
Luo Advances in Difference Equations        (2021) 2021:144 
https://doi.org/10.1186/s13662-021-03292-1

R E S E A R C H Open Access

On oscillation of higher-order advanced
trinomial differential equations
Demou Luo1*

*Correspondence:
223787092@qq.com
1School of Mathematics, Sun
Yat-sen University, Guangzhou
510275, Guangdong, P.R. China

Abstract
We study the oscillatory property of the higher-order trinomial differential equation
with advanced effects

x(n)(t) + p(t)x′(t) + q(t)x(σ (t)) = 0, σ (t) ≥ t.

Suppose that all solutions of the corresponding (n – 1)th-order two-term differential
equation

y(n–1)(t) + p(t)y(t) = 0

are non-oscillatory. In order to supplement the research in the theory of oscillation
proposed by (Džurina et al. in Electron. J. Differ. Equ. 2015:70, 2015), two types of
clearly confirmable criteria for oscillatory behavior of the investigated equation are
obtained. Some examples are offered to describe our main results.
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1 Introduction
This paper focuses on the oscillatory behavior of solutions to a higher-order trinomial
differential equation with advanced effects

x(n)(t) + p(t)x′(t) + q(t)x
(
σ (t)

)
= 0, σ (t) ≥ t (1.1)

for all t ≥ t0. Throughout the remaining parts of this article, we need to establish some
hypotheses as follows:

(H1) p(t) and q(t) ∈ C([t0,∞)), p(t) is nonnegative, q(t) is positive;
(H2) σ (t) ∈ C([t0,∞)), σ (t) ≥ t.

The oscillatory behavior of ordinary differential equations (ODEs) is one of the significant
branching problems of differential equations. The oscillatory problems to the wings of the
plane can be modeled by the oscillatory problems of ODEs. As a matter of fact, differential
equations with deviating arguments have numerous applications in engineering and natu-
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ral sciences (see [9, 12, 26] for more details). By a solution of Eq. (1.1), we mean a nontrivial
real function x(t), x ∈ C1([Tx,∞),R), Tx ≥ t0, which satisfies (1.1) on [Tx,∞). We investi-
gate only proper solutions x(t) to Eq. (1.1) with the property sup{|x(t)| : T < t < ∞} > 0, for
any T ≥ Tx and existing on some half-line [Tx,∞). Tacitly, we suppose that for Eq. (1.1)
there exists such a solution. As is customary, if a solution of Eq. (1.1) possesses arbitrarily
many zeros on the interval [Tx,∞), we called it an oscillatory solution. Otherwise it is said
to be non-oscillatory. If all solutions to a higher-order functional and differential equation,
such as Eq. (1.1), are oscillatory, it is common to call it an oscillatory equation.

With the social development and the progress of all fields of modern technology and
science, such as economics, aerospace and modern physics, delay differential equations
(DDEs) have received more and more consideration in the past decades. It is well known
that DDEs involve the dependency of the previous state, which can help us to predict the
future state with efficiency and reliability. Meanwhile, many qualitative properties such as
boundedness, stability or periodicity can be explained. If we incorporate the delay effect
into models, it will play a significant role when representing time taken to finish some
veiled procedure. On the contrary, advanced differential equations (ADEs), different from
genetic systems, can also be applied in almost all real-world areas. Population dynamics
in mathematical biology, mechanical control in engineering or problems in economics are
instances of areas where we can discover applications of such differential equations [15].

Regrettably, many oscillation works in the field of ODEs are considered only to finite
order because several systems in engineering are naturally described by ODEs with finite
order [8, 18]. Thus, the main goal of researchers in the area of ODEs is to obtain some
qualitative theories as regards those equations, such as existence, uniqueness, bounded-
ness, periodicity, and stability. Meanwhile, some criteria for the asymptotic behavior and
oscillation of such equations are also important for the investigation of ODEs; see, for
instance, [4, 18, 27]. We suggest the reader to consult the outstanding treatises of Elias
[14], Chanturia and Kiguradze [19] and Swanson [29] for scientific research of the most
important efforts made in this theory. However, several researchers, such as the authors
in [2–5, 17, 25], in the field of mathematics have obtained some sufficient conditions to
guarantee that all solutions of the nth-order equations

y(n)(t) + q(t)y
(
σ (t)

)
= 0 (1.2)

are oscillatory. In 2015 and 2017, Baculíková, Džurina and Jadlovská [11, 13] discussed the
oscillatory behaviors of solutions of the two equations

x(4)(t) + p(t)x′(t) + q(t)x
(
τ (t)

)
= 0 (1.3)

and

x(4)(t) – p(t)x′(t) + q(t)x
(
τ (t)

)
= 0, (1.4)

respectively. In addition, [30, 31] were concerned with the oscillatory properties of solu-
tions to the Swift–Hohenberg differential equation (1.3). At the end of [13], they proposed
an interesting problem for further investigation: how these equations can be higher-order
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trinomial delay equations of the form

x(n)(t) ± p(t)x(n–3)(t) + q(t)x
(
τ (t)

)
= 0, n ≥ 4, (1.5)

and

x(n)(t) ± p(t)x′(t) + q(t)x
(
τ (t)

