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Abstract
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solution of certain nth order linear and nonlinear differential equations with a set of
constraints are presented. Moreover, several algorithms based on the refinement
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1 Introduction
The refinement schemes, also known as subdivision schemes, are efficient tools for the
modeling of curves. These schemes are classified into two main categories, interpolating
and approximating. These categories are further classified into n subcategories: binary,
ternary, . . . , n-ary. In this paper, we focus on binary interpolating refinement schemes. The
domain of these schemes is a polygon while the range is a refined polygon. These schemes
have two main rules, namely refinement and topological rules. There are two refinement
rules: one rule caries on the points of a coarse polygon while the other rule introduces the
new points corresponding to each edge of the polygon. These rules are called even and odd
rules, respectively. The even rule just caries on the old points. The odd rule is an affine
combination of the points of the coarse polygon. Furthermore, the topological rule is just
the connection of adjacent new and old points with straight lines. The topological and
refinement rules give us a new polygon. The repeated application of the refinement and
topological rules gives a smooth shape. Graphically, this procedure is depicted in Fig. 1.
Mathematically, if Qk = {Qk

i }i∈Z is a polygon at the kth level then the refined polygon Qk+1 =
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Figure 1 Refinement procedure. The solid lines show the
coarse polygon while the doted lines show the refined
polygon

{Qk+1
i }i∈Z can be obtained by applying the topological and refinement rules [1] as follows:

⎧
⎨

⎩

(Even rule) Qk+1
2i = Qk

i ,

(Odd rule) Qk+1
2i+1 =

∑n1
j=0 χn1,j(Qk

i–j + Qk
i+j+1),

(1)

where the coefficients appearing in the affine combination of points are

χn1,j =
((2n1 + 1)!!)2

2(4n1 )(2n1 + 1)!
(–1)j

(2j + 1)

(
2n1 + 1
n1 – j

)

, j = 0, 1, 2, . . . , n1, (2)

while
( 2n1+1

n1–j
)

denotes the binomial coefficient. Here n1 is the complexity of the scheme.
If n1 = 0, 1, 2, 3, . . . , then the complexity of the scheme will be 2, 4, 6, 8, . . . , respectively. In
other words, for n1 = 0, 1, 2, 3, we get 2-, 4-, 6-, and 8-point schemes, respectively.

The refinement procedure has attracted attention due to a large variety of applications in
curve modeling and algorithms for the solution of differential equations with a set of con-
straints. Mathematically, these equations are called the boundary value problems (BVPs).
Higher-order linear and nonlinear differential equations have been reported in mathe-
matical physics and structural engineering. Different techniques have been introduced to
solve such problems. Here is a list of works that have caught the attention of the scientific
community, pointing to the diversity of the applications of refinement schemes in the area
of differential equations.

In 1996, initially, Qu and Agarwal [2] presented a refinement-scheme-based algorithm
for the second-order linear differential equations (DEs). A year later, Qu and Agarwal
[3] offered an algorithm for the second-order nonlinear DEs. Then after the long silence,
Mustafa and Ejaz [4] introduced the refinement-based algorithm for the third-order lin-
ear DEs in 2014. In 2015, Ejaz et al. [5] introduced an algorithm for the fourth-order linear
DEs. Ejaz and Mustafa [6] offered an algorithm for the third-order nonlinear DEs in 2016.
In the next year, Mustafa et al. [7] introduced an algorithm for the fourth-order nonlinear
DEs.

In this paper, we present generalized algorithms based on generalized refinement
schemes for the nth order linear and nonlinear DEs. We prove that all the above algorithms
are special cases of our generalized algorithms. We consider the following two-point nth
order linear and nonlinear DEs with a set of constraints

(Linear DE) un(t) + q(t)u(t) = f (t), a ≤ t ≤ b, (3)

and

(Nonlinear DE) un(t) = f
(
t, u(t), u′(t)

)
, (4)
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where the set of constraints is defined as follows: If n is even, a set of constraints is

ul(a) = αl, um(b) = βm, l, m = 0, 1, 2, . . . , n – 2; (5)

If n is odd, a set of constraints is

ul(a) = αl, um–1(b) = βm, l, m = 0, 1, 2, . . . , n – 2,

or

ul–1(a) = αl, um(b) = βm, l, m = 0, 1, 2, . . . , n – 2,

(6)

where αl and βm are scalars. We assume that the problems are well-posed throughout the
paper.

