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Abstract
In this paper, the dynamics of a general differential equation with neutral type are
investigated. Under certain assumptions, the stability of positive equilibrium and the
existence of Hopf bifurcation are obtained by analyzing the distribution of
eigenvalues. And global existence of positive periodic solutions is established by
using the global Hopf bifurcation result of Krawcewicz et al. Finally, by taking neutral
Nicholson’s blowflies model and neutral Mackey–Glass model as two examples, some
numerical simulations are carried out to illustrate the analytical results.
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1 Introduction
The standard age-structure model is as follows:

ut + ua = –μ(a, w)u,

u(t, 0) =
∫ ∞

0
b(a, w)u(t, a) da,

w(t) =
∫ ∞

0
ρ(a)u(t, a) da,

with the initial condition u(0, a) = u0(a). Here, u(t, a) is the age distribution at time t, which
satisfies u(t, τ ) = u(0, τ – t) and u(t,∞) = 0. Function w is a weighted average of the total
population with weight function ρ(a) ≥ 0. Functions b and μ denote the birth and death
rates, respectively, which all depend on the age and the average w.

Let τ be the critical age that separates adults and juveniles. Then the total population of
the mature individuals is

N(t) =
∫ ∞

τ

u(t, a) da.
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Assume that the death rate μ is a constant step function

μ(a, w) = rHτ (a),

where H is the Heaviside function with jump at a = τ and

ρ(a) = Hτ (a),

which implies w(t) = N(t) and the birth rate only depends on the age a and the population
of the mature individuals N . Further assume that the juveniles do not reproduce and the
birth rate b has a delta peak at a = τ

b(a, N) = g(N)Hτ (a) + cδτ (a),

where δ is the delta function. Then it can be verified that N(t) satisfies

Ṅ(t) – cṄ(t – τ ) = –rN(t) + crN(t – τ ) + f
(
N(t – τ )

)
, (1)

where f (s) = sg(s). For more details on the derivation of Eq. (1), we refer the reader to [1].
Model (1) is a neutral differential equation, and the corresponding delay equation

(c = 0) describes many famous models for population growth, which include Nicholson’s
blowflies model

Ṅ(t) = –rN(t) + pN(t – τ )e–αN(t–τ ), (2)

the Mackey–Glass models

Ṅ(t) = –rN(t) +
bN(t – τ )

1 + Nm(t – τ )
, (3)

Ṅ(t) = –rN(t) +
b

1 + Nm(t – τ )
, (4)

and the Lasota–Wazewska model

Ṅ(t) = –rN(t) + pe–αN(t–τ ). (5)

Nicholson’s blowflies model (2) has been extensively studied in the literature, where its
results mainly concern the global attractivity of positive equilibrium and oscillatory be-
haviors of solutions (see [2–6]). Several studies have also been carried out on model (2)
with time periodic coefficients (see [7, 8]), on discrete Nicholson’s blowflies model (see
[9–12]), and on diffusive Nicholson’s blowflies model (see [13–17]). Mackey–Glass equa-
tions (3) and (4) and Lasota–Wazewska model (5) have been studied in [18–23]. A majority
of results deal with the global attractivity of the positive equilibrium and the Hopf bifur-
cation problem. Meanwhile, there are several papers on the complex dynamics of model
(3). For example, Mackey and Glass [24] and Namajūnas et al. [25] studied the chaotic
behavior, while Losson et al. [26] investigated the multistability. (Further, we refer to [27]
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and [28] for biological models, involving chemotaxis and nonlinear diffusive mechanism,
formulated by the introduction of reactions coupling growth and death impacts.)

Wei investigated the global Hopf bifurcation of Eq. (1) with c = 0 [29], and Li et al. in-
vestigated the global Hopf bifurcation of Eq. (1) with f (s) = pse–αs [30]. The purpose of
the present paper is to study the global Hopf bifurcation of the general neutral differential
equation (1). Here, r > 0, 0 < c < 1, and f is a nonnegative and C2 function in [0,∞) with
f (∞) = 0 and satisfies one of the following assumptions:

(H1) f (0) > 0 and f (s) is strictly monotone decreasing when s ∈ (0,∞).
(H2) f (0) = 0, and f (s)

s is strictly monotone decreasing when s ∈ (0,∞).
It is easy to see that the function f in (2) or (3) satisfies (H2) and the function f in (4) or
(5) satisfies (H1).

The rest of the paper is organized as follows. In Sect. 2, we investigate the existence of
positive equilibrium and analyze the distribution of the roots of the characteristic equa-
tion to give various conditions on the stability of positive equilibrium and the existence
of Hopf bifurcation. In Sect. 3, we establish the extended existence of bifurcation periodic
solutions by using the global Hopf bifurcation result of Krawcewicz et al. [31]. In Sect. 4,
we carry out some numerical simulations to support the analytical results.

