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Abstract
We introduce new time scales on Z. Based on this, we investigate the discrete
inequality of Hermite–Hadamard type for discrete convex functions. Finally, we
improve our result to investigate the discrete fractional inequality of
Hermite–Hadamard type for the discrete convex functions involving the left nabla
and right delta fractional sums.
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1 Introduction
The integral inequality of Hermite–Hadamard type (or briefly HH-type) is a very interest-
ing topic of mathematical analysis, this challenging topic has been developing very rapidly
in the last three decades; see e.g. [1–5].

In the literature, there are two well-known types of HH-type inequalities which were
obtained by Sarikaya et al. in [6] and [7], respectively. Their results are, respectively,
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These results are valid for any ε > 0 and any L1 convex function ϒ : [κ1,κ2] → R. The
difference between (1.1) and (1.2) is that in (1.1) is that we are considering fractional inte-
gration from the two respective ends of the interval [κ1,κ2] instead of from the center of
the interval [κ1,κ2] as used in (1.2).
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In the last ten years, the study of inequalities on time scales has received a lot of atten-
tion in the literature and has become important in both the fields of pure and of applied
mathematics; see e.g. [8–13].

In 2016, Atici and Yildiz [10] obtained the discrete Hermite–Hadamard inequalities cor-
responding to (1.1) on the time scale �[κ1,κ2] := {h; h = κ2–c

κ2–κ1
for c ∈ [κ1,κ2]Z}, their results

are as follows.

Theorem 1.1 Let ϒ : Z→R be a convex function on [κ1,κ2]Z and κ1,κ2 ∈ Z with κ1 < κ2.
If κ1 + κ2 is an even number, then, for c ∈ �[κ1,κ2] \ {0, 1}, we have

ϒ
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2

. (1.3)

Theorem 1.2 Let ϒ : Z→R be a convex function on [κ1,κ2]Z and κ1,κ2 ∈ Z with κ1 < κ2.
If κ1 + κ2 is an even number, then, for ε > 0 and c ∈ �[κ1,κ2] \ {0, 1}, we have

ϒ
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, (1.4)

where

� =
∫

�[κ1,κ2]

(
(κ2 – κ1)c + ε – 1

)ε–1
�̂c.

In the literature, the inequalities of HH-type are often connected with further integral
inequalities which are called trapezoidal type (where the ends a, b of the interval are used)
or midpoint type (where the midpoint κ1+κ2

2 of the interval is used). Many inequalities of
such a type have been obtained by many researchers; see e.g. [14–23].

In the present study, we obtain the new discrete inequalities of HH-type corresponding
to (1.2) on the new time scales �[ κ1+κ2

2 ,κ2], where

�[ κ1+κ2
2 ,κ2] :=

{
h; h =

2(κ2 – c)
κ2 – κ1

such that c ∈
[

κ1 + κ2

2
,κ2

]
Z

}
, (1.5)

where [κ1,κ2]Z = [κ1,κ2]∩Z. We can observe that �[ κ1+κ2
2 ,κ2] is a finite subset of the interval

[0, 1].

2 Discrete inequality of HH-type
At first, we need to recall the following preliminary definitions and theorems of discrete
time scales.

Definition 2.1 ([10]) Let z1, z2 be two elements of a time scale � with z1 < z2. A function
ϒ : � → R is said to be convex on �, if

ϒ
(
cz1 + (1 – c)z2

) ≤ cϒ(z1) + (1 – c)ϒ(z2)

holds for each c ∈ �[z1,z2].
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In the following theorem, we recall the time scale substitution rule.

Theorem 2.1 ([24]) Let w : Z → R be strictly increasing and �̂ := w(�) be a time scale. If
ϒ : Z →R is an rd-continuous function and w is differentiable with rd-continuous deriva-
tive, then for κ1,κ2 ∈ �[κ1,κ2] we have
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ϒ ◦ w–1)(s)�̂s,

or
∫ κ2

κ1

ϒ(c)w∇ (c)∇c =
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ϒ(c).