The rest of the work is structured as follows. In Sect. 2, we discuss the properties of gen-
eralized binary interpolating refinement schemes. We also present generalized formulae
for the nth derivatives of the refinement schemes in this section. The generalized algo-
rithms for the nth order linear and nonlinear DEs are presented in Sect. 3. In Sect. 4, we
present the generalized form of imposed constraints and the approximation of derivative
involved in the constraints. In Sect. 5, we discuss the stable linear and nonlinear system of
equations. We also discuss the existence of the solutions of these systems in this section.
In Sect. 6, we show that the refinement-based existing algorithms are special cases of our
generalized algorithms. Section 7 presents the conclusion.

2 Properties of the refinement scheme
The nth order continuous (i.e., Cn continuous) refinement scheme is suitable to develop an
algorithm for the solution of the nth order DEs. For example, if we want to find solutions
of the eighth order DEs with a set of constraints then we have to choose a C8-continuous
refinement scheme from (1).

Here we briefly summarize the continuity and other properties of a refinement scheme.
If {Qi = (i, δ0)T } is the initial data then repeated application of the scheme produces the
limit curve named ρ(t), also known as a basis function, where

ρ(i) =

⎧
⎨

⎩

1, i = 0,

0, i �= 0.
(7)

and

ρ(t) = ρn1 (t) = ρ(2t) +
n1∑

j=–n1

χn1,|j|ρ(2t – 2j + 1), t ∈R. (8)

The scheme (1) has the following properties:
• It produces Cn continuous curves, where n = n1 for n1 ≤ 5, and for a large value of n1,

n = 0.415n1 by [8]. It means that ρ(t) is n times continuously differentiable.
• Its degree of generation and reproduction is 2n1 + 1.
• The approximation order of the scheme is 2n1 + 2.
• The support of ρ(t) is finite; explicitly, its support is (–2n1 – 1, 2n1 + 1).
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• The iteration matrix, also known as a local refinement matrix, is defined in (9).

S =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 . . . 0 1 0 0 0 . . .
χn1,n1 χn1,n1–1 χn1,n1–2 . . . χn1,–1 χn1,0 χn1,0 χn1,–1 χn1,–2 . . .

0 0 0 . . . 0 0 1 0 0 . . .
0 χn1,n1 χn1,n1–1 . . . χn1,–2 χn1,–1 χn1,0 χn1,0 χn1,–1 . . .
0 0 0 . . . 0 0 0 1 0 . . .
0 0 χn1,n1 . . . χn1,–3 χn1,–2 χn1,–1 χn1,0 χn1,0 . . .
0 0 0 . . . 0 0 0 1 0 . . .
...

...
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 0 0 0 . . .
0 0 0 . . . 0 0 0 0 0 . . .

0 0 0 0 . . . 0 0
χn1,n1–2 χn1,n1–1 χn1,n1 0 . . . 0 0

0 0 0 0 . . . 0 0
χn1,n1–3 χn1,n1–2 χn1,n1–1 χn1,n1 . . . 0 0

. . . 0 0 0 . . . 0 0
χn1,n1–4 χn1,n1–3 χn1,n1–2 χn1,n1–1 . . . 0 0

. . . 0 0 0 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . χn1,n1–1 χn1,n1

0 0 0 0 . . . 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (9)

The order of the refinement matrix is 4n1 + 1.
• The matrix S has the following k eigenvalues λk and their corresponding

right-eigenvectors Rk :

λk = 2–k , 0 ≤ k ≤ 2n1 + 1,

Rk =
(
(–2n1)k , (–2n1 + 1)k , . . . , (–2)k , (–1)k , 0, 1, 2k ,

. . . , (2n1 – 1)k , (2n1)k)T
(4n1+1)×1. (10)

• The left-eigenvectors Lk corresponding to the eigenvalues λk can be found by using
the transpose of local refinement matrix S. These eigenvectors also satisfy the relation
RT

i Lj = δiδj, ∀i, j: i, j = 1, 2, . . . , n1. That is,

RT
i Lj = 1, if i = j,

RT
i Lj = 0, if i �= j.