2 Stability and local Hopf bifurcation analysis
In this section, we consider the stability of positive equilibrium and the existence of local
Hopf bifurcation by taking time delay τ as a bifurcation parameter.

For neutral differential equations, positive initial conditions can lead to positive solu-
tions is not a trivial matter. Here, we provide some positively invariant sets for Eq. (1).
Without loss of generality, assume that the initial time for Eq. (1) is zero and define

�1 =
{
φ ∈ C

(
[–τ , 0],R

) | φ(0) – cφ(–τ ) ≥ 0, and φ(θ ) ≥ 0, θ ∈ [–τ , 0]
}

,

�2 =
{
φ ∈ C

(
[–τ , 0],R

) | the left derivative D–φ(θ ) exists, D–φ(θ )

+ rφ(θ ) ≥ 0, and φ(θ ) ≥ 0, θ ∈ (–τ , 0]
}

.

Then we have the following result.

Theorem 2.1 If � = �1 or � = �2, then � is a positively invariant set for Eq. (1).

Proof Assume that θ ∈ [–τ , 0] and φ ∈ �. Then, for t ∈ (0, τ ], we have N(t – τ ) = φ(t – τ ) ≥
0. Since function f is nonnegative in [0,∞), we can obtain

Ṅ(t) – cṄ(t – τ ) ≥ –r
(
N(t) – cN(t – τ )

)
.

If � = �1, one has

N(t) – cN(t – τ ) ≥ (
N(0) – cN(–τ )

)
e–rt =

(
φ(0) – cφ(–τ )

)
e–rt ≥ 0,

and

N(t) ≥ cN(t – τ ) = cφ(t – τ ) ≥ 0.

Therefore, by mathematical induction, �1 is a positively invariant set for Eq. (1).
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If � = �2, then the solution N(t) of Eq. (1) satisfies that D–N(t) exists,

D–N(t) + rN(t) ≥ c
(
D–N(t – τ ) + rN(t – τ )

)
= c

(
D–φ(t – τ ) + rφ(t – τ )

) ≥ 0,

and

N(t) ≥ N(0)e–rt = φ(0)e–rt ≥ 0.

Therefore, by mathematical induction, �2 is a positively invariant set for Eq. (1). �

In the remainder of the paper, we investigate the dynamics of Eq. (1) in a positively in-
variant region � with either � = �1 or � = �2, and formulate our results accordingly.

Theorem 2.2 Assume that r > 0, 0 < c < 1, and f is a nonnegative and C2 function in [0,∞)
with f (∞) = 0.

(i) If (H1) holds, then Eq. (1) has a unique positive equilibrium N0.
(ii) If (H2) and f ′(0) > r(1 – c) hold, then Eq. (1) has a unique positive equilibrium N0.

Proof Obviously, the positive equilibrium N0 of Eq. (1) satisfies

g(N0) := –r(1 – c)N0 + f (N0) = 0.

If (H1) holds, then we have g(0) = f (0) > 0, g(∞) = –∞. Since g ′(s) = –r(1 – c) + f ′(s) < 0,
there exists a unique N0 in the interval (0,∞) such that g(N0) = 0. If (H2) holds, we have
lims→0+

f (s)
s = f ′(0) > r(1 – c) and lims→∞ f (s)

s = 0. There exists a unique value of N0 in the
interval (0,∞) satisfying f (N0)

N0
= r(1 – c) due to the monotonicity of f (s)

s , which implies
that g(s) = s(–r(1 – c) + f (s)

s ) has a unique zero N0 in the interval (0,∞). The proof is com-
pleted. �

Remark 2.3 From the proof of Theorem 2.2, one has that under assumption (H2), if f ′(0) >
r(1 – c) does not hold, Eq. (1) has no positive equilibrium. Therefore, in the remainder of
this paper, we replace assumption (H2) by

(H2)′ f (0) = 0, f ′(0) > r(1 – c), and f (s)
s is strictly monotone decreasing when s ∈ (0,∞).

The linearization of Eq. (1) at N = N0 is given by

Ṅ(t) – cṄ(t – τ ) = –rN(t) +
(
cr + f ′(N0)

)
N(t – τ ).

Hence, the corresponding characteristic equation is

	(λ) := λ + r –
(
cr + f ′(N0) + cλ

)
e–λτ = 0. (6)

Lemma 2.4 Assume that either (H1) or (H2)′ holds. When τ = 0, the root of Eq. (6) is
negative.

Proof When τ = 0, the root of Eq. (6) is

λ =
f ′(N0) – r(1 – c)

1 – c
.
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Clearly, we have f ′(N0) < 0 under assumption (H1). Assume that (H2)′ holds. From the
monotonicity of f (s)

s , we can obtain that

N0f ′(N0) – f (N0) < 0.

