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Abstract
Hand, foot, and mouth disease (HFMD) is a contagious viral illness that commonly
affects infants and children. In some areas with high incidence of this disease, the
relevant departments often use some strategies to strengthen treatment when the
number of infected individuals exceeds a certain threshold. To assess the
effectiveness of strengthening treatment strategies which depend on a certain
threshold, we propose a new reaction-diffusion model with nonsmooth treatment
function to investigate the spread of HFMD. In the case of the spatial domain being
bounded, by defining the basic reproduction number R0, we use Lyapunov theory to
prove that the disease-free equilibrium is globally asymptotically stable as R0 < 1, and
the positive equilibrium is globally asymptotically stable as R0 > 1. In the case of the
spatial domain being linear and unbounded, in order to study how the movement of
children impacts the spatial spread of HFMD, we further consider the traveling waves.
Finally, numerical simulations demonstrate the effectiveness of the theoretical
analysis.
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1 Introduction
HFMD, caused by multiple intestinal viruses of the Picornaviridae family, is a common in-
fectious disease among infants and children [1, 2]. Since HFMD was first reported in New
Zealand in 1957 [3], it has spread rapidly all over the world [4–8]. Then, the transmission
mechanism of HFMD has become a common concern in recent years.

Dynamic models are often used to solve practical problems [9–11] such as compartment
dynamics models for analyzing the spread of infection [2, 12]. Wang and Sung (2006) [12]
and Tiing and Labadin (2008) [2] first applied the classical SIR model to the epidemic anal-
ysis of HFMD in a specific area. On the basis of the above, many factors affecting HFMD,
such as isolation measures [13–19], enterovirus contaminated environment [17, 20, 21],
seasonal variation [18, 19, 21, 22], are considered in the dynamic modeling. Recently, we
analyzed the effects of EV71 vaccination on HFMD in mainland China from 2016 to 2017
[23]. It should be noted that all of the above studies were based on time evolution. To the
best of our knowledge, fewer mathematical models for HFMD were based on spatial evo-
lution. The spread of infectious diseases is inseparable from the activities of the hosts in
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Figure 1 The treatment function T (I, Ic) in (1.1)

spatially environments [24, 25]. In addition, the research results in [26, 27] showed that
human spatial behavior has an important impact on the spread of HFMD. For instance,
people with more active activities are more likely to contract diseases, such as boys than
girls, scattered children than school children. Recently, having considered the impact of
the spatial impact of the epidemic, we proposed a reaction-diffusion HFMD model [28].

The treatment is an important method to prevent and control the spread of diseases.
In general, sudden changes in treatment strategies often lead to nonsmooth phenomena.
Therefore, based on the previous studies in [29–32], we have established that the spatially
nonsmooth (continuous but not differentiable) treatment function needs to meet two con-
ditions (A1), (A2) [28]. Based on conditions (A1), (A2), we seek intensive treatments when
the number of infected individuals exceeds a given threshold, denoted by Ic. Then we give
the following treatment (see Fig. 1):

T(I, Ic) =

⎧
⎨

⎩

k1I, 0 ≤ I ≤ Ic,

k2I – (k2 – k1)Ic, I > Ic,
(1.1)

where I := I(x, t) represents the number of infectious individuals at location x and time t.
k1, k2 are positive constants, k2 > k1, and k1I , k2I represent general treatment and intensive
treatment at x ∈ � for t ≥ 0, respectively.

In this paper, we propose a reaction-diffusion HFMD model with the nonsmooth treat-
ment function (1.1) to investigate the effect of the movement of individuals on the spatial
spread. Assuming that the spatial domain is bounded, we analyze the dynamic behav-
iors of the equilibria for our model. If it is assumed that the spatial domain is linear and
unbounded, we prove the nonexistence of traveling waves under certain conditions. The
organization of the paper is as follows: In Sect. 2, a novel reaction-diffusion model is built.
In Sect. 3, the dynamic behaviors of the equilibria of the model are analyzed theoretically.
In Sect. 4, a traveling wave solution of the model is discussed. In Sect. 5, simulations of the
model and some prevention and control measures are performed. In Sect. 6, we discuss
and summarize our conclusions.

2 Model formulation
In this section, a reaction-diffusion model with the strengthening treatment function (1.1)
is proposed. The underlying structure of the model comprises the following classes of indi-
viduals: susceptible S(x, t), infectious I(x, t), infectious and hospitalized or quarantined or
isolated Q(x, t), and recovered R(x, t). The model is represented by the following ordinary
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differential equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂S
∂t = d1�S + � – βSI – ζS, x ∈ �, t > 0,
∂I
∂t = d2�I + βSI – (ζ + m1)I – T(I, Ic), x ∈ �, t > 0,
∂Q
∂t = d3�Q + χT(I, Ic) – (ζ + m2)Q, x ∈ �, t > 0,
∂R
∂t = d4�R + (1 – χ )T(I, Ic) – ζR, x ∈ �, t > 0,

(2.1)

where � is the recruitment rate, β is the contact transmission rate, ζ is progression rate
leaving the children group below six year old, m1, m2 are the per capita disease induced
death rates, and χ is the proportion of hospitalized individuals, T(I, Ic) is defined in Sect. 1.
All the parameters of model (2.1) are positive. Due to the biology meaning of (2.1), we
assume that the initial condition of (2.1) satisfies