Proposition 1 The function ρ(t) is n-times continuously differentiable on the interval
(–2n1 – 1, 2n1 + 1) and its nth derivatives are given by

ρn(t) = 2n(sgn(t)
)nET

|t|Ln, –2n1 ≤ t ≤ 2n1,
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where

sgn(t) =

⎧
⎪⎪⎨

⎪⎪⎩

–1 if t < 0,

0 if t = 0,

1 if t > 0,

Et = (a(2n)t , a(2n–1)t , . . . , a1t , a0t , a–1t , a–2t , . . . , a(–2n+2)t , a(–2n+1)t , a(–2n)t),

for 0 ≤ t ≤ 4n1 + 1 and

apt =

⎧
⎨

⎩

1 if p = t,

0 if p �= t.

3 Generalized algorithms for the nth order linear and nonlinear DEs
We structure the refinement-schemes-based algorithms for the two-point nth order linear
and nonlinear DEs with the set of constraints (3) and (4).

3.1 Generalized algorithm for the nth order linear DEs
In this section, we construct the refinement-scheme-based algorithm for the nth order
linear DEs. Let the solution of (3) be

GL(t) =
N+2n1∑

i=–2n1

gL
i ρ

(
t – ti

h

)

, (11)

where a ≤ t ≤ b, N ≥ 2n1, ti = ih, gL
i = GL(ti), and h = b–a

N .
This implies by (3) that

Gn
L(tj) + q(tj)GL(tj) = f (tj), j = 0, 1, . . . , N . (12)

If we have a set of constraints as in (5) then we get

Gl
L(a) = αl, Gm

L (b) = βm, l, m = 0, 1, 2, . . . , n – 2. (13)

For a set of constraints as in (6), it takes the form

Gl
L(a) = αl, Gm–1

L (b) = βm, l, m = 0, 1, 2, . . . , n – 2,

or

Gl–1
L (a) = αl, Gm

L (b) = βm, l, m = 0, 1, 2, . . . , n – 2.

(14)

From (11), we have

G′
L(tj) =

1
h

N+2n1∑

i=–2n1

gL
i ρ ′

(
tj – ti

h

)

,

G′′
L(tj) =

1
h2

N+2n1∑

i=–2n1

gL
i ρ ′′

(
tj – ti

h

)

,
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...

Gn
L(tj) =

1
hn

N+2n1∑

i=–2n1

gL
i ρn

(
tj – ti

h

)

. (15)

Now using (15) in (12), we get

N+2n1∑

i=–2n1

gL
i ρn

(
tj – ti

h

)

+ hnq(tj)
N+2n1∑

i=–2n1

gL
i ρ

(
tj – ti

h

)

= hnf (tj), j = 0, 1, . . . , N .

This implies

N+2n1∑

i=–2n1

gL
i ρn(j – i) + hnq(tj)

N+2n1∑

i=–2n1

gL
i ρ(j – i) = hnf (tj), j = 0, 1, . . . , N .

Let ρn
i = ρn(i), then

N+2n1∑

i=–2n1

gL
i ρn

j–i + hnq(tj)
N+2n1∑

i=–2n1

gL
i ρj–i = hnf (tj), j = 0, 1, . . . , N .

This can be simplified as

N+2n1∑

i=–2n1

gL
i
[
ρn

j–i + hnq(tj)ρj–i
]

= hnf (tj), j = 0, 1, . . . , N . (16)

This system has N + 1 equations. Its matrix is as follows:

ALGL = dL, (17)

where the banded matrix (AL)(N+1)×(N+4n1+1), column vectors (GL)(N+4n1+1) and (dL)(N+1)

are defined in (18), (19), and (20), respectively,

AL =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρn
–2n1 ρn

–2n1+1 ρn
–2n1+2 . . . ρn

–1 χ0 ρn
1 ρn

2 . . . ρn
2n1 0

0 ρn
–2n1 ρn

–2n1+1 . . . ρn
–2 ρn

–1 χ1 ρn
1 . . . ρn

2n1–1 ρn
2n1

0 0 ρn
–2n1 . . . ρn

–3 ρn
–2 ρn

–1 χ2 . . . ρn
2n1–2 ρn

2n1–1
...

...
...

...
...

...
...

...
...

...
...

0 0 0 . . . 0 0 0 0 0 0 0

0 0 . . . 0 0
0 0 . . . 0 0

ρn
2n1 0 . . . 0 0
...

...
...

...
...