It follows that

f ′(N0) <
f (N0)

N0
= r(1 – c).

The proof is completed. �

Lemma 2.4 implies that the positive equilibrium N0 of Eq. (1) is asymptotically stable
when τ = 0. Thus, with the increase of τ , a stability change at N0 can only happen when
there are characteristic roots crossing the imaginary axis to the right. In addition, from
the proof of Lemma 2.4, one can see that f ′(N0) < r(1 – c) under assumption (H1) or (H2)′.
This leads to λ = 0 is not a root of Eq. (6) under assumption (H1) or (H2)′.

Now, let λ = iω0 (ω0 > 0) be a root of Eq. (6). Substituting it into Eq. (6) and separating
the real and imaginary parts, we have

r =
(
cr + f ′(N0)

)
cosω0τ + cω0 sinω0τ ,

ω0 = –
(
cr + f ′(N0)

)
sinω0τ + cω0 cosω0τ .

(7)

Hence,

ω2
0 =

(cr + f ′(N0))2 – r2

1 – c2 . (8)

Since we have f ′(N0) < r(1 – c) under assumption (H1) or (H2)′, ω0 > 0 makes sense if and
only if

f ′(N0) < –r(1 + c).

Furthermore, from Eq. (7), one can obtain that

sinω0τ =
–f ′(N0)ω0

r2 + ω2
0

> 0.

Therefore, when f ′(N0) < –r(1 + c), Eq. (6) has a pair of imaginary roots ±iω0 if and only
if τ = τj, where

τj =
1
ω0

(
arccos

r(cr + f ′(N0)) + cω2
0

r2 + ω2
0

+ 2jπ
)

, j = 0, 1, 2, . . . . (9)

From the discussions above, we have the following result.

Lemma 2.5 Assume that either (H1) or (H2)′ holds.
(i) If f ′(N0) ≥ –r(1 + c), then Eq. (6) has no imaginary root for any τ > 0.
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(ii) If f ′(N0) < –r(1 + c), then Eq. (6) has a pair of imaginary roots ±iω0 when τ = τj,
where τj is defined by Eq. (9).

Lemma 2.6 Assume that either (H1) or (H2)′ holds and f ′(N0) < –r(1 + c) is satisfied. Let
λ(τ ) = α(τ ) + iβ(τ ) be the root of Eq. (6) near τ = τj satisfying α(τj) = 0 and β(τj) = ω0. Then
we have

dα

dτ

∣∣∣∣
τ=τj

> 0. (10)

Proof Differentiating Eq. (6) with respect to λ, we have

dτ

dλ
=

–f ′(N0)
λ(λ + r)(cr + f ′(N0) + cλ)

–
τ

λ
.

Thus,

dα

dτ
|τ=τj =

(r(cr + f ′(N0)) – cω2
0)2 + (2cr + f ′(N0))2ω2

0
f ′(N0)(2cr + f ′(N0))

> 0.

The proof is completed. �

By applying Lemmas 2.4, 2.5, and 2.6, one can easily obtain the following stability prop-
erties of the positive steady state N0 of Eq. (1).

Theorem 2.7 Assume that r > 0, 0 < c < 1, f is a nonnegative and C2 function in [0,∞)
with f (∞) = 0 and either (H1) or (H2)′ holds.

(i) If f ′(N0) ≥ –r(1 + c), then for Eq. (1), N = N0 is locally asymptotically stable for all
τ ≥ 0.

(ii) If f ′(N0) < –r(1 + c), then for Eq. (1), N = N0 is locally asymptotically stable for
τ ∈ [0, τ0) and unstable for τ > τ0. Furthermore, system (1) undergoes a Hopf
bifurcation at N = N0 when τ = τj, j = 0, 1, 2, . . . .

3 Global Hopf bifurcation analysis
In this section, we investigate the global existence of positive periodic solutions of Eq. (1)
by using the global Hopf bifurcation theorem [31].

Lemma 3.1 Assume that either (H1) or (H2)′ holds. Then all periodic solutions of Eq. (1)
are uniformly bounded.

Proof By Theorem 2.1, we know that all periodic solutions of Eq. (1) in � are bounded
below by 0. Let u(t) be a nonconstant periodic solution of Eq. (1). Then there exist T0 and
T0 such that

u
(
T0) – cu

(
T0 – τ

)
= max

t∈R
(
u(t) – cu(t – τ )

)
,

u(T0) – cu(T0 – τ ) = min
t∈R

(
u(t) – cu(t – τ )

)
.
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Then, for any fixed t, we get

u(t) ≤ cu(t – τ ) + u
(
T0) – cu

(
T0 – τ

)
.