)
= 0, n ≥ 3, (1.6)

respectively. Recently, the authors in [1] have established some improved and generalized
criteria for the even-order ADE

(
r(t)

(
y(n–1)(t)

)α)′ + q(t)yα
(
σ (t)

)
= 0. (1.7)

The study of oscillation theorems to trinomial fourth-order equations without or with
deviating effects is investigated in [7, 8]. Other authors were concerned with the higher-
order cases; see, among others, [1, 5, 17, 21, 27]. In particular, some attempts were made
for an analogue of (1.3), of the form

x(n+3)(t) + p(t)x(n)(t) + q(t)x
(
τ (t)

)
= 0, τ (t) ≤ t. (1.8)

In 2014, Liang [27] has investigated oscillation and asymptotic properties of Eq. (1.8). He
deduced some sufficient conditions to guarantee all solutions to tend to zero as t → ∞
or to oscillate by using a Philos-type integral averaging technique and a generalized Ric-
cati transformation. On the other hand, no references about the oscillation of differential
equations as Eq. (1.1) can be found. The main reason of this phenomenon is the increas-
ing of the difference between the order of the two highest derivatives. In the meantime,
we must recognize the complicatedness of the structure of non-oscillatory solutions to
Eq. (1.1). If we pay attention to the first-order derivative of a non-oscillatory solution of
Eq. (1.1), we can discover that it can be either negative or positive or even it may oscillate.

In this article, we focus on the asymptotic properties of the nth-order trinomial ad-
vanced linear differential equation

x(n)(t) + p(t)x′(t) + q(t)x
(
σ (t)

)
= 0.

By deducing some novel comparison criteria together with integral criteria for Eq. (1.1), we
establish some sufficient conditions to fill the holes in the oscillation theory of ODEs. We
note that Eq. (1.1) with p(t) = 0 is exactly Eq. (1.2), Eq. (1.1) with n = 4 is exactly Eq. (1.3)
with advanced argument. Thus, we argue that it will be useful and interesting to consider
the oscillatory behavior of Eq. (1.1) because it can extend the former investigations and will
offer a profitable new breakthrough for the oscillatory behavior of ODEs widely applied in
the domain of economics, technology and ecology.

This article is organized into six sections. We propose some preliminary lemmas and
definitions that are used in the proof of our main theorems in Sect. 2. In Sect. 3, we es-
tablish some useful preliminary results which will be applied in our main theorems. In
Sect. 4, a generalized comparison criteria for the oscillation of Eq. (1.1) is deduced. Two
examples are provided to check the efficiency of our main results. Several innovative in-
tegral criteria are added in Sect. 5 to provide several verifiable and calculable oscillation
criteria for the system of Eq. (1.1). Finally, we propose some conclusions in Sect. 6.
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2 Preliminaries
As we have proposed before, this section will introduce some notations applied in the
article, discuss some preliminaries which are essential in the proofs of our main results
and state the assumptions imposed on Eq. (1.1). Then we have the following three lemmas
proposed by Kiguradze and Chaturia [19].

Lemma 1 ([19], Corollary 2.8) Suppose that either

lim sup
t→∞

tnp(t) < –m∗
n

or

lim inf
t→∞ tnp(t) > m∗n.

Then the higher-order two-term differential equation x(n)(t) + p(t)x(t) = 0 is oscillatory,
where m∗n and m∗

n stand for, respectively, the smallest local maxima of the two n-degree
polynomials

P∗n = (x – n + 1)(x – n + 2) · · · (x – 1)x

and

P∗
n = –(x – n + 1)(x – n + 2) · · · (x – 1)x.

Lemma 2 ([19], Corollary 2.8) Assume that t0 ≥ 0 and

m∗n ≥ tnp(t) ≥ –m∗
n,

for t ≥ t0, then the higher-order two-term differential equation x(n)(t) + p(t)x(t) = 0 is non-
oscillatory.

Lemma 3 ([19]) Let x(t) ∈ Cn([t0,∞),R+). If x(n)(t) is eventually of one sign for all large t
then there exist a tx ≥ t0 and an integer �, 0 ≤ � ≤ n with n + � even for x(n)(t) ≥ 0, or n + �

odd for x(n)(t) ≤ 0 such that � > 0 implies that x(k)(t) > 0, for t ≥ tx, k = 0, 1, . . . ,� – 1, and
� ≤ n – 1 implies that (–1)�+kx(k)(t) > 0, for t ≥ tx, k = �,� + 1, . . . , n – 1.

Definition 1 ([19]) Suppose that all nontrivial solutions of Eq. (1.1) for n odd either are
oscillatory or satisfy the condition

x(t)x′(t) < 0

for t ≥ t0, where t0 is a positive number depending on the solution, and for n even are
oscillatory. Then Eq. (1.1) possesses property A.