. . . . . . . . . ρn
2n1–1 ρn

2n1–1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (18)

and χj = ρn
j + qjhn,

GL =
(
gL

–2n1 , gL
–2n1+1, . . . , gL

2n1+N–1, gL
2n1+N

)T , (19)
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and

dL =
(
hnf0, hnf1, . . . , hnfN

)T . (20)

The system (17) is unstable. To find the solution of (17), we need 4n1 more equations. As
the n constraints are given in (3), so we only need to construct 4n1 – n constraints. The
remaining 4n1 – n constraints can be found by some extrapolation method.

For this, we have the following two cases:
• If 4n1 – n is even, then we construct 4n1–n

2 constraints at the left end of the DE and
4n1–n

2 constraints on the right end.
• If 4n1 – n is odd then we construct 4n1–n+1

2 constraints at the left end and 4n1–n–1
2

constraints at the right end of the DE.
The treatment of these constraints is given in the next section.

3.2 Generalized algorithm for the nth order nonlinear DEs
In this subsection, we construct the refinement-scheme-based algorithm for the nth order
nonlinear DEs. Let the solution of (4) be

GNL(t) =
N+2n1∑

i=–2n1

gNL
i ρ

(
t – ti

h

)

, (21)

where a ≤ t ≤ b, N ≥ 2n1, ti = ih, gNL
i = GNL(ti), and h = b–a

h .
This implies by (4) that

Gn
NL(tj) = f

(
tj, GNL(tj), G′

NL(tj), . . . , Gn–1
NL (tj)

)
, j = 0, 1, . . . , N , (22)

with the set of constraints given in (13) or (14). From (21), we have

G′
NL(tj) =

1
h

N+2n1∑

i=–2n1

gNL
i ρ ′

(
tj – ti

h

)

,

G′′
NL(tj) =

1
h2

N+2n1∑

i=–2n1

gNL
i ρ ′′

(
tj – ti

h

)

,

...

Gn
NL(tj) =

1
hn

N+2n1∑

i=–2n1

gNL
i ρn

(
tj – ti

h

)

.

(23)

Now using (23) in (22), we get

N+2n1∑

i=–2n1

gNL
i ρn

(
tj – ti

h

)

= hnf
(
tj, GNL(tj), G′

NL(tj), . . . , Gn–1
NL (tj)

)
, j = 0, 1, . . . , N .

This implies

N+2n1∑

i=–2n1

gNL
i ρn(j – i) = hnf

(
tj, GNL(tj), G′

NL(tj), . . . , Gn–1
NL (tj)

)
, j = 0, 1, . . . , N .
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This leads to

N+2n1∑

i=–2n1

giρ
n
j–i = hnf

(
tj, GNL,j, G′

NL,j, . . . , Gn–1
NL,j

)
, j = 0, 1, . . . , N , (24)

where Gl
NL,j = Gl

NL(tj), for l = 0, 1, . . . , n – 1. This system also has N + 1 equations. Its matrix
form is

ANLGNL = dNL, (25)

where ANL is the banded matrix of order (N + 1) × (N + 4n1 + 1), GNL and dNL have orders
(N + 4n1 + 1) × 1 and (N + 1) × 1, respectively. These matrices are defined below.

ANL =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρn
–2n1 ρn

–2n1+1 ρn
–2n1+2 . . . ρn

–1 ρ0 ρn
1 ρn

2 . . . ρn
2n1 0

0 ρn
–2n1 ρn

–2n1+1 . . . ρn
–2 ρn

–1 ρ1 ρn
1 . . . ρn

2n1–1 ρn
2n1

0 0 ρn
–2n1 . . . ρn

–3 ρn
–2 ρn

–1 ρ2 . . . ρn
2n1–2 ρn

2n1–1
...

...
...

...
...

...
...

...
...

...
...

0 0 0 . . . 0 0 0 0 0 . . . . . .

0 0 . . . 0 0
0 0 . . . 0 0

ρn
2n1 0 . . . 0 0
...

...
...

...
...