S(x, 0) = S0(x) ≥ 0, I(x, 0) = I0(x) ≥ 0, Q(x, 0) = Q0(x) ≥ 0,

R(x, 0) = R0(x) ≥ 0, x ∈ �̄.
(2.2)

(a) In the case of the spatial domain being bounded, we take into account the distribu-
tion of the individuals in spatial locations within a fixed bounded domain � = [0,π ] with
smooth or Neumann boundary conditions at time t ∈ [0,∞). The Neumann boundary
conditions are

∂S
∂n

=
∂I
∂n

=
∂Q
∂n

=
∂R
∂n

= 0, x ∈ ∂�, t ≥ 0, (2.3)

where ∂
∂n represents the differentiation along the outward normal n to ∂�.

(b) In the case of the spatial domain being unbounded, we assume that � = R for t ∈
[0,∞).

3 Basic properties
In this section, we discuss the existence of solution for system (2.1). We note that Q, R
do not appear in the first and second equations, which means that Q, T are decoupled
from other equations of system (2.1). Here, we only need to discuss the dynamics for the
following subsystem for variable S, I of system (2.1):

⎧
⎨

⎩

∂S
∂t = d1�S + � – βSI – ζS, x ∈ �, t > 0,
∂I
∂t = d2�I + βSI – (ζ + m1)I – T(I, Ic), x ∈ �, t > 0,

(3.1)

with the Neumann boundary conditions

∂S
∂n

=
∂I
∂n

, x ∈ ∂�, t ≥ 0, (3.2)

and the initial conditions

S(x, 0) = S0(x) ≥ 0, I(x, 0) = I0(x) ≥ 0, x ∈ �̄. (3.3)

As a similar proof process of Theorem 3.1 in [28], we give the following result.
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Theorem 3.1 If the initial condition ϕ(x, 0) = (S0(x), I0(x)) ≥ 0, and S0(x) �≡ 0 and I0(x) �≡
0, then system (3.1) has a unique solution ϕ(x, t) ≥ 0.

Hence, according to Theorem 3.1, we easily have the following result.

Theorem 3.2 If the initial condition ϕ(x, 0) = (S0(x), I0(x), Q0(x), R0(x)) ≥ 0, and S0(x) �≡ 0
and I0(x) �≡ 0, then system (2.1) has a unique solution ϕ(x, t) ≥ 0.

4 Equilibria
In this section, we first consider the distribution of equilibria for system (2.1). An equilib-
rium of system (2.1) satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

� – βSI – ζS = 0,

βSI – (ζ + m1)I – T(I, Ic) = 0,

χT(I, Ic) – (ζ + m2)Q = 0,

(1 – χ )T(I, Ic) – ζR = 0.

(4.1)

From (4.1), system (2.1) always has a disease-free equilibrium

E∗
0 =

(
S∗

0, I∗
0 , Q∗

0, R∗
0
)

= (�/ζ , 0, 0, 0).

In order to find other equilibria, for system (2.1), we denote a basic reproduction number

R0 =
�β

ζ (k1 + ζ + m1)
(4.2)

and a threshold value

Rc = 1 +
β

ζ
Ic. (4.3)

Next, we investigate the two cases: (a) 0 ≤ I ≤ Ic for x ∈ �, t ≥ 0; (b) 0 ≤ Ic < I for x ∈ �,
t ≥ 0.

(a) The case 0 ≤ I ≤ Ic for x ∈ �, t ≥ 0.
When 0 ≤ I ≤ Ic, we have T(I, Ic) = k1I . Hence, it follows from (4.1) that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

� – βSI – ζS = 0,

βSI – (ζ + m1)I – k1I = 0,

χk1I – (ζ + m2)Q = 0,

(1 – χ )k1I – ζR = 0.

(4.4)

By solving (4.4), we obtain that (4.4) admits a unique positive solution E∗
1 = (S∗

1, I∗
1 , Q∗

1, R∗
1),

where S∗
1 = k1+ζ+m1

β
, I∗

1 = ζ

β
(R0 – 1), Q∗

1 = χk1I∗1
ζ+m2

, R∗
1 = (1–χ )k1I∗1

ζ
. Moreover, it follows from

I∗
1 < Ic that

ζ

β
(R0 – 1) ≤ Ic. (4.5)
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By (4.5), we have

R0 ≤ 1 +
β

ζ
Ic = Rc.

Therefore, if 1 < R0 ≤ Rc, then E∗
1 is a unique positive equilibrium for system (2.1).

(b) 0 ≤ Ic < I for x ∈ �, t ≥ 0.
When 0 ≤ I ≤ Ic, we have T(I, Ic) = k2I – (k2 – k1)Ic, and thus (4.1) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

� – βSI – ζS = 0,

βSI – (ζ + m1)I – (k2I – (k2 – k1)Ic) = 0,

χ (k2I – (k2 – k1)Ic) – (ζ + m2)Q = 0,

(1 – χ )(k2I – (k2 – k1)Ic) – ζR = 0.