Definition 2 ([19], Definition 13.1) Suppose that x(t), defined on [t1, +∞) ⊂ [t0, +∞), rep-
resents a nontrivial solution of Eq. (1.1). If it satisfies, for t ≥ t0 and i = 0, 1, . . . , n – 1,

(–1)ix(i)(t)x(t) ≥ 0,

then we term it a Kneser solution.
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Suppose that τ (t) < t, limt→∞ τ (t) = +∞ and p(t), τ (t) ∈ C[R+,R+]. With retarded argu-
ment, the remaining part of this section will investigate the oscillatory property of solu-
tions to the following two-term differential inequalities and equation:

x′(t) + p(t)x
(
τ (t)

) ≤ 0, (2.1)

x′(t) + p(t)x
(
τ (t)

) ≥ 0, (2.2)

and

x′(t) + p(t)x
(
τ (t)

)
= 0. (2.3)

It is significant to study that the oscillation of (2.1)–(2.3) holds for higher-order differential
equations or not. We derive the following lemma based on Ladas [22] (see also [10, 20, 23,
28]).

Lemma 4 Suppose that

lim inf
t→∞

∫ τ (t)

t
–p(s) ds >

1
e

. (2.4)

Then
(i) the eventually positive solutions of (2.1) are nonexistent;

(ii) the eventually negative solutions of (2.2) are nonexistent;
(iii) the non-oscillatory solutions of (2.3) are nonexistent.

There are two important lemmas proposed by Fukagai and Kusano [16], we recall them.

Lemma 5 ([16]) Suppose that σ (t) ≥ t, σ (t), p(t) ∈ C[R+,R+] and

lim inf
t→∞

∫ σ (t)

t
p(s) ds >

1
e

.

Then 0 ≤ sgn(x(t))x′(t) – p(t)|x(σ (t))| is oscillatory.

Lemma 6 ([16], Theorem 1) Assume that σ (t) ≥ t and p(t) ≤ 0 for t ≥ t0. If

lim inf
t→∞

∫ t

σ (t)
p(s) ds >

1
e

,

then the equation

x′(t) + p(t)x
(
σ (t)

)
= 0 (2.5)

is oscillatory. In addition, if,

∫ σ (t)

t
p(s) ds ≥ 1

e
,

for all large enough t, then Eq. (2.5) has an eventually non-oscillatory solution.
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3 Preliminary results
We will introduce and deduce some preliminary results specific to higher-order differ-
ential equations in this section, which are important to the proof of our main theorems.
At the beginning, we devote our study to the decomposition of the positive solutions of
Eq. (1.1). Based on the theory of disconjugate operators, all positive solutions of Eq. (1.1)
have been decomposed by supposing that y(n–1)(t) + p(t)y(t) = 0 is non-oscillatory. We ar-
gue that x(t) of Eq. (1.1), a non-oscillatory solution, is a Kneser solution if it can only obey
the following condition: 0 > x′(t)x(t).

We recall a significant lemma proposed by Kiguradze and Chaturia [19] with a modifi-
cation.

Theorem 1 Assume that all solutions of

y(n–1)(t) + p(t)y(t) = 0 (3.1)

are non-oscillatory. Then every positive solution x(t) of Eq. (1.1) (for n even) satisfies one of
the following:

x(t) ∈N1

⇐⇒ x(t) > 0, x′(t) > 0, x′′(t) < 0, x′′′(t) > 0, x(4)(t) < 0, . . . , x(n–1)(t) > 0, x(n)(t) ≤ 0;

x(t) ∈N3

⇐⇒ x(t) > 0, x′(t) > 0, x′′(t) > 0, x′′′(t) > 0, x(4)(t) < 0, . . . , x(n–1)(t) > 0, x(n)(t) ≤ 0;

. . . . . .

x(t) ∈Nn–1

⇐⇒ x(t) > 0, x′(t) > 0, x′′(t) > 0, x′′′(t) > 0, x(4)(t) < 0, . . . , x(n–1)(t) > 0, x(n)(t) ≤ 0;

and every positive solution x(t) of Eq. (1.1) (for n odd) satisfies one of the following:

x(t) ∈N2

⇐⇒ x(t) > 0, x′(t) > 0, x′′(t) > 0, x′′′(t) < 0, x(4)(t) > 0, . . . , x(n–1)(t) > 0, x(n)(t) ≤ 0;

x(t) ∈N4

⇐⇒ x(t) > 0, x′(t) > 0, x′′(t) > 0, x′′′(t) > 0, x(4)(t) > 0, . . . , x(n–1)(t) > 0, x(n)(t) ≤ 0;

. . . . . .

x(t) ∈Nn–1

⇐⇒ x(t) > 0, x′(t) > 0, x′′(t) > 0, x′′′(t) > 0, x(4)(t) > 0, . . . , x(n–1)(t) > 0, x(n)(t) ≤ 0.

N0 (Kneser solution) satisfies x(t)x′(t) < 0.

Proof Suppose that x(t) > 0 is a non-oscillatory solution of Eq. (1.1). Without loss of gen-
erality, we can suppose that y(t) > 0 for t ≥ t0. Due to p(t) ≥ 0, we have y(n–1)(t) ≤ 0. It is
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obvious that y(t) = x′(t) is a solution of

y(n–1)(t) + p(t)y(t) + q(t)x
(
σ (t)

)
= 0.

Based on Lemma 3, the situation of N1,N2, . . . ,Nn–1 is obvious. In what follows we only
need to consider the situation of N0. We denote

F
(
x
(
σ (t)

)
, x′(t), t

)
= –q(t)x

(
σ (t)

)
– p(t)x′(t).