Replacing t with t – τ in the above inequality, we have

u(t – τ ) ≤ cu(t – 2τ ) + u
(
T0) – cu

(
T0 – τ

)
.

Hence, for any integer m,

u(t) ≤ cmu(t – mτ ) +
1 – cm

1 – c
(
u
(
T0) – cu

(
T0 – τ

))
.

Let m → ∞ and we can obtain that

u(t) ≤ u(T0) – cu(T0 – τ )
1 – c

. (11)

By using a similar method, one also has

u(t) ≥ u(T0) – cu(T0 – τ )
1 – c

. (12)

In addition, from the definitions of T0 and T0, we know that

u
(
T0) – cu

(
T0 – τ

)
=

1
r

f
(
u
(
T0 – τ

))
,

u(T0) – cu(T0 – τ ) =
1
r

f
(
u(T0 – τ )

)
.

(13)

Now we can distinguish two cases.
Case (i): (H1) holds.
From Eq. (11), Eq. (12), and Eq. (13), it is easy to see that

u(t) ≤ f (u(T0 – τ ))
r(1 – c)

≤ f (0)
r(1 – c)

,

and

u(t) ≥ f (u(T0 – τ ))
r(1 – c)

≥ 1
r(1 – c)

f
(

f (0)
r(1 – c)

)
.

Case (ii): (H2)′ holds.
From f (0) = f (∞) = 0 and the continuity of function f , we can define

fM = max
s∈[0,∞)

f (s). (14)

Then, by applying Eq. (11) and Eq. (13), we have

u(t) ≤ f (u(T0 – τ ))
r(1 – c)

≤ fM

r(1 – c)
. (15)
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In particular, from Eq. (12), we have

u(T0) ≥ u(T0) – cu(T0 – τ )
1 – c

.

It follows that

u(T0) ≤ u(T0 – τ ).

Thus, combining with Eq. (13), we can obtain that

–r(1 – c)u(T0 – τ ) + f
(
u(T0 – τ )

) ≤ 0. (16)

Now, we need to show that u(T0 – τ ) > 0. In fact, if u(T0 – τ ) = 0, we can get u(T0) = 0 and

u(t) – cu(t – τ ) ≥ u(T0) – cu(T0 – τ ) = 0.

On the other hand, since u(t) is a nonconstant periodic solution of Eq. (1), we have f (u(t –
τ )) �≡ 0. This leads to

u(t) – cu(t – τ ) �≡ 0.

Without loss of generality, assume that there exists t∗ > 0 such that u(t∗) – cu(t∗ – τ ) > 0.
Then we can obtain that, for t ≥ t∗,

u(t) – cu(t – τ ) ≥ (
u(t∗) – cu(t∗ – τ )

)
e–rt > 0.

From the periodicity of u(t), we have u(t) > cu(t – τ ) ≥ 0 for any t ∈ [0,∞), which implies
that all nonconstant periodic solutions of Eq. (1) are positive. Hence, we get u(T0 – τ ) > 0.
Then, from Eq. (16), one has

f (u(T0 – τ ))
u(T0 – τ )

≤ r(1 – c).

By using the fact that f (s)
s is strictly monotone decreasing when s ∈ (0,∞), we can obtain

u(T0 – τ ) ≥ N0.

Note that from Eq. (15)

u(T0 – τ ) ≤ fM

r(1 – c)
.

Therefore, we can define

fm = min
s∈[N0, fM

r(1–c) ]
f (s), (17)
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such that

u(t) ≥ f (u(T0 – τ ))
r(1 – c)

≥ fm

r(1 – c)
.

Clearly, fm only depends on function f and parameters r and c. Moreover, we have fm > 0,
because f (s)

s is strictly monotone decreasing and tends to zero as s tends to infinity. The
proof is completed. �

Denote G = [G1, G2] with

G1 =

⎧⎨
⎩

1
r(1–c) f ( f (0)

r(1–c) ) if (H1) holds,
fm

r(1–c) if (H2)′ holds,
(18)

and

G2 =

⎧⎨
⎩

f (0)
r(1–c) if (H1) holds,

fM
r(1–c) if (H2)′ holds.

(19)

Then we know that from Lemma 3.1 all of the positive periodic solutions of Eq. (1) belong
to the region G.

Lemma 3.2 Equation (1) has no nonconstant periodic solution when τ = 0.

Proof Obviously, when τ = 0, Eq. (1) becomes

(1 – c)Ṅ = –r(1 – c)N + f (N).

Then the conclusion follows from the fact that the first order autonomous ODE has no
nonconstant periodic solutions. �

Remark 3.3 The proof of Lemma 3.2 is also able to show that Eq. (1) has no nonconstant
periodic solution of period τ .