(4.6)

Next, it follows from the first equation of (4.6) that

S =
�

βI + ζ
. (4.7)

Substituting (4.7) into the second equation of (4.6), we have

b0I2 + b1I – b2 = 0, (4.8)

where b0 = (ζ + m1 + k2)β , b1 = ζ (ζ + m1 + k2) – β� – β(k2 – k1)Ic, b3 = ζ (k2 – k1)Ic. It is
obvious that b0 > 0, b2 > 0. Hence, one has that


̄ = b2
1 + 4b0b2 > 0.

Therefore, equation (4.8) has two real roots:

I1 =
–b1 +

√

̄

2b0
,

I2 =
–b1 –

√

̄

2b0
.

It is clear that I1 > 0 and I2 < 0. For biological meaning, I2 is meaningless. Hence, letting
I∗

2 = I1, we obtain a unique positive solution E∗
2 = (S∗

2, I∗
2 , Q∗

2, R∗
2), where

S∗
2 =

�

βI∗
2 + ζ

,

I∗
2 =

–b1 +
√


̄

2b0
,

Q∗
2 =

χ (k2I∗
2 – (k2 – k1)Ic)
ζ + m2

,

R∗
2 =

(1 – χ )(k2I∗
2 – (k2 – k1)Ic)
ζ

.
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It follows from I∗
2 > Ic that

–b1 +
√


̄

2b0
> Ic. (4.9)

After some complex computations, it follows from (4.9) that

R0 > 1 +
β

ζ
Ic = Rc.

Hence, if R0 > Rc, then E∗
2 is a unique positive equilibrium for system (2.1).

5 The stability of equilibrium
In this section, we analyze the stability of equilibria. We just need to discuss system (3.1).
Based on our analyses on the equilibria of system (2.1), it is clear that system (3.1) has a
disease-free equilibrium (S∗

0, I∗
0 ) = (�/ζ , 0) with respect to E∗

0 , a unique positive equilib-
rium (S∗

1, I∗
1 ) with respect to E∗

1 as 1 < R0 ≤ Rc, and a unique positive equilibrium (S∗
2, I∗

2 )
with respect to E∗

2 as 1 < Rc < R0. To avoid confusion, we denote (S∗
0, I∗

0 ) as E∗
0 , (S∗

1, I∗
1 ) as

E∗
1 , and (S∗

2, I∗
2 ) as E∗

2 for system (3.1).
First, we discuss the local stability of equilibria. Assume that E∗ = (S∗, I∗) is an arbitrary

equilibrium of system (3.1). Let u1 = S – S∗, u2 = I – I∗. The linearization system of system
(3.1) at equilibrium E∗ is

⎧
⎨

⎩

∂u1
∂t = d1�u1 + � – (βI∗ + ζ )u1 – βS∗u2,

∂u2
∂t = d2�u2 + βI∗u1 + (βS∗ – ζ – m1 – ki)u2,

(5.1)

where i = 1 or 2. Denoting u = (u1, u2)T , the linearization system of system (5.1) is

∂u
∂t

= D
u + JEu, (5.2)

where

D =

(
d1 0
0 d2

)

, JE =

(
–βI∗ – ζ –βS∗

βI∗ βI∗ – (ζ + m1 + ki)

)

.

Therefore, we finally obtain the characteristic equation as follows:
∣
∣
∣
∣
∣

λ + d1l2 + βI∗ + ζ βS∗

–βI∗ λ + d2l2 – βS∗ + ζ + m1 + ki

∣
∣
∣
∣
∣

= 0. (5.3)

To analyze the local stability for each equilibrium E∗, we just need to discuss the distribu-
tion of the roots for the characteristic equation (5.3). It follows from (5.3) that

λ2 +
(
(d1 + d2)l2 – βS∗ + I∗β + ki + 2ζ + m1

)
λ + l4d1d2

+
(
–βS∗d1 + I∗βd2 + kid1 + ζd1 + ζd2 + d1m1

)
l2

– S∗βζ + I∗βki + I∗βζ + I∗βm1 + kiζ + ζ 2 + ζm1 = 0. (5.4)

For system (3.1), we give the following local stability result.
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Theorem 5.1 (a) If R0 < 1, then the disease-free equilibrium E∗
0 is locally asymptotically

stable;
(b) If 1 < R0 < Rc, then the positive equilibrium E∗

1 is locally asymptotically stable;
(c) If 1 < Rc < R0, then the positive equilibrium E∗

2 is locally asymptotically stable.

Proof (a) At the equilibrium E∗
0 , from (5.3), we have

∣
∣
∣
∣
∣

λ + d1l2 + ζ βS∗
0

0 λ + d2l2 – βS∗
0 + ζ + m1 + k1

∣
∣
∣
∣
∣

= 0. (5.5)

It is obvious that if R0 < 1, then (5.5) has two negative roots

λ1 = –
(
d1l2 + ζ

)
< 0, λ2 = –d2l2 – (ζ + m1 + k1)(1 – R0) < 0. (5.6)

Hence, all the roots of the characteristic equation (5.6) at the equilibrium E∗
0 are negative.

That is, the disease-free equilibrium E∗
0 of system (5.1) is locally asymptotically stable as

R0 < 1.
(b) At the equilibrium E∗

1 , from (5.4), we have the following characteristic equation:

λ2 + a1λ + a2 = 0, (5.7)

where

a1 = (d1 + d2)l2 + I∗
1 β + ζ ,

a2 = d1d2l4 + d2
(
βI∗

1 + ζ
)
l2 + β2S∗

1I∗
1 .