For t ≥ t1, we set F(t, 0, 0) = 0. We derive the existence result to N0 by applying a similar
discussion to that in the proof of Theorem 13.1 of [19]. Thus, it is omitted. �

Remark 1 That all solutions of y(n–1) + py = 0 are non-oscillatory is equivalent to saying
that this equation is eventually disconjugate.

We deduce the following corollary in view of the non-oscillation criterion of Eq. (3.1).

Corollary 1 Suppose that

m∗n–1 > lim inf p(t) · tn–1, (3.2)

and for Eq. (1.1) the positive solution class N0 is an empty set. Then the non-oscillatory set
Neven for Eq. (1.1) (for n even) has the following decomposition:

Neven = N1 ∪N3 ∪ · · · ∪Nn–1,

and the non-oscillatory set Nodd for Eq. (1.1) (for n odd) has the following decomposition:

Nodd = N2 ∪N4 ∪ · · · ∪Nn–1.

Theorem 2 Suppose that (3.2) and

∫ ∞

t1

[
p(s) +

(
σ (s) – t1

)
q(s) –

x(t1)
l0

q(s)
]

(s – t1)n–1 ds ≥ 0 (P0)

hold. If x(t) ∈N0 is a positive solution of (1.1), then

∫ ∞

t

[p(s)x′(s) + q(s)x(σ (s))](s – t)n–2

(n – 2)!
ds ≤ –x′(t)

and, furthermore, x(t) is decreasing.

Proof We suppose that Eq. (1.1) has a positive solution x(t) ∈N0. We argue that (P0) means
limt→∞ x′(t) = 0. If not, we suppose on the contrary that limt→∞ –x′(t) = l0 > 0 and l0 ≤
–x′(t), and so

x
(
σ (t)

) ≤ x(t1) – l0
(
σ (t) – t1

)
.
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Setting the estimates into Eq. (1.1), we obtain

x(n)(t) – l0p(t) + q(t)
[
x(t1) – l0

(
σ (t) – t1

)] ≥ 0.

It is easy to see that

x(n)(t) ≥ l0p(t) + q(t)
[
l0

(
σ (t) – t1

)
– x(t1)

]

≥ l0
[
p(t) +

(
σ (t) – t1

)
q(t)

]
– x(t1)q(t),

and then integrating n times, we obtain

–x(t1) ≥ l0

∫ ∞

t1

∫ ∞

sn–1

· · ·
∫ ∞

s1

[
p(s) +

(
σ (s) – t1

)
q(s) –

x(t1)
l0

q(s)
]

ds ds1 · · · dsn–1

=
l0

(n – 1)!

∫ ∞

t1

(s – t1)n–1
[

p(s) +
(
σ (s) – t1

)
q(s) –

x(t1)
l0

q(s)
]

ds.

In view of (P0) of Theorem 2, we obtain a contradiction. Hence, limt→∞ x′(t) = 0. Further-
more, based on 0 < x(t) and 0 > x′(t), we can effortlessly discover that x(t) is decreasing.
We check

∫ ∞

t

[p(s)x′(s) + q(s)x(σ (s))](s – t)n–2

(n – 2)!
ds ≤ –x′(t),

letting us integrate Eq. (1.1) from t to ∞ to get
∫ ∞

t

[
x(n)(s) + p(s)x′(s) + q(s)x

(
σ (s)

)]
ds = 0,

so we have

x(n–1)(t) ≥
∫ ∞

t

[
p(s)x′(s) + q(s)x

(
σ (s)

)]
ds.

Integrating n – 2 times from t to ∞, one gets
∫ ∞

t

[p(s)x′(s) + q(s)x(σ (s))](s – t)n–2

(n – 2)!
ds ≤ –x′(t).

Therefore, we finish the proof of this theorem. �

Theorem 3 Suppose that (3.2) and
∫ ∞

t1

[
p(s)

(s – t1)k–1

(k – 1)!
+ q(s)

(σ (s) – t1)k

k!

]
(s – t1)n–k–1

(n – k – 1)!
ds = ∞ (Pk)

hold. If x(t) ∈Nk is a positive solution of (1.1), then

tx(k)(t) ≤ x(k–1)(t);

tk–1x(σ (t))
(k – 1)!

∫ ∞

t
q(s)

(s – t)n–k–1

(n – k – 1)!
ds ≤ x′(t),

(3.3)

and, furthermore, x(k–1)(t)
t is decreasing.
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Proof We suppose that Eq. (1.1) possesses a positive solution x(t) ∈Nk . We argue that (Pk)
means limt→∞ x(k)(t) = 0. If not, we suppose on the contrary that limt→∞ x(k)(t) = l > 0 and
l ≤ x(k)(t), and so l (t–t1)k

k! ≤ x(t) and l (t–t1)k–1

(k–1)! ≤ x′(t). In view of the last two estimates, we,
together with Eq. (1.1), obtain

x(n)(t) + l
(t – t1)k–1

(k – 1)!
p(t) + l

(σ (t) – t1)k

k!
q(t) ≤ 0.