Lemma 3.4
(i) If (H1) holds, then Eq. (1) has no nonconstant periodic solution of period 2τ .

(ii) If (H2)′ and cf (G1) < r(1 – c2)G1 hold, then Eq. (1) has no nonconstant periodic
solution of period 2τ .

Proof Let u(t) be a nonconstant periodic solution to Eq. (1) of period 2τ and v(t) = u(t –τ ).
Then u, v ∈ G and (u(t), v(t)) is a periodic solution to the following system of ordinary
differential equations:

u̇ – cv̇ = –ru + crv + f (v),

v̇ – cu̇ = –rv + cru + f (u).
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That is,

u̇ =
1

1 – c2

(
–r

(
1 – c2)u + cf (u) + f (v)

)
:= P(u, v),

v̇ =
1

1 – c2

(
–r

(
1 – c2)v + f (u) + cf (v)

)
:= Q(u, v).

(20)

Hence,

∂P
∂u

+
∂Q
∂v

=
1

1 – c2

(
–2r

(
1 – c2) + c

(
f ′(u) + f ′(v)

))
.

If (H1) holds, we have f ′(s) < 0 for all s ∈ G. Thus, ∂P
∂u + ∂Q

∂v < 0. If (H2)′ holds, for all s ∈ G,
we have

f ′(s) <
f (s)

s
≤ f (G1)

G1
.

Then, from cf (G1) < r(1 – c2)G1, we also can conclude that ∂P
∂u + ∂Q

∂v < 0. The classical
Bendixson criterion implies that Eq. (20) has no nonconstant periodic solution in G.
Therefore, Eq. (1) has no nonconstant periodic solution of period 2τ . The proof is com-
pleted. �

Denote

Rmin = min
s∈G

f ′(s), Rmax = max
s∈G

f ′(s), R̃ = max
{|Rmin|, |Rmax|

}
. (21)

Then we have the following result.

Lemma 3.5 Assume that either (H1) or (H2)′ holds. If

–2r + 2rc4 + 2c3Rmax +
(√

2 + 2c +
√

2c2)R̃ < 0, (22)

then Eq. (1) has no nonconstant periodic solution of period 4τ .

Proof Let u(t) be a nonconstant periodic solution to Eq. (1) of period 4 and set vi(t) = u(t –
(i – 1)τ ), i = 1, 2, 3, 4. Then V = (v1(t), v2(t), v3(t), v4(t)) is a nonconstant periodic solution
to the following system of ordinary differential equations:

v̇1 – cv̇2 = –rv1 + crv2 + f (v2),

v̇2 – cv̇3 = –rv2 + crv3 + f (v3),

v̇3 – cv̇4 = –rv3 + crv4 + f (v4),

v̇4 – cv̇1 = –rv4 + crv1 + f (v1).



Liu et al. Advances in Difference Equations        (2021) 2021:254 Page 11 of 18

That is,

v̇1 =
1

1 – c4

(
–
(
1 – c4)rv1 + c3f (v1) + f (v2) + cf (v3) + c2f (v4)

)
,

v̇2 =
1

1 – c4

(
–
(
1 – c4)rv2 + c2f (v1) + c3f (v2) + f (v3) + cf (v4)

)
,

v̇3 =
1

1 – c4

(
–
(
1 – c4)rv3 + cf (v1) + c2f (v2) + c3f (v3) + f (v4)

)
,

v̇4 =
1

1 – c4

(
–
(
1 – c4)rv4 + f (v1) + cf (v2) + c2f (v3) + c3f (v4)

)
,

(23)

whose orbits belong to G̃ := {V ∈ R
4 | vi ∈ G, i = 1, 2, 3, 4}. Next, we will employ a general

Bendixson criterion in higher dimensions developed in [32] to exclude nonconstant peri-
odic solutions of Eq. (23) in region G, which will guarantee that there are no 4τ -periodic
solutions to Eq. (1). The Jacobian matrix J(V ) of Eq. (23), for V ∈R

4, is

J(V ) = –rI4×4 +
1

1 – c4

⎛
⎜⎜⎜⎝

c3f ′(v1) f ′(v2) cf ′(v3) c2f ′(v4)
c2f ′(v1) c3f ′(v2) f ′(v3) cf ′(v4)
cf ′(v1) c2f ′(v2) c3f ′(v3) f ′(v4)
f ′(v1) cf ′(v2) c2f ′(v3) c3f ′(v4)

⎞
⎟⎟⎟⎠ .