. . . . . . . . . ρn
2n1–1 ρn

2n1–1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (26)

This can be simplified as

ANL = (–1)n(ρn
rc(c – r – 2n1 – 1)

)
,

where r = 1, 2, . . . , N and c = 1, 2, . . . , N + 4n1 + 1. The column matrices are defined as

GNL = (g–2n1 , g–2n1+1, . . . , g2n1+N–1, g2n1+N )T (27)

and

dNL = hn(f0, f1, . . . , fN–1, fN )T , (28)

where fj = f (tj, gNL,j, g ′
NL,j, . . . , gn–1

NL,j) and gl
NL,j = gl

NL(tj), for j = 0, 1, . . . , n and l = 0, 1, . . . , n – 1.
To find the solution of (25), we need 4n1 more equations to solve the system (25). As the
n constraints are given in equation (4), so we only need to construct 4n1 – n constraints.
The remaining 4n1 – n constraints can be found by some extrapolation method, the detail
is given below.

• If 4n1 – n is even, then we construct 4n1–n
2 constraints at the left end of the DE and

4n1–n
2 constraints on the right end.

• If 4n1 – n is odd then we construct 4n1–n+1
2 constraints at the left end and 4n1–n–1

2
constraints at the right end of the DE.
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4 Approximation of the given and imposed constraints
The given derivative constraints and the imposed constraints for the unstable systems (17)
and (25) are approximated in this section.

4.1 Approximation of the given derivative constraints
If F(t) is a function then for h > 0 and integer p > 0, the lth derivative of G(t) can be ap-
proximated by the finite difference method as

Gl(t) =
l!
hl

imax∑

i=imin

ciF(t + ih) + O
(
hp). (29)

The necessary condition for (29) to be satisfied is

imax∑

i=imin

inci =

⎧
⎨

⎩

0, for 0 ≤ n ≤ l + p – 1 and n �= l,

1, for n = l.
(30)

For imin = 0 and imax = l + p – 1, the forward difference approximation can be expected. The
convolution mask is the vector C = (cimin , . . . , cimax ). If we solve the system (30) then we get
the convolution matrix C.

4.2 Approximation of the imposed constraints
We impose the set of constraints on the left as well as on the right side of the given con-
straints of the linear and nonlinear DE. These constraints are constructed as follows.

4.2.1 The left end imposed constraints
If S1(t) is the polynomial which interpolates the data (ti, gi), 0 ≤ i ≤ 2n1 – 1, then the values
g–(2n1–1), g–(2n1), . . . , g–2, g–1 imposed on the left side can be found. That is,

g–i = S1(–ti), i =

⎧
⎨

⎩

1, 2, . . . , 4n1–n
2 , if 4n1 – n = even,

1, 2, . . . , 4n1–n+1
2 , if 4n1 – n = odd,

where

S1(ti) =
2n1+2∑

j=1

(
2n1 + 2

j

)

(–1)j+1G(ti–j).

Since, by (11), G(ti) = gi for i = 1, 2, . . . , 2n1 + 1, if we replace ti by –ti, then

S1(–ti) =
2n1+2∑

j=1

(
2n1 + 2

j

)

(–1)j+1g–i+j.

Hence we get the constraints at the left end as

2n1+2∑

j=0

(
2n1 + 2

j

)

(–1)jg–i+j = 0, (31)
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where

i =

⎧
⎨

⎩

1, 2, . . . , 4n1–n
2 , if 4n1 – n = even,

1, 2, . . . , 4n1–n+1
2 , if 4n1 – n = odd.

4.2.2 The right end imposed constraints
For the right end imposed values, gi = S1(ti), i = N + 1, N + 2, . . . , N + (2n1 – 1), and

S1(ti) =
2n1+2∑

j=1

(
2n1 + 2

j

)

(–1)j+1gi–j.

Hence we get the constraints at the right end as

2n1+2∑

j=0

(
2n1 + 2

j

)

(–1)jgi–j = 0, (32)

where

i =

⎧
⎨

⎩

N + 1, N + 2, . . . , N + 4n1–n
2 , if 4n1 – n = even,

N + 1, N + 2, . . . , N + 4n1–n–1
2 , if 4n1 – n = odd.

5 The stable systems and their convergence
In this section, we present the linear and nonlinear stable systems of equations for the
problems (3) and (4), respectively.