Theorem 2.2 (Dual time scale substitution rule [24]) Let � be a time scale and �̂ := {s ∈
R; –s ∈ �}. Let w : Z →R be strictly increasing and �̂ := w(�) be a time scale. If ϒ : Z →R

is a continuous function and w is differentiable with rd-continuous derivative, then for
κ1,κ2 ∈ �[κ1,κ2] we have
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(
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The first result starts from the following main theorem.

Theorem 2.3 Let ϒ : Z→R be a convex function on [κ1,κ2]Z and κ1,κ2 ∈ Z with κ1 < κ2.
If κ1 + κ2 is an even number, then we have
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≤ 2
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]
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Proof Let c ∈ �[ κ1+κ2
2 ,κ2] \ {0, 1} be fixed. Then we can see that
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2 – c
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c
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c
2
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are in [κ1,κ2]Z and z1 + z2 = κ1 + κ2 is even. Since 1
2 ∈ �[z1,z2] (or �[z2,z1]) and ϒ is convex

on [z1, z2]Z (or [z2, z1]Z), we can deduce
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Integrating both sides over �[ κ1+κ2
2 ,κ2] we get

∫
�[ κ1+κ2

2 ,κ2]

ϒ

(
κ1 + κ2

2

)
�̂c

≤ 1
2

[∫
�[ κ1+κ2

2 ,κ2]

ϒ

(
2 – c

2
κ1 +

c
2
κ2

)
�̂c

+
∫

�[ κ1+κ2
2 ,κ2]

ϒ

(
c
2
κ1 +

2 – c
2

κ2

)
�̂c

]
=

1
2

[h1 + h2], (2.2)

where �̂ is the derivative operator on the time scale �[ κ1+κ2
2 ,κ2].

Making use of Theorem 2.1 with w(c) := 2(c–κ1)
κ2–κ1

we get
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where we used that w�(c) = 2
κ2–κ1

and w([ κ1+κ2
2 ,κ2]Z) = �[κ1, κ1+κ2

2 ] is also a time scale.
On the other hand, for w(c) := 2(κ2–c)

κ2–κ1
, we have
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ϒ
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)
=

2(s – κ2)
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we have (f –1 ◦ w)�(s) = 2
κ2–κ1

> 0 and hence f –1 ◦ w is strictly increasing. Thus, by making
use of Theorem 2.2, we get
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2
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2

ϒ(c)∇c. (2.4)

Thus, the one half of the inequality in (2.1) follows from (2.2)–(2.4).
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To prove the other half of the inequality in (2.1), we use the convexity of ϒ and the
following inequalities:

ϒ

(
2 – c

2
κ1 +

c
2
κ2

)
≤ 2 – c

2
ϒ(κ1) +

c
2
ϒ(κ2);

ϒ

(
c
2
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2 – c
2
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)
≤ c

2
ϒ(κ1) +

2 – c
2

ϒ(κ2).

Adding these we obtain

ϒ

(
2 – c

2
κ1 +

c
2
κ2

)
+ ϒ

(
c
2
κ1 +

2 – c
2

κ2

)
≤ ϒ(κ1) + ϒ(κ2).

Integrating both sides over �[ κ1+κ2
2 ,κ2] we get

∫
�[ κ1+κ2

2 ,κ2]

ϒ

(
2 – c

2
κ1 +

c
2
κ2

)
�̂c +

∫
�[ κ1+κ2

2 ,κ2]

ϒ

(
c
2
κ1 +

2 – c
2

κ2

)
�̂c

≤ ϒ(κ1) + ϒ(κ2).