We have a1 > 0, a2 > 0, and a1a2 > 0. By the Hurwitz criterion, we obtain that E∗
1 is locally

asymptotically stable as 1 < R0 < Rc.
(c) At the equilibrium E∗

2 , from (5.4), we have the following characteristic equation:

λ2 + b1λ + b2 = 0, (5.8)

where

b1 = (d1 + d2)l2 + I∗
2 β + ζ +

(k2 – k1)Ic

I∗
2

,

b2 = d1d2l4 +
(

d2

(

d1
(k2 – k1)Ic

I∗
2

+ βI∗
1 + ζ

))

l2 + β(k2 – k1)Ic +
ζ (k2 – k1)Ic

I∗
2

+ β2S∗
2I∗

2 .

It is obvious that b1 > 0, b2 > 0, and b1b2 > 0. According to the Hurwitz criterion, one has
that E∗

2 is locally asymptotically stable as 1 < Rc < R0. This completes the proof. �

Theorem 5.2 (a) If R0 < 1, then the disease-free equilibrium E∗
0 is globally asymptotically

stable;
(b) If 1 < R0 < Rc, then the positive equilibrium E∗

1 is globally asymptotically stable;
(c) If 1 < Rc < R0, then the positive equilibrium E∗

2 is globally asymptotically stable.
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Proof (a) To show the global stability of E∗
0 , we consider the following Lyapunov function:

V1(x, t) =
∫

�

S∗
0

(
S
S∗

0
– 1 – ln

S
S∗

0

)

dx +
∫

�

I dx. (5.9)

Calculating the time derivative of V (x, t) along the trajectories of system (3.1), we have

∂V1(x, t)
∂t

∣
∣
∣
∣
(3.1)

=
∫

�

(

1 –
S∗

0
S

)

(� – βSI – ζS) dx +
∫

�

[
βSI – (ζ + m1 + k1)I

]
dx

–
∫

�

d1S∗
0

S2 |∇S|2 dx

=
∫

�

[

–� ∗ S∗
0

S
+ βS∗

0I + � + ζS∗
0 – ζS – (ζ + m1 + k1)I

]

dx

–
∫

�

d1S∗
0

S2 |∇S|2 dx

=
∫

�

[

–� ∗ S∗
0

S
+ βS∗

0I + � + � – �
S
S∗

0
– (ζ + m1 + k1)I

]

dx

–
∫

�

d1S∗
0

S2 |∇S|2 dx

=
∫

�

[

�

(

2 –
S∗

0
S

–
S
S∗

0

)

+ (ζ + m1 + k1)(R0 – 1)
]

dx –
∫

�

d1S∗
0

S2 |∇S|2 dx

< –κ , (5.10)

where

κ =
∫

�

[
(ζ + m1 + k1)(1 – R0)

]
dx > 0.

Therefore, if R0 < 1, then E∗
0 is globally asymptotically stable for system (3.1).

(b) When 1 < R0 < Rc, system (3.1) has a unique positive equilibrium E∗
1 . Moreover, since

R0 < Rc is equivalent to I∗
1 < Ic, we only need to consider T(I, Ic) = k1I . Next, we consider

the following Lyapunov function:

V2(x, t) =
∫

�

S∗
1

(
S
S∗

1
– 1 – ln

S
S∗

1

)

dx +
∫

�

I∗
1

(
I
I∗

1
– 1 – ln

I
I∗

1

)

dx. (5.11)

Then we obtain that

∂V2(x, t)
∂t

∣
∣
∣
∣
(3.1)

=
∫

�

(

1 –
S∗

1
S

)

(� – βSI – ζS) dx +
∫

�

(

1 –
I∗

1
I

)
(
βSI – (ζ + m1 + k1)I

)
dx

–
∫

�

(
d1S∗

1
S2 |∇S|2 +

d2I∗
1

I2 |∇I|2
)

dx

=
∫

�

[

� – ζS – (ζ + m1 + k1)I – �
S∗

1
S

+ βS∗
1I + ζS∗

1 – βI∗
1 S + (ζ + m1 + k1)I∗

1

]

dx

–
∫

�

(
d1S∗

1
S2 |∇S|2 +

d2I∗
1

I2 |∇I|2
)

dx
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=
∫

�

[

ζS∗
1

(

2 –
S
S∗

1
–

S∗
1

S

)

+ βS∗
1I∗

1

(

2 –
S
S∗

1
–

S∗
1

S

)]

dx

–
∫

�

(
d1S∗

1
S2 |∇S|2 +

d2I∗
1

I2 |∇I|2
)

dx

=
∫

�

(
ζS∗

1 + βS∗
1I∗

1
)
(

2 –
S
S∗

1
–

S∗
1

S

)

dx –
∫

�

(
d1S∗

1
S2 |∇S|2 +

d2I∗
1

I2 |∇I|2
)

dx,

≤ 0. (5.12)

Moreover, we also have that ∂V2(x,t)
∂t = 0 if and only if S = S∗

1 , I = I∗
1 . Hence, the largest

compact invariant set in 1 = {(S, I) | ∂V2(x,t)
∂t |(3.1) = 0} is just the singleton E∗

1 . From the
LaSalle invariance principle (Hale and Verduyn Lunel 1993) [33], for system (3.1) with the
initial condition ϕ(x, 0) �= (S0(x), I0(x)), we obtain that E∗

1 is globally asymptotically stable.
(c) Similarly, since 1 < Rc < R0 is equivalent to I∗

2 > Ic, then we consider T(I, Ic) = k2I –
(k2 – k1)Ic for system (3.1).