The second additive compound matrix J [2](V ) of J(V ) is

J [2](V ) =
1

1 – c4 × S,

where S is a 6 × 6 matrix, whose rows Si are given in the following row vectors:

S1 =
(
–2r + 2rc4 + c3(f ′(v1) + f ′(v2)

)
, f ′(v3), cf ′(v4), –cf ′(v3), –c2f ′(v4), 0

)
,

S2 =
(
c2f ′(v2), –2r + 2rc4 + c3(f ′(v1) + f ′(v3)

)
, f ′(v4), f ′(v2), 0, –c2f ′(v4)

)
,

S3 =
(
cf ′(v2), c2f ′(v3), –2r + 2rc4 + c3(f ′(v1) + f ′(v4)

)
, 0, f ′(v2), cf ′(v3)

)
,

S4 =
(
–cf ′(v1), c2f ′(v1), 0, –2r + 2rc4 + c3(f ′(v2) + f ′(v3)

)
, f ′(v4), –cf ′(v4)

)
,

S5 =
(
–f ′(v1), 0, c2f ′(v1), c2f ′(v3), –2r + 2rc4 + c3(f ′(v2) + f ′(v4)

)
, f ′(v3)

)
,

S6 =
(
0, –f ′(v1), cf ′(v1), –cf ′(v2), c2f ′(v2), –2r + 2rc4 + c3(f ′(v3) + f ′(v4)

))
.

Choose l∞ norm in R
6, namely, |x| = max1≤i≤6 |xi|. Let A be the diagonal matrix given by

A = diag{√2, 1,
√

2,
√

2, 1,
√

2}.

Then the Lozinskii measure of AJ [2](V )A–1 is

μ
(
AJ [2](V )A–1) =

1
1 – c4 max{μ1,μ2,μ3,μ4,μ5,μ6},
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where

μ1 = –2r + 2rc4 + c3(f ′(v1) + f ′(v2)
)

+ (
√

2 + c)
∣∣f ′(v3)

∣∣ +
(√

2c2 + c
)∣∣f ′(v4)

∣∣,
μ2 = –2r + 2rc4 + c3(f ′(v1) + f ′(v3)

)
+

√
2

2
(
1 + c2)(∣∣f ′(v2)

∣∣ +
∣∣f ′(v4)

∣∣),

μ3 = –2r + 2rc4 + c3(f ′(v1) + f ′(v4)
)

+ (
√

2 + c)
∣∣f ′(v2)

∣∣ +
(√

2c2 + c
)∣∣f ′(v3)

∣∣,
μ4 = –2r + 2rc4 + c3(f ′(v2) + f ′(v3)

)
+ (

√
2 + c)

∣∣f ′(v4)
∣∣ +

(√
2c2 + c

)∣∣f ′(v1)
∣∣,

μ5 = –2r + 2rc4 + c3(f ′(v2) + f ′(v4)
)

+
√

2
2

(
1 + c2)(∣∣f ′(v1)

∣∣ +
∣∣f ′(v3)

∣∣),

μ6 = –2r + 2rc4 + c3(f ′(v3) + f ′(v4)
)

+ (
√

2 + c)
∣∣f ′(v1)

∣∣ +
(√

2c2 + c
)∣∣f ′(v2)

∣∣.

Obviously, from Eq. (23), we have that μ(AJ [2](V )A–1) < 0 for V ∈ G̃, which is a Bendixson
condition that rules out nonconstant periodic orbits of Eq. (23) in G̃ [32]. Therefore, Eq. (1)
has no nonconstant periodic solution of period 4τ . The proof is completed. �

Now, we are in a position to state the following global Hopf bifurcation results.

Theorem 3.6 Assume that r > 0, 0 < c < 1, and f is a nonnegative and C2 function in [0,∞)
with f (∞) = 0.

(i) If either (H1) or (H2)′ holds and f ′(N0) < –r(1 + c) is satisfied, then Eq. (1) has at
least one positive periodic solution for τ > τ1.

(ii) If (H1), –r(1 + c2) < cf ′(N0) < –rc(1 + c), and Eq. (22) hold, then Eq. (1) has at least
one positive periodic solution for τ > τ0 and two positive periodic solutions for τ > τ1.

(iii) If (H2)′, –r(1 + c2) < cf ′(N0) < –rc(1 + c), cf (G1) < r(1 – c2)G1, and Eq. (22) hold,
then Eq. (1) has at least one positive periodic solution for τ > τ0 and two positive
periodic solutions for τ > τ1.