Integrating the last inequality n – k times, one gets

x(k)(t1) ≥
∫ ∞

t1

(
–x(k+1)(sn–k–1)

)
dsn–k–1

≥ · · · · · ·

≥
∫ ∞

t1

∫ ∞

sn–k–1

· · ·
∫ ∞

s2

x(n–1)(s1) ds1 ds2 · · · dsn–k–1

≥
∫ ∞

t1

∫ ∞

sn–k–1

· · ·
∫ ∞

s2

∫ ∞

s1

(
–x(n)(s)

)
ds ds1 ds2 · · · dsn–k–1

≥ l
∫ ∞

t1

· · ·
∫ ∞

s1

[
p(s)

(s – t1)k–1

(k – 1)!
+ q(s)

(σ (s) – t1)k

k!

]
ds · · · dsn–k–1

= l
∫ ∞

t1

[
p(s)

(s – t1)k–1

(k – 1)!
+ q(s)

(σ (s) – t1)k

k!

]
(s – t1)n–k–1

(n – k – 1)!
ds.

Based on the condition (Pk) of Theorem 3, we obtain a contradiction. Hence,
limt→∞ x(k)(t) = 0. Furthermore, in view of 0 < x(k)(t) and 0 > x(k+1)(t), we have tx(k)(t) –
t1x(k)(t) ≤ ∫ t

t1
x(k)(s) ds, 0 ≤ x(k–1)(t1) – t1x(k)(t) and

tx(k)(t) ≤ tx(k)(t) + x(k–1)(t1) – t1x(k)(t)

≤ x(k–1)(t1) +
∫ t

t1

x(k)(s) ds

= x(k–1)(t).

Replacing t1 by t in 0 ≤ x(k–1)(t1) – t1x(k)(t), one gets

0 ≤ x(k–1)(t) – tx(k)(t) = –t2
(

tx(k)(t) – x(k–1)(t)
t2

)
= –t2

(
x(k–1)(t)

t

)′
.

Clearly, the function x(k–1)(t)
t is a decreasing function. We check

x(k)(t) ≥ x
(
σ (t)

)∫ ∞

t
q(u)

(u – t)n–k–1

(n – k – 1)!
du,

letting us integrate Eq. (1.1) from t to ∞ to get

∫ ∞

t

[
x(n)(s) + p(s)x′(s) + q(s)x

(
σ (s)

)]
ds = 0,
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i.e.,

x(n–1)(t) ≥
∫ ∞

t

[
p(s)x′(s) + q(s)x

(
σ (s)

)]
ds, (3.4)

which based on the monotonicity of x(t) means

x(n–1)(t) ≥
∫ ∞

t

[
p(s)x′(s) + q(s)x

(
σ (s)

)]
ds

≥
∫ ∞

t
q(s)x

(
σ (s)

)
ds ≥ x

(
σ (t)

)∫ ∞

t
q(s) ds.

(3.5)

Integrating the last inequality with n – k – 1 times from t to ∞, we have

x(k)(t) ≥ x
(
σ (t)

)∫ ∞

t
q(s)

(s – t)n–k–1

(n – k – 1)!
ds.

And according to the monotonicity of

x(t), x′(t), . . . , x(k–1)(t),

we have

x′(t) ≥ x(σ (t))
(n – k – 1)!

· tk–1

(k – 1)!

∫ ∞

t
(s – t)n–k–1q(s) ds.

Therefore, we finish the proof of Theorem 3. �

4 Comparison criteria of Eq. (1.1)
In this section, we will state our new technique and generalized comparison criteria, which
can reduce the difficulty of the oscillation investigation of higher-order trinomial equation.

Primarily, we propose some sufficient conditions which can guarantee that all positive
solutions classes Nk are empty. For simplicity of notation, we write

Z0(t) =
∫ ∞

t

q(s)(s – t)n–2

(n – 2)!
ds,

Zk(t) =
∫ ∞

t

(Pk(s) + q(s))(s – t)n–2

(n – 2)!
ds,

Pk(t) =
p(t) · tk–1

(k – 1)!

∫ ∞

t

q(s)(s – t)n–k–1

(n – k – 1)!
ds.

Theorem 4 Suppose that all solutions of the first-order two-term advanced differential
equation

x′(t) – γ Zk(t)x
(
σ (t)

)
= 0 (Ek)

are oscillatory for some positive constant γ ∈ (0, 1) and that (3.2) holds. Then the positive
solution class Nk = ∅ for Eq. (1.1). In addition, if

1
e

≥
∫ σ (t)

t
γ Zk(s) ds
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for all large enough t, then for Eq. (Ek) there exists an eventually non-oscillatory solu-
tion.

Proof The second part of the theorem can be omitted due to the proof proposed by Ku-
sano and Fukagai [16]. We have the following proof to the first part of this theorem.

By the principle of the reduction to absurdity, we can suppose on the contrary that
for Eq. (1.1) there exists x(t) ∈ Nk , which is an eventually positive solution. Integrating
Eq. (1.1) from t to ∞ leads to (3.4). In view of the estimate of x′(t):

x′(t) ≥ x(σ (t))
(n – k – 1)!

· tk–1

(k – 1)!

∫ ∞

t
(s – t)n–k–1q(s) ds,

we can deduce that

x(n–1)(t) ≥
∫ ∞

t

(
Pk(s) + q(s)

)
x
(
σ (s)

)
ds.