Take the Lyapunov function as follows:

V3(x, t) =
∫

�

S∗
2

(
S
S∗

2
– 1 – ln

S
S∗

2

)

dx +
∫

�

I∗
2

(
I
I∗

2
– 1 – ln

I
I∗

2

)

dx. (5.13)

Calculating the time derivative of V3(x, t) along the trajectories of system (3.1), we have

∂V3(x, t)
∂t

∣
∣
∣
∣
(3.1)

=
∫

�

(

1 –
S∗

2
S

)

(� – βSI – ζS) dx

+
∫

�

(

1 –
I∗

2
I

)
(
βSI – (ζ + m1 + k2)I + (k2 – k2)Ic

)
dx

–
∫

�

(
d1S∗

2
S2 |∇S|2 +

d2I∗
2

I2 |∇I|2
)

dx

=
∫

�

[

� – ζS – (ζ + m1 + k2)I + (k2 – k1)Ic – �
S∗

2
S

+ βS∗
2I + ζS∗

2 – βI∗
2 S

+ (ζ + m1 + k1)I∗
2 – (k2 – k1)Ic

I∗
2
I

]

dx –
∫

�

(
d1S∗

2
S2 |∇S|2 +

d2I∗
2

I2 |∇I|2
)

dx

=
∫

�

[
(
ζS∗

2 + βS∗
2I∗

2
)
(

2 –
S
S∗

2
–

S∗
2

S

)

+ h
(

2 –
I
I∗

2
–

I∗
2
I

)]

dx

–
∫

�

(
d1S∗

2
S2 |∇S|2 +

d2I∗
2

I2 |∇I|2
)

dx,

≤ 0. (5.14)

It follows that ∂V3(x,t)
∂t = 0 if and only if S = S∗

2 , I = I∗
2 . Therefore, the largest compact invari-

ant set in 2 = {(S, I) | ∂V2(x,t)
∂t |(3.1) = 0} is just the singleton E∗

2 . By the LaSalle invariance
principle [33], if we take the initial condition ϕ(x, 0) �= (S0(x), I0(x)) for system (3.1), then
we have that E∗

2 is globally asymptotically stable. This completes the proof. �

Next, we consider this case R0 = Rc. If R0 = Rc, then system (3.1) has a unique equilibrium
E∗

1 = (S∗
1, I∗

1 ) with I∗
1 = Ic. We note that system (3.1) is not smooth at I∗

1 = Ic. In this special
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case, we consider the following two systems (I < Ic) and (I < Ic):
⎧
⎨

⎩

∂S
∂t = d1�S + � – βSI – ζS,
∂I
∂t = d2�I + βSI – (ζ + m1 + k1)I,

(5.15)

and
⎧
⎨

⎩

∂S
∂t = d1�S + � – βSI – ζS,
∂I
∂t = d2�I + βSI – (ζ + m1 + k2)I + (k2 – k1)Ic.

(5.16)

We note that when I∗
1 = Ic, the equilibrium of system (5.15) is the same as the equilibrium

of system (5.16). From Theorem 5.1 and Theorem 5.2, if I∗
1 = Ic, then it is obvious that

system (5.15) and system (5.16) are stable.

6 Traveling waves and minimum wave speed
In this section, we discuss the traveling waves for system (2.1) without spatial boundary
constraints, i.e., � = R. Similarly, we only need to discuss system (3.1) without spatial
boundary constraints. The purpose is to determine the minimum wave speed c∗ connect-
ing the disease-free equilibrium to the endemic equilibrium, which may predict the spatial
spreading of the disease [34, 35]. To discuss the existence of traveling wave solutions of sys-
tem (2.1), we will use the general results based on Schauder’s fixed point theorem in [36].

We have known that system (3.1) has a unique positive equilibrium E∗
1 or E∗

2 if and only
if R0 > 1. In this section, we assume that R0 > 1 always holds. Then it follows from Theo-
rem 5.2 that system (3.1) has an unstable disease-free equilibrium E∗

0 = (S0, 0) and a stable
positive equilibrium E∗ = (S∗

i , I∗
i ), i = 1 or 2.

Next, we will study the nonexistence of traveling wave solution for system (3.1). The
traveling wave solution of system (3.1) connecting E∗

0 to E∗ with the wave speed c > 0 has
the following form:

(
S(x, t), I(x, t)

)
=

(
S(ξ ), I(ξ )

)
, ξ = x – ct

and satisfies

lim
ξ→–∞ = E∗

0 , lim
ξ→+∞ = E∗. (6.1)

Rewriting system (3.1) with the form ξ = x – ct, we obtain the following system:
⎧
⎨

⎩

dS
dξ

= – 1
c [d1

d2S
dZ2 + � – βSI – ζS],

dI
dξ

= – 1
c [d2

d2I
dZ2 + βSI – (ζ + m1)I – T(I, Ic)].