5.1 The linear stable system
Since the system (17) is unstable, by combining 4n1 – n constraints, we get the stable sys-
tem of the form

BLGL = DL, (33)

where the matrix BL is defined as

BL =
(
(BL)T , (AL)T , (BR)T)T , (34)

GL is defined in (19), and DL is the matrix of order (N + 4n1 + 1) defined as:
• If n is even,

DL =
(
0, . . . , 0, 0, un–1(a), un–2(a), . . . , u′(a), u(a), dT

L , u(b),

u′(b), . . . , un–2(b), un–1(b), 0, 0, . . . , 0
)T ; (35)



Ejaz et al. Advances in Difference Equations        (2021) 2021:121 Page 11 of 16

• If n is odd,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

DL = (0, . . . , 0, 0, un–2(a), un–3(a), . . . , u′(a), u(a), dT
L , u(b),

u′(b), . . . , un–1(b), 0, 0, . . . , 0)T ,

or

DL = (0, . . . , 0, 0, un–1(a), . . . , u′(a), u(a), dT
L , u(b),

u′(b), . . . , un–3(b), un–2(b), 0, 0, . . . , 0)T ,

(36)

where dL is defined in (20). The matrix AL is defined in (18), and the matrices BL and BR

are of order ( 4n1
2 × (N + 4n1 + 1)) constructed as follows:

In matrix BL,
• If (4n1 – n) or n is even, the first 4n1–n

2 rows are constructed by using (31) for
i = 4n1–n

2 , 4n1–n
2 – 1, . . . , 2, 1, respectively. The last n

2 rows are obtained from
un(0), un–1(0), . . . , u′(0), u(0), respectively.

• If (4n1 – n) or n is odd, the first 4n1–n+1
2 rows are constructed by using (31)

i = 4n1–n+1
2 , 4n1–n+1

2 – 1, . . . , 2, 1, respectively. The last n
2 rows are obtained from

un(0), un–1(0), . . . , u′(0), u(0), respectively.
The construction of BR is as follows:

• If (4n1 – n) or n is even, then the first n
2 rows are obtained from

u(1), u′(1), . . . , un–1(1), un(1), respectively. The last 4n1–n
2 rows are constructed by using

(32) for i = N + 1, N + 2, . . . , N + 4n1–n
2 , respectively.

• If (4n1 – n) or n is odd, then the first n
2 rows are obtained from

u(1), u′(1), . . . , un–1(1), un(1), respectively. The last 4n1–n–1
2 rows are constructed by

using (32) for i = N + 1, N + 2, . . . , N + 4n1–n–1
2 , respectively.

If derivative constraints are given, then first approximate them with the help of (29) and
(30) before using them.

5.2 The nonlinear stable system
Since the system (25) is unstable, by combining 4n1 – n imposed and n given constraints,
we get a stable system of the form

BNLGNL = DNL(g), (37)

where the matrix BNL is defined as

BNL =
(
(BL)T , (ANL)T , (BR)T)T , (38)

GNL is defined in (27), and DNL(g) is the matrix of order (N + 4n1 + 1) defined as:
• If n is even,

DNL =
(
0, . . . , 0, 0, un–1(a), un–2(a), . . . , u′(a), u(a), dT

NL, u(b),

u′(b), . . . , un–2(b), un–1(b), 0, 0, . . . , 0
)T ; (39)
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• If n is odd,

DNL =
(
0, . . . , 0, 0, un–2(a), un–3(a), . . . , u′(a), u(a), dT

NL, u(b),

u′(b), . . . , un–1(b), 0, 0, . . . , 0
)T ,

or

DL =
(
0, . . . , 0, 0, un–1(a), . . . , u′(a), u(a), dT

NL, u(b),

u′(b), . . . , un–3(b), un–2(b), 0, 0, . . . , 0
)T , (40)

where dNL is defined in (28). The matrix ANL is defined in (26), and the matrices BL and
BR of order ( 4n1

2 × (N + 4n1 + 1)) are same as in the case of a stable linear system.