Integrating n – 2 times from t to ∞, we derive

x′(t) ≥
∫ ∞

t

(
Pk(s) + q(s)

) (s – t)n–2

(n – 2)!
x
(
σ (s)

)
ds

≥ x
(
σ (t)

)∫ ∞

t

(
Pk(s) + q(s)

) (s – t)n–2

(n – 2)!
ds.

In addition, we can discover that x(t) satisfies the following first-order differential inequal-
ity:

x′(t) – Qk(t)x
(
σ (t)

) ≥ 0. (4.1)

However, we can check that Lemma 3 of [6] can guarantee that for Eq. (Ek) there exists an
eventually positive solution. This contradiction ends the proof of Theorem 4. �

Theorem 5 Suppose that all solutions of the first-order two-term advanced differential
equation

x′(t) + γ Z0(t)x
(
σ (t)

)
= 0 (E0)

are oscillatory for some γ ∈ (0, 1) and that (3.2) holds. Then the positive solution class N0 =
∅ for Eq. (1.1). In addition, if

1
e

≥
∫ σ (t)

t
γ Z0(s) ds

for all large enough t, then for Eq. (E0) there exists an eventually non-oscillatory solution
(Kneser solution).

Proof The second part of the theorem can be omitted due to the proof proposed by Ku-
sano and Fukagai [16]. We have the following proof to the first part of this theorem.
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By the principle of the reduction to absurdity, we can suppose on the contrary that for
Eq. (1.1) there exists x(t) > 0, which belongs to N0. Integrating Eq. (1.1) n – 1 times from
t to ∞, one gets

0 ≤ x(σ (t))
(n – 2)!

∫ ∞

t
(s – t)n–2q(s) ds + x′(t). (4.2)

In addition, we can discover that x(t) fulfills the inequality

x′(t) + Q0(t)x
(
σ (t)

) ≥ 0. (4.3)

However, we can check that Theorem 1 of [16] can guarantee that for Eq. (E0) there exists
a positive solution. This contradiction ends the proof of Theorem 5. �

Thanks to the above theorems, we can easily derive the following oscillation theorem
for Eq. (1.1).

Theorem 6 Suppose that all solutions of the first-order differential equations (E0) and
(Ek) are oscillatory for some γ ∈ (0, 1) and that (3.2) holds, then all solutions of Eq. (1.1)
are oscillatory.

We get an effortlessly confirmable theorem for the oscillatory properties of the investi-
gated trinomial differential equations by applying some sufficient conditions to the oscil-
lation of the first-order advanced equations.

Theorem 7 Suppose that

lim inf
t→∞

∫ σ (t)

t
Zi(s) ds >

1
e

, (Ci)

where i = k, k = 0, 1, 2, 3, . . . , n – 1 and that (3.2) holds. Then Eq. (1.1) is oscillatory. In ad-
dition, if

1
e

≥
∫ σ (t)

t
Zi(s) ds

for all large enough t, then for Eq. (Ek) there exists an eventually non-oscillatory solution.

Proof The second part of the theorem can be omitted due to the proof proposed by Ku-
sano and Fukagai [16]. We have the following proof to the first part of this theorem.

By the principle of the reduction to absurdity, we can suppose on the contrary that for
Eq. (1.1) there exists x(t), which is an eventually positive solution. Theorem 1 guarantees
that x(t) ∈Nk . It follows from (Ck) that there is some γ ∈ (0, 1) which can guarantee that

1
e

< lim inf
t→∞

∫ σ (t)

t
γ Zi(s) ds,

which by Theorem 2.4.1 of [24] implies that all solutions of Eq. (Ek) are oscillatory, which
based on Theorem 4 guarantees Nk = ∅. This contradiction ends the proof of Theo-
rem 7. �
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Example 1 Based on Example 3.5 in [11], we investigate the following linear fourth-order
trinomial ADE:

x(4)(t) +
a
t3 x′(t) +

b
t4 x(λt) = 0, b > 0,λ > 1, a ∈

(
0,

2
3
√

3

)
. (E1)

For the investigated Eq. (E1), the corresponding Eq. (3.1) has the following form:

y′′′(t) +
a
t3 y(t) = 0

with a solution y(t) = t–0.1 > 0. By direct calculation, we can effortlessly see that 0 < a =
0.231 < 2

√
3

9 ≈ 0.3849. Via a direct computation with Eq. (E1) we see that

Z1(t) =
(

ab
36

+
b
6

)
1
t

,

Z3(t) =
(

2a
λ3 + b +

a
λ3 lnλ

)
1
t

–
(

at1 +
bt1

2

)
1
t2 ,

where t1 is large enough. Thanks to Theorem 7, all solutions of Eq. (E1) are oscillatory
under the following conditions:

(
ab
36

+
b
6

)
lnλ >

1
e

,

(
2a
λ3 + b +

a
λ3 lnλ

)
lnλ >

1
e

.

For example, with λ = e it happens provided that b > 2.1254.