We can use the same method used above we get

2
κ2 – κ1

[∫ κ2

κ1+κ2
2

ϒ(c)�c +
∫ κ2

κ1+κ2
2

ϒ(c)∇c
]

≤ ϒ(κ1) + ϒ(κ2),

and thus the result follows. �

3 Discrete fractional inequality of HH-type
The left nabla fractional sum of ϒ of order ε is defined by [25–27]

(
κ1∇–εϒ

)
(c) :=

1
�(ε)

c∑
r=κ1+1

(
c – ρ(r)

)ε–1
ϒ(r), (3.1)

and the right delta fractional sum of ϒ of order ε is defined by [25, 26]

(
�–ε

κ2 ϒ
)
(c) :=

1
�(ε)

κ2∑
r=c+ε

(
r – σ (c)

)(ε–1)
ϒ(r), (3.2)

for ε ∈ R \ {· · · , –2, –1, 0}. For arbitrary c, ε ∈ R and h > 0, the rising and falling factorial
functions are, respectively, defined by [27]

cε =
�(c + ε)

�(c)
, c ∈R \ {. . . , –2, –1, 0},

c(ε) =
�(c + 1)

�(c + 1 – ε)
,

(3.3)

such that 0ε = 0 and we use the convention that divisions at poles yield zero.
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Remark 3.1 In view of the rising and falling factorial functions in (3.3), we have

(κ2 – r + ε – 1)(ε–1) = (κ2 – r + 1)ε–1.

Theorem 3.1 Let ϒ : Z→R be a convex function on [κ1,κ2]Z and κ1,κ2 ∈ Z with κ1 < κ2.
If κ1 + κ2 is an even number, then, for ε > 0, we have

ϒ

(
κ1 + κ2

2

)
≤ �(ε)

�(κ2 – κ1)

[(
�–ε

κ2–1ϒ
)(κ1 + κ2

2
– ε

)
+

(
κ1+κ2

2
∇–εϒ

)
(κ2)

]

≤ ϒ(κ1) + ϒ(κ2), (3.4)

where

� =
∫

�[ κ1+κ2
2 ,κ2]

(
κ2 – κ1

2
(c – 1) + (ε – 1)

)ε–1

�̂c.

Proof Let c ∈ �[ κ1+κ2
2 ,κ2]. Then we can see that

z1 =
c
2
κ1 +

2 – c
2

κ2, z2 =
2 – c

2
κ1 +

c
2
κ2

are in [κ1,κ2]Z and z1 + z2 = κ1 + κ2 is even. Since 1
2 ∈ [z1, z2]Z (or [z2, z1]Z) and ϒ is convex

on [z1, z2]Z (or [z2, z1]Z), we can deduce

ϒ

(
κ1 + κ2

2

)
= ϒ

(
z1 + z2

2

)
≤ ϒ(z1) + ϒ(z2)

2

=
1
2

[
ϒ

(
c
2
κ1 +

2 – c
2

κ2

)
+ ϒ

(
2 – c

2
κ1 +

c
2
κ2

)]
.

Multiplying both sides by ( κ2–κ1
2 (c – 1) + (ε – 1))(ε–1) and then integrating over �[ κ1+κ2

2 ,κ2]
we get

ϒ

(
κ1 + κ2

2

)∫
�[ κ1+κ2

2 ,κ2]

(
κ2 – κ1

2
(c – 1) + (ε – 1)

)(ε–1)

�̂c

≤ 1
2

[∫
�[ κ1+κ2

2 ,κ2]

(
κ2 – κ1

2
(c – 1) + (ε – 1)

)(ε–1)

ϒ

(
2 – c

2
κ1 +

c
2
κ2

)
�̂c

+
∫

�[ κ1+κ2
2 ,κ2]

(
κ2 – κ1

2
(c – 1) + (ε – 1)

)(ε–1)

ϒ

(
c
2
κ1 +

2 – c
2

κ2

)
�̂c

]

:=
1
2

[h1 + h2], (3.5)

where �̂ is the derivative operator on the time scale �[ κ1+κ2
2 ,κ2].

