nonempty,
closed and convex subsets of Hilbert spaces H1 and H2, respectively. Assume that � = ω ∩
� ∩ ⋂i=1

N Fix(Si) 
= ∅ with hypotheses (H1)–(H4). Let �k be a bounded real sequence and
mk ∈ (0, 2

‖�‖2 ). For given x0, x1 ∈H1, let the iterative sequences (xk), (bk), (�k), (wk), (yk) and
(xk+1) be generated by

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bk = xk + �k(xk – xk–1);

�k = TF1
uk (I – δk�

∗(I – TF2
uk )�)bk ;

wk = (1 – βk)�k + βkSk�k ;

yk = λkwk + (1 – λk)Jkwk ;

Ck+1 = {z ∈ Ck : ‖yk – z‖2 ≤ ‖xk – x̂‖2 + �2
k‖xk – xk–1‖2 · · ·

+ 2�k〈xk – x̂, xk – xk–1〉};
xk+1 = PCk+1 x1, ∀k ≥ 1,

(41)

where Jk = PC(Id – mk�
∗(I – PQ)�). Assume that the conditions (C1)–(C4) hold, then the

sequence (xk) generated by (41) converges strongly to an element x̄ = P�x1.

5.2 Monotone variational inequality problems
Let H1 be a Hilbert space and C be a nonempty, closed and convex subset of H1. Let
B : C → H1 be a nonlinear monotone operator. The variational inequality problem aims
to find a point x̄ ∈ C such that

〈Bx̄, ȳ – x̄〉 ≥ 0 ∀ȳ ∈ C. (42)
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The solution set of the above problem is denoted by ω and assume that ω 
= ∅. [29], The re-
solvent operator acts as a projection operator PC . Then we compute monotone variational
inequality problems from the following result.

Corollary 5.2 Let H1, H2 be two Hilbert spaces and let C ⊆H1 and Q ⊆H2 be nonempty,
closed and convex subsets of Hilbert spaces H1 and H2, respectively. Assume that � = ω ∩
� ∩ ⋂i=1

N Fix(Si) 
= ∅ with hypotheses (H1)–(H4). Let �k be a bounded real sequence and
mk ∈ (0, 2

‖�‖2 ). For given x0, x1 ∈H1, let the iterative sequences (xk), (bk), (�k), (wk), (yk) and
(xk+1) be generated by

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bk = xk + �k(xk – xk–1);

�k = TF1
uk (I – δk�

∗(I – TF2
uk )�)bk ;

wk = (1 – βk)�k + βkSk�k ;

yk = λkwk + (1 – λk)Jkwk ;

Ck+1 = {z ∈ Ck : ‖yk – z‖2 ≤ ‖xk – x̂‖2 + �2
k‖xk – xk–1‖2 · · ·

+ 2�k〈xk – x̂, xk – xk–1〉};
xk+1 = PCk+1 x1, ∀k ≥ 1,

(43)

where Jk = PC(Id – mkB). Assume that the conditions (C1)–(C4) hold, then the sequence
(xk) generated by (43) converges strongly to an element x̄ = P�x1.

5.3 Convex minimization problems
Let f : H1 → R and g : H1 → R be two convex, proper and lower semicontinuous func-
tions. In Algorithm 2, set that A := ∂f and B := ∇g . Assume that ω is the set of solutions
of problem (4) and ω 
= ∅. Then we compute the convex minimization problem from the
following result.

Corollary 5.3 Let H1, H2 be two Hilbert spaces and let C ⊆H1 and Q ⊆H2 be nonempty,
closed and convex subsets of Hilbert spaces H1 and H2, respectively. Assume that � = ω ∩
� ∩ ⋂i=1

N Fix(Si) 
= ∅ with hypotheses (H1)–(H4). Let �k be a bounded real sequence and
mk ∈ (0, 2

‖�‖2 ). Let f , g : H1 →R be two convex, proper and lower semicontinuous functions,
such that f is sub-differential function and g is differentiable with γ -Lipschitz continuous
gradient. For given x0, x1 ∈H1, let the iterative sequences (xk), (bk), (�k), (wk), (yk) and (xk+1)
be generated by

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bk = xk + �k(xk – xk–1);

�k = TF1
uk (I – δk�

∗(I – TF2
uk )�)bk ;

wk = (1 – βk)�k + βkSk�k ;

yk = λkwk + (1 – λk)Jkwk ;

Ck+1 = {z ∈ Ck : ‖yk – z‖2 ≤ ‖xk – x̂‖2 + �2
k‖xk – xk–1‖2 · · ·

+ 2�k〈xk – x̂, xk – xk–1〉};
xk+1 = PCk+1 x1, ∀k ≥ 1,

(44)

where Jk = J∂f
mk (Id – mk∇g). Assume that the conditions (C1)–(C4) hold, then the sequence

(xk) generated by (44) converges strongly to an element x̄ = P�x1.
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6 Conclusions
In this paper, we have devised an inertially constructed forward–backward splitting algo-
rithm for computing a common solution of the finite family of demicontractive operators,
SEP and monotone inclusion problem in Hilbert spaces. The theoretical framework of
the algorithm has been strengthened with an appropriate numerical example. Moreover,
this framework has also been implemented to various instances of the monotone inclu-
sion problems. We would like to emphasize that the above mentioned problems occur
naturally in many applications, therefore, iterative algorithms are inevitable in this field
of investigation. As a consequence, our theoretical framework constitutes an important
topic of future research.
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