Example 2 We study the fifth-order ADE of Euler type

x(5)(t) +
a
t4 x′(t) +

b
t5 x(λt) = 0, b > 0,λ > 1, a ∈

(
0,

9
16

)
. (E2)

For the investigated Eq. (E2), the corresponding Eq. (3.1) has the form

y(4)(t) +
a
t4 y(t) = 0

with an eventually positive solution y(t) = t0.1, where 0 < a = 0.4959 < 9
16 = 0.5625. It is

seen via a direct computation with Eq. (E2) that

Z0(t) =
b

24
· 1

t
,

Z2(t) = Z4(t) =
(

ab
576

+
b

24

)
1
t

.
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Based on Theorem 7, all solutions of Eq. (E2) are oscillatory under the following condi-
tions:

b
24

· lnλ >
1
e

,
(

ab
576

+
b

24

)
lnλ >

1
e

.

For e.g. λ = e it happens provided that b > 8.8291.

5 Integral criteria of Eq. (1.1)
We will propose some new integral conditions for oscillatory properties to investigate
advanced differential equations in this section which will provide a more precise result
than the comparison criteria. At first, we need to use the preliminary results in Sect. 3.

Theorem 8 Suppose that (3.2) and

lim sup
t→∞

(
1

σ (t)

∫ σ (t)

t∗
(n – 2)sn–1p(s) ds + σ (t)

∫ ∞

σ (t)
(n – 2)sn–3p(s) ds

+
1

σ (t)

∫ t

t∗
sσ (s)n–1q(s) ds +

∫ σ (t)

t
sσ (s)n–2q(s) ds

+ σ (t)
∫ ∞

σ (t)
σ (s)n–2q(s) ds

)
> (n – 1)!

(5.1)

hold. Then Nn–1 is an empty set for Eq. (1.1).

Proof By the principle of the reduction to absurdity, we suppose on the contrary that
Eq. (1.1) has a positive solution x(t) and this solution belongs to the positive solution class
Nn–1. Applying the estimation of the inequality offered by Theorem 3 which is a previous
result proposed by Kiguradze [19], we have

(n – 1)!
x(t)
tn–2 > (n – 2)!

x′(t)
tn–3 > · · · > 2

x(n–3)(t)
t

≥ x(n–2)(t)

≥
∫ t

t1

(n – 2)
(s – t1)p(s)

s
x(s) ds + (t – t1)

∫ ∞

t
(n – 2)

x(s)
s

p(s) ds

+
∫ t

t1

(s – t1)q(s)x
(
σ (s)

)
ds + (t – t1)

∫ ∞

t
q(s)x

(
σ (s)

)
ds

≥ γ

(∫ t

t1

(n – 2)p(s)x(s) ds + t
∫ ∞

t

(n – 2)p(s)
s

x(s) ds

+ t
∫ ∞

t
q(s)x

(
σ (s)

)
ds +

∫ t

t1

sq(s)x
(
σ (s)

)
ds

)

for some γ ∈ (0, 1). Thus,

(n – 1)!
γ

≥ 1
σ (t)

∫ σ (t)

t∗
(n – 2)sn–1p(s) ds + σ (t)

∫ ∞

σ (t)
(n – 2)sn–3p(s) ds

+
1

σ (t)

∫ t

t∗
sσ (s)n–1q(s) ds +

∫ σ (t)

t
sσ (s)n–2q(s) ds + σ (t)

∫ ∞

σ (t)
σ (s)n–2q(s) ds,
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from which one can conclude to a contradiction with the hypotheses of Theorem 8. This
ends the proof. �

Theorem 9 Assume that (3.2) and

lim sup
t→∞

(
1

σ (t)

∫ t

t∗
sn–1σ (s)

[
Pk(s) + q(s)

]
ds +

∫ σ (t)

t
sn–1[Pk(s) + q(s)

]
ds

+ (n – 1)σ (t)
∫ ∞

σ (t)

(
s – σ (t)

)n–2[Pk(s) + q(s)
]

ds
)

> (n – 1)!

hold. Then the positive solution class Nk is empty for Eq. (1.1).

Proof By the principle of the reduction to absurdity, we suppose on the contrary that
Eq. (1.1) has a positive solution x(t) and this solution belongs to the positive solution class
Nk . After that, we integrate (4.2) from t1 to t to get

x(t) ≥
∫ t

t1

∫ ∞

u
x
(
σ (s)

)
Qk(s)

(s – u)n–2

(n – 2)!
ds du, Qk(t) = Pk(t) + q(t), (5.2)

or

x(t) ≥
∫ t

t1

∫ ∞

u
x
(
σ (s)

)
Qk(s)

(s – u)n–2

(n – 2)!
ds du

=
∫ σ (t)

t1

x
(
σ (s)

)
Qk(s)

∫ s

t1

(s – u)n–2

(n – 2)!
du ds

+
∫ ∞

σ (t)
x
(
σ (s)

)
Qk(s)

∫ σ (t)

t1

(s – u)n–2

(n – 2)!
du ds

=
∫ σ (t)

t1

x
(
σ (s)

)
Qk(s)

(s – t1)n–1

(n – 1)!
ds

+
∫ ∞

σ (t)
x
(
σ (s)

)
Qk(s)

(s – t1)n–1 – (s – σ (t))n–1

(n – 2)!
ds.

Denoting A = s – t1, B = s –σ (t) and applying the Lagrangian middle-value theorem yields
An–1 – Bn–1 ≥ (n – 1)(A – B)Bn–2 for A≥ B ≥ 0. Therefore, the last inequality leads to

x
(
σ (t)

) ≥ γ

(n – 1)!