(6.2)

Letting S1 = dS
dξ

, I1 = dI
dξ

, system (6.2) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS
dξ

= S1,
dI
dξ

= I1,
dS1
dξ

= 1
d1

[–cS1 – � + βSI + ζS],
dI1
dξ

= 1
d2

[–cI1 – βSI + (ζ + m1)I + T(I, Ic)],

(6.3)
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which admits an equilibrium Ê0 = (S0, 0, 0, 0). Linearizing system (6.3) at Ê0, we obtain the
following Jacobian matrix:

J|Ê0
=

⎡

⎢
⎢
⎢
⎣

0 0 1 0
0 0 0 1
ζ

d1
βS0
d1

– c
d1

0
0 –βS0+(ζ+m1+k1)

d2
0 – c

d2

⎤

⎥
⎥
⎥
⎦

, (6.4)

and the characteristic equation

C(λ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

λ 0 –1 0
0 λ 0 –1

– ζ

d1
– βS0

d1
λ + c

d1
0

0 βS0–(ζ+m1+k1)
d2

0 λ + c
d2

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0. (6.5)

It follows from (6.5) that

f1(λ)f2(λ) = 0, (6.6)

where

f1(λ) = λ2 +
c

d1
λ –

ζ

d1
,

f2(λ) = λ2 +
c

d2
λ + (ζ + m1 + k1)(R0 – 1).

Next, we will discuss the distribution of the roots for f1(λ) = 0 and f2(λ) = 0, separately.
Case (i): for f1(λ) = 0, i.e.,

λ2 +
c

d1
λ –

ζ

d1
= 0, (6.7)

we have

�̄1 =
(

c
d1

)2

+ 4
ζ

d1
> 0.

By using the Vieta theorem, equation (6.7) has a positive root and a negative real root as
follows:

λ+
1 =

– c
d1

+
√

�̄1

2
, λ–

1 =
– c

d1
–

√
�̄1

2
.

Case (ii): for f2(λ) = 0, i.e.,

λ2 +
c

d2
λ + (ζ + m1 + k1)(R0 – 1) = 0, (6.8)

we have

�̄2 =
(

c
d2

)2

– 4(ζ + m1 + k1)(R0 – 1).
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Then we have the following cases:
Case (1): If �̄2 < 0, which means c < 2d2

√
(ζ + m1 + k1)(R0 – 1), then equation (6.8) has

two complex roots

λ±
2 =

– c
d2

± i
√

�̄2

2
.

Case (2): If �̄2 = 0, which means c = 2d2
√

(ζ + m1 + k1)(R0 – 1), then equation (6.8) has
two equal negative roots

λ±
2 =

– c
d2

2
.

Case (3): If �̄2 > 0, which means c > 2d2
√

(ζ + m1 + k1)(R0 – 1), then equation (6.8) has
two unequal negative roots

λ±
2 =

– c
d2

±
√

�̄2

2
.

Letting c∗ = 2d
√

(ζ + m1 + k1)(R0 – 1), combining case (i) and case (ii), we give the fol-
lowing result.

Lemma 6.1 The following statements are valid:
(a) If c < c∗, then (6.5) has two distinct real roots and two complex roots;
(b) If c = c∗, then (6.5) has four real roots and two of them are equal. One is positive, and

the others are negative;
(c) If c > c∗, then (6.5) has four real roots. One is positive, and the others are negative.

By Lemma 6.1, for the nonexistence of traveling wave solution of system (3.1) as c < c∗,
we have the following result.

Theorem 6.1 System (3.1) does not admit a positive traveling wave solution with condition
(6.1) if c < c∗.

Proof According to Lemma 6.1, to ensure the existence of system (3.1) satisfying condition
(6.1), we need to make sure that all the roots of (6.5) are real. Otherwise, a spiral solution
near E0 will destroy the positivity of S, I . Hence, from Lemma 6.1, we obtain that, for
0 < c < c∗, system (3.1) does not have traveling wave solution. This completes the proof. �

For c ≥ c∗, since T(I, Ic) is discontinuous, we cannot prove the existence of traveling
waves for system (3.1) theoretically. Hence, we will simulate the traveling wave solution
for system (3.1) numerically in Sect. 7.2.

7 Simulations
In this section, we check the above main results with numerical simulations. First, we
show the stability of the equilibria of system (2.1) and analyze the influence of threshold
Ic selection on HFMD control. Next, we simulate the traveling wave solutions of system
(2.1) numerically.