Proof First, from the definition of τj in Eq. (9), we know that τj < τj+1. Define

X = C
(
[–τ , 0],R

)
,

� = Cl
{

(y, τ , T) : y is a T-periodic solution of Eq. (1)
} ⊂ X ×R+ ×R+,

and denote by C(N0, τj, 2π
ω0

) the connected component of (N0, τj, 2π
ω0

) in �, where ω0 is de-
fined in Eq. (8). Note that, under assumption (H1) or (H2)′, the stationary points (N0, τj, 2π

ω0
)

of Eq. (1) are nonsingular and they are isolated centers (see [31]). Thus, Lemma 2.6 implies
that there exist ε > 0, δ > 0, and a smooth curve λ : (τj – δ, τj + δ) →C such that

	
(
λ(τ )

)
= 	(N0,τ ,T)

(
λ(τ )

)
= 0,

∣∣λ(τ ) – iω0
∣∣ < ε,

for all τ ∈ [τj – δ, τj + δ], where 	 is defined as (6), and

λ(τj) = iω0,
dRe(λ(τ ))

dτ

∣∣∣∣
τ=τj

> 0.
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Let

�ε =
{

(u, p) : 0 < u < ε,
∣∣∣∣p –

2π

ω0

∣∣∣∣ < ε

}
.

It is easy to see that on [τj – δ, τj + δ] × �̄ε , 	(N0,τ ,T)(u + 2π i
p ) = 0 if and only if τ = τj, u = 0,

and p = 2π
ω0

. Moreover, put

H±
(

N0, τj,
2π

ω0

)
(u, p) = 	(N0,τ±δ,T)

(
u +

2π i
p

)
.

Then, for any j = 0, 1, 2, . . . , the crossing number is

γ1

(
N0, τj,

2π

ω0

)
= degB

(
H–

(
N0, τj,

2π

ω0

)
,�ε

)
– degB

(
H+

(
N0, τj,

2π

ω0

)
,�ε

)

= –1.

It follows that

�(N0,τ ,T)∈C(N0,τj , 2π
ω0

)γ1(N0, τ , T) < 0.

Therefore, we conclude that the connected component is nonempty and unbounded from
the local and global Hopf bifurcation theorem given by Krawcewicz, Wu, and Xia (see
[31]).

By Lemma 3.1, the projection of C(N0, τj, 2π
ω0

) onto the y-space is bounded. Meanwhile,
the projection of C(N0, τj, 2π

ω0
) onto τ -space is bounded below from Lemma 3.2.

From Eq. (9), we know that

2jπ < ω0τj < 2(j + 1)π , j ≥ 1,

which implies

1
j + 1

<
2π

ω0τj
<

1
j

, j ≥ 1.

By Remark 3.3, for j ≥ 1, one has that τ
j+1 < T < τ

j if (y, τ , T) ∈ C(N0, τj, 2π
ω0

). This fact shows
that the projection of C(N0, τj, 2π

ω0
) onto the T-space is bounded if τ is bounded. Thus,

in order for C(N0, τj, 2π
ω0

) to be unbounded, its projection onto the τ -space must be un-
bounded. In other words, the projection of C(N0, τj, 2π

ω0
) onto the τ -space includes [τj,∞).

The proof of (i) is completed.
If either (H1) or (H2)′ holds and –r(1 + c2) < cf ′(N0) < –rc(1 + c) is satisfied, then from

Eq. (7), Eq. (8), and Eq. (9), we have

cosω0τ0 =
r(cr + f ′(N0)) + cω2

0
r2 + ω2

0

=
f ′(N0)(r(1 + c2) + cf ′(N0))

r2 + ω2
0

< 0,
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which implies

2 <
2π

ω0τ0
< 4.

By Lemmas 3.4 and 3.5, if (H1) and Eq. (22) hold, we have 2τ < T < 4τ when (y, τ , T) ∈
C(N0, τ0, 2π

ω0
). It follows that the projection of C(N0, τ0, 2π

ω0
) onto the T-space is bounded if

τ is bounded. Thus, the projection onto τ -space of C(N0, τ0, 2π
ω0

) must be unbounded. In
other words, the projection of C(N0, τj, 2π

ω0
) onto the τ -space includes [τ0,∞). The proof

of (ii) is completed.
Similarly, if (H2)′, cf (G1) < r(1 – c2)G1 and Eq. (22) hold, we also have 2τ < T < 4τ when

(y, τ , T) ∈ C(N0, τ0, 2π
ω0

). Therefore, the projection onto the τ -space of C(N0, τ0, 2π
ω0

) must
include [τ0,∞). The proof of (iii) is completed. �

4 Two examples and simulations
In this section, we carry out some numerical simulations for Eq. (1).

4.1 Example 1: neutral Nicholson’s blowflies model
Choose f (s) = pse–αs and consider the following neutral Nicholson’s blowflies model:

Ṅ(t) – cṄ(t – τ ) = –rN(t) + crN(t – τ ) + pN(t – τ )e–αN(t–τ ). (24)

We would like to mention that the authors of reference [30] have investigated the exis-
tence of global Hopf bifurcation of Eq. (24). However, the global Hopf bifurcation condi-
tions given in [30] depend on the existence of a positive real number, which is denoted by
β in [30], and are very difficult to verify. In this subsection, we take the parameter values
as follows:

r = 0.5, c = 0.1, p = 4.5, α = 3,

and show that this set of parameters satisfies the global Hopf bifurcation conditions in this
paper.