We assert that

h1 :=
2�(ε)
κ2 – κ1

(
�–ε

κ2–1ϒ
)(κ1 + κ2

2
– ε

)
.
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To prove this, we define w(c) := 2(c–κ1)
κ2–κ1

, g(c) := (c – κ1+κ2
2 + (ε – 1))ε–1 and F(c) = g(c)ϒ(c),

then we have

F
(
w–1(c)

)
= (gf )

(
w–1(c)

)
= g

(
w–1(c)

)
ϒ

(
w–1(c)

)

=
(

κ2 – κ1

2
(c – 1) + (ε – 1)

)(ε–1)

ϒ

(
2 – c

2
κ1 +

c
2
κ2

)
.

Then, by making use of Theorem 2.1 for the above findings, we get

h1 =
∫

�[ κ1+κ2
2 ,κ2]

(
κ2 – κ1

2
(c – 1) + (ε – 1)

)(ε–1)

ϒ

(
2 – c

2
κ1 +

c
2
κ2

)
�̂c

=
∫ κ2

κ1+κ2
2

F(c)w�(c)�c =
2

κ2 – κ1

κ2–1∑
r= κ1+κ2

2

(
r –

κ1 + κ2

2
+ (ε – 1)

)(ε–1)

ϒ(r)

=
2�(ε)
κ2 – κ1

(
�–ε

κ2–1ϒ
)(κ1 + κ2

2
– ε

)
.

This completes the proof of our assertion.
On the other hand, we assert that

h2 :=
(

κ1+κ2
2

∇–εϒ
)
(κ2).

Then, for w(c) := 2(κ2–c)
κ2–κ1

, we have

h2 =
∫

�[ κ1+κ2
2 ,κ2]

(
κ2 – κ1

2
(c – 1) + (ε – 1)

)(ε–1)

ϒ

(
c
2
κ1 +

2 – c
2

κ2

)
�̂c

=
∫

�[ κ1+κ2
2 ,κ2]

(
F ◦ w–1)(c)�̂c

=
∫ 1

0

(
F ◦ w–1)(c)�̂c =

∫ 0

–1

(
F ◦ w–1)∗(s)∇̂s

=
∫ 0=(f –1◦w)(κ2)

–1=(f –1◦w)( κ1+κ2
2 )

F
((

f –1 ◦ w
)–1)(s)∇̂s,

where f (s) = –s, g(c) := (κ2 – c + (ε – 1))ε–1, F(c) = g(c)ϒ(c) and we used that

(
F ◦ w–1)∗(s) = F

(
w–1(–s)

)
= F

((
w–1 ◦ f

)
(s)

)
= F

((
f –1 ◦ w

)–1)(s).

Since

(
f –1 ◦ w

)
(s) = f –1(w(s)

)
= f –1

(
2(κ2 – s)
κ2 – κ1

)
=

2(s – κ2)
κ2 – κ1

we have (f –1 ◦ w)�(s) = 2
κ2–κ1

> 0 and hence f –1 ◦w is strictly increasing. Therefore, by mak-
ing use of Theorem 2.2 and Remark 3.1, we get

h2 =
∫ 0

–1
F
(
f –1 ◦ w

)–1(c)∇̂c =
2

κ2 – κ1

∫ κ2

κ1+κ2
2

F(c)∇c
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=
2

κ2 – κ1

κ2∑
r= κ1+κ2

2 +1

(κ2 – r + ε – 1)(ε–1)ϒ(r)

=
2

κ2 – κ1

κ2∑
r= κ1+κ2

2 +1

(
κ2 – σ (r)

)ε–1
ϒ(r) =

2�(ε)
κ2 – κ1

(
κ1+κ2

2
∇–εϒ

)
(κ2).