Shi et al. Advances in Difference Equations        (2021) 2021:130 Page 13 of 19

Figure 2 Simulations of system (2.1) for numbers of the infected individuals I(x, t) with respect to parameters
β , Ic . (a) β = 0.00005, Ic = 30; (b) β = 0.00007, Ic = 60; (c) β = 0.00007, Ic = 20

7.1 Simulations for the dynamic behaviors of the equilibria and disease control
Now, we give some simulations to the dynamic behaviors of the equilibria and disease con-
trol by using strengthening treatment strategies. The fixed bounded domain is � = [0,π ]
and has smooth boundary, and the time unit is 1 week. From [2], we obtain that � = 160,
ζ = 0.01077, m1 = 0.0001731, m2 = 0.0001731. The proportion χ of hospitalized individu-
als, which was given different values in [13–19], in general, is fixed as χ = 0.05 in this paper.
For illustration, we choose d1 = 0.4 km2 · week–1, d2 = 0.2 km2 · week–1, d3 = 0.01 km2 ·
week–1, d4 = 0.3 km2 ·week–1. We set the initial conditions as S0(x) = 10,000+500 sin(2πx),
I0(x) = 100 + 40 sin(3πx), Q0(x) = 100 + 60 sin(4πx), R0(x) = 800 + 200 sin(4πx). We take
β , Ic as variable parameters. Then, we choose β = 0.00005 and Ic = 30. By a simple
calculation, we obtain that R0 = 0.8958, Rc = 1.1393, and the disease-free equilibrium
E∗

0(S∗
0, I∗

0 , Q∗
0, R∗

0) = (14,856, 0, 0, 0). By applying Theorem 5.2, E∗
0 is globally asymptoti-

cally stable, which means that the disease will be eliminated, in which Fig. 2(a) illus-
trates this observation. Next, when we choose β = 0.00007, and Ic = 60 or Ic = 20, we
also get R0 = 1.2541 and Rc = 1.1393 < R0 (in this case, the unique positive solution
E∗

1(S∗
1, I∗

1 , Q∗
1, R∗

1) = (11,920, 39, 148, 2840)) or Rc = 1.1393 < R0 (in this case, the unique pos-
itive solution E∗

2(S∗
2, I∗

2 , Q∗
2, R∗

2) = (12,644, 28, 127, 2390)). By Theorem 5.2, E∗
1 or E∗

2 is glob-
ally asymptotically stable, which means that HFMD will eventually form endemic diseases
(see Fig. 2(b) and (c)).

In order to investigate the effect of threshold Ic on HFMD control, we only consider
the case R0 > 1. Note that the positive equilibrium E∗

1 or E∗
2 depends on threshold level

Ic. Therefore, we fix β = 0.000080 (get R0 = 1.4333) and vary threshold Ic to analyze the
disease control. In the case 1 < R0 < Rc, taking Ic = 60 (Rc = 1.4457), Fig. 3 shows the trends
of HFMD with enhanced disease control and without enhanced disease control by sim-
ulating model (2.1). In the case 1 < Rc < R0, taking Ic = 40 (Rc = 1.2971), Fig. 4 shows the
trends of HFMD with enhanced disease control and without enhanced disease control by
simulating system (2.1). In Fig. 3 and Fig. 4, comparing with without enhanced disease
control, the solution I(x, t) of system (2.1) with respect to with enhanced disease control
decreases rapidly and reaches steady state earlier. For biological meaning, introducing
threshold therapy control can relieve HFMD outbreaks and earlier control of infectious
diseases. In addition, in the case 1 < Rc < R0, Fig. 4 shows that the state variable I(x, t)
has the lower stable state in the long term behavior. Furthermore, Fig. 5(a) shows that the
lower the threshold Ic is, the lower the number of infected individuals is, and Fig. 5(a)
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Figure 3 Simulations for numbers of the infected individuals I(x, t) of system (2.1) with threshold Ic control
(blue) and without threshold Ic control (red) in the case 1 < R0 < Rc . (a) I(x, t) at x ∈ [0,π ]; (b) I(x, t) at x = π

3

Figure 4 Simulations for numbers of the infected individuals I(x, t) of system (2.1) with threshold Ic control
(blue) and without threshold Ic control (red) in the case 1 < Rc < R0. (a) I(x, t) at x ∈ [0,π ]; (b) I(x, t) at x = π

3

Figure 5 Simulations for system (2.1). (a)
∫

� I(x, t)dx in terms of different Ic ; (b) The variable I∗1 of E∗
1 or I∗2 of E∗

2
in terms of different Ic
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Figure 6 Simulations for system (2.1) with respect to parameter β . (a) R0, Rc in terms of different β ;
(b)

∫

� I(x, t)dx in terms of different β

shows that if Ic < 58, i.e., in the case 1 < Rc < R0, then the lower the threshold Ic is, the
lower the variable I∗

1 of the positive equilibrium E∗
1 is. The conclusion also indicates that

improving threshold therapy control, i.e., setting a low threshold level Ic, has a positive
impact on the spread of disease.

To find some effective prevention and control measures for HFMD by using system (2.1),
we further analyze the influence of the key parameter β on the solution of equation system
(2.1), where β corresponds to the average transmission ability of an infectious individual.
Taking Ic = 50 and varying threshold β (the other parameter values and the initial con-
ditions are the same as in Fig. 2 for system (2.1)), Fig. 6(a) shows the influence of β on
the basic reproduction number R0 and the key threshold value Rc, and Fig. 6(b) shows the
influence of β on the basic reproduction number R0 the total number of the infectious
individuals at time t, i.e.,

∫

�
I(x, t) dx in terms of different β . In Fig. 6(a), R0, Rc decrease

with decreasing the contact transmission rate β , in which lower values of R0 and R0 means
lower spread of the epidemics (see Fig. 6(b)). Moreover, when the contact transmission
rate β < 0.00052, we obtain R0 < 1, which means the disease is extinct (see Theorem 5.2).
Therefore, we should improve health-care education, such as washing hands after using
the toilet and before meals, making air fresh indoors, and so on, to reduce the viral trans-
mission capacity.