Firstly, we have that f ′(0) = p > r(1 – c). Thus, (H2)′ holds and Eq. (24) has a unique
positive equilibrium N0 = 0.7675. By calculation, we have f ′(N0) = –0.5862 < –r(1 + c) =
–0.55. Then, from Theorem 2.7(ii), N = N0 is locally asymptotically stable for τ ∈ [0, τ0)
(see Fig. 1(a)) and unstable for τ > τ0, and system (24) undergoes a local Hopf bifurcation
at N = N0 when τ = τj, j = 0, 1, 2, . . . , where

τ0 = 14.0542, τ1 = 46.3503, τ2 = 78.6463, . . . .

Next, we check the conditions of the global Hopf bifurcation (Theorem 3.6(iii)). Ob-
viously, –r(1 + c2) < cf ′(N0) is satisfied. From the definitions given by Eq. (14), Eq. (17),
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Figure 1 (a) A solution converges to the positive equilibrium N0 for τ = 13.5 < τ0 = 14.0542. (b) A solution
converges to a stable periodic solution for τ = 14.5 > τ0. (c) A solution first approaches an unstable periodic
solution before it converges to a stable periodic solution for τ = 62 > τ1 = 46.3503

Eq. (18), Eq. (19), and Eq. (21), we have

fM = f
(

1
a

)
= 0.5518, fm = f

(
fM

r(1 – c)

)
= 0.1394,

G1 =
fm

r(1 – c)
= 0.3097, G2 =

fM

r(1 – c)
= 1.2263,

Rmin = f ′
(

2
a

)
= –0.6090, Rmax = f ′(G1) = 0.1261,

R̃ = |Rmin| = 0.6090.

It follows that

cf (G1) = 0.0550 < r
(
1 – c2)G1 = 0.1533,

and

–2r + 2rc4 + 2c3Rmax +
(√

2 + 2c +
√

2c2)R̃ = –0.0080 < 0.

Therefore, the conditions of Theorem 3.6(iii) are all satisfied, and Eq. (24) has at least
one periodic solution for τ > τ0 (see Fig. 1(b)) and two periodic solutions for τ > τ1 (see
Fig. 1(c)).

4.2 Example 2: neutral Mackey–Glass model
Choose f (s) = bs

1+s3 and consider the following neutral Mackey–Glass model:

Ṅ(t) – cṄ(t – τ ) = –rN(t) + crN(t – τ ) +
bN(t – τ )

1 + N3(t – τ )
, (25)

with the parameters r = 0.5, c = 0.1, b = 1.8.
Obviously, we have that f ′(0) = b > r(1 – c). It follows that (H2)′ holds and Eq. (25) has a

unique positive equilibrium N0 = 1.4422. Moreover, we can obtain that f ′(N0) = –0.5625 <
–r(1 + c) = –0.55. Then, from Theorem 2.7(ii), N = N0 is locally asymptotically stable for
τ ∈ [0, τ0) (see Fig. 2(a)) and unstable for τ > τ0, and system (25) undergoes a local Hopf
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Figure 2 (a) A solution converges to the positive equilibrium N0 for τ = 24.5 < τ0 = 25.6233. (b) A solution
converges to a stable periodic solution for τ = 26.5 > τ0. (c) A solution first approaches an unstable periodic
solution before it converges to a stable periodic solution for τ = 108 > τ1 = 81.1939

bifurcation at N = N0 when τ = τj, j = 0, 1, 2, . . . , where

τ0 = 25.6233, τ1 = 81.1939, τ2 = 136.7644, . . . .

Now, we check the conditions of the global Hopf bifurcation (Theorem 3.6(iii)). Simi-
larly, we can obtain that –r(1 + c2) < cf ′(N0) and

fM = f
(
2– 1

3
)

= 0.9524, fm = f
(

fM

r(1 – c)

)
= 0.3635,

G1 =
fm

r(1 – c)
= 0.8077, G2 =

fM

r(1 – c)
= 2.1165,

Rmin = f ′(2
1
3
)

= –0.6000, Rmax = f ′(G1) = 0.0416,

R̃ = |Rmin| = 0.6000.

It follows that

cf (G1) = 0.0952 < r
(
1 – c2)G1 = 0.3998

and

–2r + 2rc4 + 2c3Rmax +
(√

2 + 2c +
√

2c2)R̃ = –0.0230 < 0.

Therefore, the conditions of Theorem 3.6(iii) are all satisfied, and Eq. (25) has at least
one periodic solution for τ > τ0 (see Fig. 2(b)) and two periodic solutions for τ > τ1 (see
Fig. 2(c)).
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