This completes the second assertion and thus

ϒ

(
κ1 + κ2

2

)
≤ �(ε)

�(κ2 – κ1)

[(
�–ε

κ2–1ϒ
)(κ1 + κ2

2
– ε

)
+

(
κ1+κ2

2
∇–εϒ

)
(κ2)

]
. (3.6)

To prove the other half of the inequality in (2.1), we use the convexity of ϒ and the
following inequalities:

ϒ

(
2 – c

2
κ1 +

c
2
κ2

)
≤ 2 – c

2
ϒ(κ1) +

c
2
ϒ(κ2);

ϒ

(
c
2
κ1 +

2 – c
2

κ2

)
≤ c

2
ϒ(κ1) +

2 – c
2

ϒ(κ2).

Adding these we obtain

ϒ

(
c
2
κ1 +

2 – c
2

κ2

)
+ ϒ

(
2 – c

2
κ1 +

c
2
κ2

)
≤ ϒ(κ1) + ϒ(κ2).

Multiplying both sides by ( κ2–κ1
2 (c – 1) + (ε – 1))(ε–1) and then integrating both sides over

�[ κ1+κ2
2 ,κ2] we get

∫
�[ κ1+κ2

2 ,κ2]

(
κ2 – κ1

2
(c – 1) + (ε – 1)

)(ε–1)

ϒ

(
c
2
κ1 +

2 – c
2

κ2

)
�̂c

+
∫

�[ κ1+κ2
2 ,κ2]

(
κ2 – κ1

2
(c – 1) + (ε – 1)

)(ε–1)

ϒ

(
2 – c

2
κ1 +

c
2
κ2

)
�̂c

≤ [
ϒ(κ1) + ϒ(κ2)

] ∫
�[ κ1+κ2

2 ,κ2]

(
κ2 – κ1

2
(c – 1) + (ε – 1)

)(ε–1)

�̂c.

We can use the same method used above to get

�(ε)
�(κ2 – κ1)

[(
�–ε

κ2–1ϒ
)(κ1 + κ2

2
– ε

)
+

(
κ1+κ2

2
∇–εϒ

)
(κ2)

]
≤ ϒ(κ1) + ϒ(κ2),

and thus the result follows. �

Remark 3.2 In the literature of fractional integral inequalities there are three major HH-
type inequalities, namely the endpoint, midpoint and end–midpoint HH-types inequali-
ties; for more details we advise the reader to read the Discussion section of Ref. [28]. For-
tunately, the endpoint version of HH-type inequality in the time scale notation has been
established by Atıcı and Yaldız in [10]. Also, the inequality (3.4) obtained in Theorem 3.1
represents the midpoint version of HH-type inequality which has never been presented
before.
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4 Conclusion
The inequality of HH-type plays a crucial role in the theory and application of convex
functions. During the last two decades, it has been used as an essential tool to obtain
many results in approximation theory, integral inequalities, numerical analysis and opti-
mization theory. In this study, we have considered new discrete time scales to obtain some
inequalities of midpoint type for convex functions which have never presented before.
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6. Sarikaya, M.Z., Set, E., Yaldiz, H., Başak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related

fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013)
7. Sarikaya, M.Z., Yildirim, H.: On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc

Math. Notes 17(2), 1049–1059 (2017)
8. Anastassiou, G.A.: Nabla discrete fractional calculus and nabla inequalities. Math. Comput. Model. 51, 562–571 (2010)
9. Agarwal, R., O’Regan, D., Saker, S.: Dynamic Inequalities on Time Scales. Springer, New York (2014)
10. Atıcı, F.M., Yaldız, H.: Convex functions on discrete time domains. Can. Math. Bull. 59(2), 225–233 (2016)
11. Yaldız, H., Agarwal, P.: s-convex functions on discrete time domains. Analysis 37(4), 179–184 (2017)
12. Atıcı, F.M., Eloe, P.W.: Discrete fractional calculus with the Nabla operator. Electron. J. Qual. Theory Differ. Equ. 1, 3