5.3 Existence of the solution
The coefficient matrices BL and BNL of the linear and nonlinear stable systems are banded
and nonsingular. Remember that these matrices are not symmetric or diagonally domi-
nant, though it can be proved that BL and BNL are nonsingular/invertible. If we ignore the
first and last few rows and columns then these are symmetric matrices. Now consider the
square symmetric part of BL and asymmetric matrix BNL of order (N + 1) given by

B1
L =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρn
0 ρn

1 ρn
2 ρn

3 . . . ρn
2n1 · · · 0 0 0

ρn
–1 ρn

0 ρn
1 ρn

2 . . . ρn
2n1–1 · · · 0 0 0

ρn
–2 ρn

–1 ρn
0 ρn

1 . . . ρn
2n1–2 . . . 0 0 0

ρn
–3 ρn

–2 ρn
–1 ρn

0 . . . ρn
2n1–3 · · · 0 0 0

ρn
–4 ρn

–3 ρn
–2 ρn

–1 . . . ρn
2n1–4 · · · 0 0 0

...
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . 0 . . . ρn
1 ρn

2 ρn
3

0 0 0 0 . . . 0 . . . ρn
0 ρn

1 ρn
2

0 0 0 0 . . . 0 . . . ρn
–1 ρn

0 ρn
1

0 0 0 0 . . . 0 . . . ρn
–2 ρn

–1 ρn
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

B2
NL =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρn
1 ρn

2 ρn
3 . . . ρn

2n1 . . . 0 0 0
ρn

0 ρn
1 ρn

2 . . . ρn
2n1–1 . . . 0 0 0

ρn
–1 ρn

0 ρn
1 . . . ρn

2n1–2 . . . 0 0 0
ρn

–2 ρn
–1 ρn

0 . . . ρn
2n1–3 . . . 0 0 0

ρn
–3 ρn

–2 ρn
–1 . . . ρn

2n1–4 . . . 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 . . . 0 . . . ρn
1 ρn

2 ρn
3

0 0 0 . . . 0 . . . ρn
0 ρn

1 ρn
2

0 0 0 . . . 0 . . . ρn
–1 ρn

0 ρn
1

0 0 0 . . . 0 . . . ρn
–2 ρn

–1 ρn
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It can be shown that if a(t) > 0 for 0 ≤ t ≤ 1, B1
L and B2

NL are always nonsingular and, for
large N , matrices BL and BNL are very similar to B1

L and B2
NL, respectively. Since these are

banded matrices, by the results of Kilic and Stanica [9], their inverses exist by LU factor-
ization.
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5.4 The solutions of linear and nonlinear systems
Now, we discuss the methods to find the solutions of the systems (33) and (37).

5.4.1 The solution of linear system
The linear system of equations is defined in (33). We solve this system of equations by
using Gaussian elimination method.

5.4.2 The solution of nonlinear system
For the solution of nonlinear system (37), we do a few steps: First of all, we solve the fol-
lowing linear system with initial approximation G0

NL:

BNLG0
NL = D0

NL, (41)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0
NL = {0, . . . , 0, 0, un–1(a), un–2(a), . . . , u′(a), u(a), F0, F1, . . . , FN , u(b),

u′(b), . . . , un–2(b), un–1(b), 0, 0, . . . , 0},
Fi = h3f (ti, Mi, S), i = 0, 1, 2, . . . , N , a ≤ t ≤ b,

Mi = u(a) + ih( u(b)–u(a)
b–a ),

S = u(b) – u(a).

The solution of this system by Gaussian elimination method gives the initial approxima-
tion of the following nonlinear system:

BNLGm+1
NL = DNL

(
Gm

NL
)
, m = 0, 1, 2, 3, . . . (42)

Now continue the iterations by Gaussian elimination until

∥
∥Gm

NL – Gm–1
NL

∥
∥ ≤ tolε, (43)

where tolε is a chosen value. For example, someone can choose tolε = 10–6.

6 The special cases of our algorithms
Here we present several special cases of our algorithms. We see that the algorithms based
on interpolating and approximating schemes for solving linear and nonlinear DEs with
the set of constraints are special cases of our algorithms.

6.1 The special cases of our algorithms based on interpolating schemes
Here we see that a number of algorithms based on the refinement schemes for solving
differential equations are the special cases of our algorithms.

• If we take n = 2, the problem (3) with (5) at a = 0 and b = 1 becomes a second-order
linear DE. For its solution, if we put n = n1 = 2 in (1), (2), (11), (31), (32), and (33) then
we get the algorithms of Qu and Agarwal [2] and Mustafa et al. [10].

• If we take n = 2, the problem (4) with (5) at a = 0 and b = 1 becomes a second-order
nonlinear DE. If we put n = n1 = 2 in (1), (2), (11), (31), (32), and (37) then we get the
algorithm of Qu and Agarwal [3].
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• If we take n = 3, the problem (3) and (6) at a = 0 and b = 1 becomes a third-order
linear DE. If we put n = n1 = 3 in (1), (2), (11), (31), (32), and (33) then we get the
algorithm of Mustafa and Ejaz [4, 11].