∫ σ (t)

t∗
x
(
σ (s)

)
Qk(s)sn–1 ds

+
γ σ (t)

(n – 2)!

∫ ∞

t
x
(
σ (s)

)
Qk(s)

(
s – σ (t)

)n–2 ds

≥ γ x(σ (t))
(n – 1)!

(
1

σ (t)

∫ t

t∗
sn–1σ (s)Qk(s) ds +

∫ σ (t)

t
sn–1Qk(s) ds

+ (n – 1)σ (t)
∫ ∞

σ (t)

(
s – σ (t)

)n–2Qk(s) ds
)

for any γ ∈ (0, 1), from which one concludes to a contradiction with the hypotheses of this
theorem. This ends the proof. �
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Theorem 10 Assume that (3.2) and

lim sup
t→∞

(
(n – 1)!x(σ (t))

x(t1)
+

1
x(t1)

∫ σ (t)

t1

x
(
σ (s)

)
q(s)(s – t1)n–1 ds

+
n – 1
x(t1)

∫ ∞

σ (t)
x
(
σ (s)

)
q(s)(s – t1)n–1 ds

)

< (n – 1)!

hold. Then the positive solution class N0 = ∅ for Eq. (1.1).

Proof For the sake of proof by contradiction, we suppose that for Eq. (1.1) there exists an
eventually positive solution x(t) and this solution belongs to the positive solution class N0.
Next, we integrate (4.2) from t1 to t to obtain

x(t1) – x(t) ≤
∫ t

t1

∫ ∞

u
x
(
σ (s)

)
q(s)

(s – u)n–2

(n – 2)!
ds du (5.3)

or

x(t1) – x
(
σ (t)

) ≤
∫ σ (t)

t1

x
(
σ (s)

)
q(s)

(s – t1)n–1

(n – 1)!
ds

+
∫ ∞

σ (t)
x
(
σ (s)

)
q(s)

(s – t1)n–1 – (s – σ (t))n–1

(n – 1)!
ds.

Denoting A = s – t1, B = s – σ (t) and applying the Lagrangian middle-value theorem yield
An–1 – Bn–1 ≤ (n – 1)(A – B)Bn–2 for A≥ B ≥ 0, the above estimate guarantees

x(t1) – x
(
σ (t)

) ≤
∫ σ (t)

t1

x
(
σ (s)

)
q(s)

(s – t1)n–1

(n – 1)!
ds

+
∫ ∞

σ (t)
x
(
σ (s)

)
q(s)

(σ (t) – t1)(s – t1)n–1

(n – 1)!
ds.

It is obvious that

lim sup
t→∞

(
(n – 1)!x(σ (t))

x(t1)
+

1
x(t1)

∫ σ (t)

t1

x
(
σ (s)

)
q(s)(s – t1)n–1 ds

+
n – 1
x(t1)

∫ ∞

σ (t)
x
(
σ (s)

)
q(s)(s – t1)n–1 ds

)

≥ (n – 1)!,

for any γ ∈ (0, 1), from which one can conclude to a contradiction with the hypotheses of
this theorem. This ends the proof. �

According to the above theorems, we can deduce the sufficient conditions to guarantee
the oscillatory behavior of Eq. (1.1).

Theorem 11 If all hypotheses of Theorems 8–10 are satisfied, then we can conclude that
all solutions of the nth-order trinomial differential equation Eq. (1.1) are oscillatory.
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Example 3 We discuss once more the fourth-order trinomial ADE

x(4)(t) +
a
t3 x′(t) +

b
t4 x(λt) = 0, b > 0,λ > 1, a ∈

(
0,

2
3
√

3

)
.

Based on the conditions of Theorems 8 and 9, we have

4a + 2bλ2 + bλ2 lnλ > 3!,

(2 + lnλ)
(

ab
6

+ b
)

> 3!,

which guarantee that the positive solution classes Nk and Nn–1 are empty and all solutions
of Eq. (E1) are oscillatory. For instance, for λ = e it happens provided that b > 1.9259.

By the same principle, we can also apply integral criteria to study the fifth-order trino-
mial ADE of Euler type. Hence, it is omitted.

6 Conclusion
In this article, two methods, comparison criteria and integral criteria, have been applied to
obtain some sufficient conditions of asymptotic and oscillatory behavior of a higher-order
advanced trinomial differential equation under the substantial difficulty derived from the
middle positive or negative term p(t)x′(t). In 2015, Džurina, Baculíková and Jadlovská [11]
have obtained the oscillatory behavior of the following equation:

x(4)(t) + p(t)x′(t) + q(t)x
(
τ (t)

)
= 0. (6.1)

The previous fourth-order differential equation can be generalized to higher order by the
two general types

x(n)(t) + p(t)x′(t) + q(t)x
(
τ (t)

)
= 0 (6.2)

or

x(n+3)(t) + p(t)x(n)(t) + q(t)x
(
τ (t)

)
= 0. (6.3)

The second equation has been addressed by Liang [27] in 2014. However, so far no re-
searcher addressed the investigation of the first type advanced equations in the theory of
oscillatory and asymptotic behaviors. Therefore, this gap in the theory of oscillation has
been filled.
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