(2009)
13. Mohammed, P.O.: Some integral inequalities of fractional quantum type. Malaya J. Mat. 4(1), 93–99 (2016)
14. Awan, M.U., Talib, S., Chu, Y.-M., Noor, M.A., Noor, K.I.: Some new refinements of Hermite–Hadamard-type inequalities

involving ψk -Riemann–Liouville fractional integrals and applications. Math. Probl. Eng. 2020, 3051920 (2020)
15. Fernandez, A., Mohammed, P.: Hermite–Hadamard inequalities in fractional calculus defined using Mittag-Leffler

kernels. Math. Methods Appl. Sci., 1–18 (2020). https://doi.org/10.1002/mma.6188
16. Mohammed, P.O.: Hermite–Hadamard inequalities for Riemann–Liouville fractional integrals of a convex function

with respect to a monotone function. Math. Methods Appl. Sci., 1–11 (2019). https://doi.org/10.1002/mma.5784

https://doi.org/10.1002/mma.6188
https://doi.org/10.1002/mma.5784


Mohammed et al. Advances in Difference Equations        (2021) 2021:122 Page 10 of 10

17. Mohammed, P.O., Abdeljawad, T.: Modification of certain fractional integral inequalities for convex functions. Adv.
Differ. Equ. 2020, 69 (2020)

18. Mohammed, P.O., Brevik, I.: A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional
integrals. Symmetry 12, 610 (2020). https://doi.org/10.3390/sym12040610

19. Rashid, S., Safdar, F., Akdemir, A.O., Noor, M.A., Noor, K.I.: Some new fractional integral inequalities for exponentially
m-convex functions via extended generalized Mittag-Leffler function. J. Inequal. Appl. 2019, 299 (2019)

20. Zhou, S.-S., Rashid, S., Noor, M.A., Noor, K.I., Safdar, F., Chu, Y.-M.: New Hermite–Hadamard type inequalities for
exponentially convex functions and applications. AIMS Math. 5(6), 6874–6901 (2020)

21. Mohammed, P.O., Sarikaya, M.Z.: On generalized fractional integral inequalities for twice differentiable convex
functions. J. Comput. Appl. Math. 372, 112740 (2020)

22. Mohammed, P.O., Sarikaya, M.Z., Baleanu, D.: On the generalized Hermite–Hadamard inequalities via the tempered
fractional integrals. Symmetry 12, 595 (2020). https://doi.org/10.3390/sym12040595

23. Huang, C.J., Rahman, G., Nisar, K.S., Ghaffar, A., Qi, F.: Some inequalities of Hermite–Hadamard type for k-fractional
conformable integrals. Aust. J. Math. Anal. Appl. 16, 1–9 (2019)

24. Eloe, P.W., Sheng, Q., Henderson, J.: Notes on crossed symmetry solutions of the two-point boundary value problems
on time scales. J. Differ. Equ. Appl. 9(1), 29–48 (2003)

25. Abdeljawad, T., Baleanu, D.: Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler
kernel. Chaos Solitons Fractals 116, 1–5 (2017)

26. Abdeljawad, T., Baleanu, D.: Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels. Adv. Differ.
Equ. 2016, 232 (2016)

27. Goodrich, C., Peterson, A.: Discrete Fractional Calculus. Springer, Berlin (2015)
28. Mohammed, P.O., Abdeljawad, T., Kashuri, A.: Fractional Hermite–Hadamard–Fejer inequalities for a convex function

with respect to an increasing function involving a positive weighted symmetric function. Symmetry 12(9), 1503
(2020)

https://doi.org/10.3390/sym12040610
https://doi.org/10.3390/sym12040595

	New discrete inequalities of Hermite-Hadamard type for convex functions
	Abstract
	MSC
	Keywords

	Introduction
	Discrete inequality of HH-type
	Discrete fractional inequality of HH-type
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Consent for publication
	Authors' contributions
	Author details
	Publisher's Note
	References