• If we take n = 3, the problem (4) and (6) at a = 0 and b = 1 becomes a third-order
nonlinear DE. If we put n = n1 = 3 in (1), (2), (11), (31), (32), and (37) then we get the
algorithm of Ejaz and Mustafa [6].

• If we take n = 4, the problem (3) and (5) at a = 0 and b = 1 becomes a fourth-order
linear DE. If we put n = n1 = 4 in (1), (2), (11), (31), (32), and (33) then we get the
algorithm of Ejaz et al. [5].

• If we take n = 4, the problem (4) and (5) at a = 0 and b = 1 becomes a fourth-order
linear DE. If we put n = n1 = 4 in (1), (2), (11), (31), (32), and (37) then we get the
algorithms of Mustafa et al. [7] and Ejaz et al. [12].

6.2 The special cases of our algorithms based on approximating schemes
The algorithms presented in Sects. 3 and 4 are based on the interpolating refinement
schemes. Such algorithms can be restructured to get the algorithms based on approxi-
mating refinement schemes.

For the achievement of the purpose, we first choose an appropriate Cn approximating
refinement scheme with complexity m1 = 2, 4, 6, . . . and which satisfies (10). Then we dis-
cuss its properties as we have done for interpolating refinement schemes which are given
in (7), (8), and (9). Proposition 1 will be stated in a similar way for this case. The algo-
rithms for the solutions of the problems (3)–(6) by approximating refinement schemes
can be obtained by replacing n1 = m1–2

2 in the algorithms defined in Sects. 3 and 4.
Here we see that all the existing algorithms based on the approximating refinement

schemes for solving differential equations will be special cases of our algorithms.
• If we take n = 2, the problem (3) and (5) at a = 0 and b = 1 becomes a second-order

linear DE. Then select a suitable (m1 = 6)-point approximating refinement scheme
which satisfies (10). Further by substituting m1 = 6 or n1 = 2 in (11), (31), (32), and
(33), we get the algorithm of Kanwal et al. [13].

• If we take n = 3, the problem (3) and (5) at a = 0 and b = 1 becomes a second-order
linear DE. Then select a suitable (m1 = 8)-point approximating refinement scheme
which satisfies (10). Further by substituting m1 = 8 or n1 = 3 in (11), (31), (32), and
(37), we get the algorithm of Manan et al. [14].

• If we take n = 4, the problem (3) and (5) at a = 0 and b = 1 becomes a fourth-order
linear DE. Then select a suitable (m1 = 10)-point approximating refinement scheme
[15]. Further by substituting m1 = 10 or n4 = 4 in (11), (31), (32), and (33), we get the
algorithm of Ejaz et al. [5].

7 Conclusion
In this paper, we first presented the generalized algorithms based on binary interpolat-
ing refinement schemes for the solution of the nth order linear and nonlinear differential
equations with a set of constraints. Then we restructured these algorithms to get the al-
gorithms based on approximating schemes. So, all the subdivision-based algorithms are
easily restructured by substituting the suitable values of n and m in generalized algorithms
for the solution of the nth order linear and nonlinear differential equations with a set of
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constraints. Hence, we showed that several algorithms based on the interpolating and ap-
proximating refinement schemes for solving differential equations are the special cases of
our unified algorithms.

8 Limitations of generalized algorithms
In this section, we present limitations of our generalized algorithms based on binary in-
terpolating refinement schemes for the solution of the nth order linear and nonlinear dif-
ferential equations with a set of constraints.

• Our algorithm is a generalization of all the existing algorithms based on interpolating
or approximating subdivision schemes.

• We can easily reconstruct an algorithm to find the solution of any order linear and
nonlinear differential equations with a set of constraints just by substituting the
suitable values of n (order of DEs) and m1 (number of points in a subdivision scheme)
in generalized algorithms.

• Our generalized algorithms reconstruct all the subdivision-based algorithms for the
solution of the nth order linear and nonlinear ordinary differential equations with a
set of constraints defined at a = 0 and b = 1.

• Our generalized algorithm is not applicable when the constraints are defined at points
other than a = 0 and b = 1.
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