7.2 Simulations for traveling wave solutions
In this section, by using similar numerical methods as those in [35, 36], some numerical
simulations of the traveling wave solutions of system (2.1) are presented to support the
analytic results obtained above. We note that traveling wave solution is a global concept,
so there is no way to give the simulated images at infinity. However, it is feasible to give the
variation trend of the traveling wave solution of system (2.1) in the bounded region. There-
fore, we only give numerical simulations on the local area. Taking � = 160, ζ = 0.01077,
m1 = 0.0001731, m2 = 0.0001731, χ = 0.05, β = 0.00007, we get R0 = 1.2541 and the min-
imum wave speed c∗ = 0.0092. In the case 1 < R0 < Rc, taking Ic = 60 (Rc = 1.39) and the
following initial data (2.1):

If x ∈ [0, π
4 ], then we set S0(x) = S∗

1 , I0(x) = I∗
1 = 0, Q0(x) = Q∗

1, R0(x) = R∗
1;

If x ∈ [ π
4 ,π ], then we set S0(x) = S∗

0 , I0(x) = I∗
0 = 0, Q0(x) = Q∗

0 = 0, R0(x) = R∗
0.
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Figure 7 Traveling waves of system (2.1) in the case 1 < R0 < Rc . (a) Solutions I(x, t); (b) Solutions I(x, t) are in
terms of different t

Figure 8 Traveling waves of system (2.1) in the case 1 < Rc < R0. (a) Solutions I(x, t); (b) Solutions I(x, t) are in
terms of different t

Then the numerical simulations support the existence of traveling wave solutions (see
Fig. 7).

Similarly, in the case 1 < Rc < R0, take Ic = 60 (Rc = 1.39), fix the other parameters as
above and choose the following initial data (2.1):

If x ∈ [0, π
4 ], then choose S0(x) = S∗

2 , I0(x) = I∗
2 , Q0(x) = Q∗

2, R0(x) = R∗
2;

If x ∈ [ π
4 ,π ], then choose S0(x) = S∗

0 , I0(x) = I∗
0 = 0, Q0(x) = Q∗

0 = 0, R0(x) = R∗
0 = 0.

Then Fig. 8 shows the existence of traveling wave solutions.
We investigate the effect of the threshold treatment on the spatial spread of HFMD, i.e.,

the effect of selection of threshold Ic on traveling wave solutions of system (2.1) (see Fig. 9).
In Fig. 9, we obtain that the varieties of Ic only affect the magnitude of waves but do not
change the speed of waves. In addition, Fig. 9 shows that the lower the threshold Ic is, the
lower the peak value of the wave is. In a word, reducing the value of the threshold Ic can
reduce the severity of the spread of the disease in space, but it cannot change the speed of
the disease transmission.

We investigate the effect of the contact transmission rate β on the spatial spread of
HFMD. Figure 10 shows that the varieties of β not only affect the magnitude of waves
but also change the speed of waves. Moreover, we also obtain that the lower the threshold
β is, the lower the peak value of the wave solution is. From this perspective, to reduce
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Figure 9 Traveling waves of I(x, t) for system (2.1) with respect to parameter Ic . (a) t = 40; (b) t = 80; (c) t = 120;
(d) t = 160

Figure 10 Traveling waves of I(x, t) for system (2.1) with respect to parameter β . (a) t = 25; (b) t = 50;
(c) t = 75; (d) t = 100

the severity of the spread of disease in space, we should reduce the value of the contact
transmission rate β .
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8 Discussion
It has been observed that the strengthening treatment is an important method to prevent
and control the spread of HFMD. Moreover, the spread of infectious diseases depends
on the movements of the hosts in spatial environment [24, 25]. Therefore, we propose a
reaction-diffusion HFMD model with a continuous and nonsmooth treatment function to
study the effect of threshold-dependent interventions on the spread of HFMD in spatial
environment. It is worth emphasizing that, as introduced in the descriptions in Sect. 1,
the previous studies for HFMD modeling rarely considered spatial factors, and most used
the linear treatment functions which do not contain the threshold-dependent interven-
tions for HFMD. In addition, comparing with other models for other diseases considering
the discontinuous treatment functions [29], we do not need to study the dynamics in a
transformed Filippov system.

The theoretical analysis of our model is divided into two cases. In the case of the spatial
domain being bounded, we have investigated the dynamic behaviors of our model. By
defining two critical parameters as the basic reproduction number R0 and the threshold
parameter Rc, the main dynamic behaviors of system (2.1) are (see Theorem 5.2):

(i) If R0 < 1, then system (2.1) has a unique disease-free equilibrium E0 and E0 is globally
asymptotically stable; If R0 > 1, then the disease-free equilibrium E0 is unstable;

(ii) If 1 < R0 < Rc, then the unique positive equilibrium E∗
1 of system (2.1) is globally

asymptotically stable;
(iii) If 1 < Rc < R0, then the unique positive equilibrium E∗

2 of system (2.1) is globally
asymptotically stable.

Moreover, in the case of the spatial domain being linear and unbounded, we further
determine the nonexistence and existence of traveling wave solutions. Finally, numerical
simulations have supported our theories.
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