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Abstract
This paper investigates singularly perturbed parabolic partial differential equations
with delay in space, and the right end plane is an integral boundary condition on a
rectangular domain. A small parameter is multiplied in the higher order derivative,
which gives boundary layers, and due to the delay term, one more layer occurs on the
rectangle domain. A numerical method comprising the standard finite difference
scheme on a rectangular piecewise uniform mesh (Shishkin mesh) of Nr × Nt

elements condensing in the boundary layers is suggested, and it is proved to be
parameter-uniform. Also, the order of convergence is proved to be almost two in
space variable and almost one in time variable. Numerical examples are proposed to
validate the theory.
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1 Introduction
Singularly perturbed parabolic partial differential equations have received an increas-
ing research attention over the past few decades (see [1–9] and the references therein).
Ansari et al. [10] discussed singularly perturbed time delay partial differential equations
with Dirichlet boundary conditions. Avudai Selvi and Ramanujam [11] discussed singu-
larly perturbed parabolic partial time delay differential equations with Robin type bound-
ary condition. The authors in [10] and [11] studied a finite difference scheme for solving
singularly perturbed parabolic time delay differential equation with Dirichlet and Robin
boundary conditions on Shishkin mesh. They made use of the results of Miller et al. [12].
In [13–16] researchers discussed a fitted operator method to solve singularly perturbed
time delay partial differential equations. By the way, there are many methods available in
the literature for time delay problems [17] and [18], but the study of problems with delay
in space variable are still in the initial stage.
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In [19], the authors considered second order parabolic delay differential equations with
integral boundary condition of the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–kurr(r, t) + ut(r, t) = –d(r, t)u(r, t) + b(r, t)u(r, t – τ ), (r, t) ∈ (0,π ) × [0, T],

u(r, t) = φ(r, t), t ∈ [–τ , 0], y ∈ (0,π ),

ur(0, t) = 0, t ∈ [0, T],
∫ π

0 u(r, t) dr = ψ(t), t ∈ [0, T],

and proved the existence and uniqueness of the solution.
The above problem arises in the study of population density with time delay. There is no

flux condition considered in the left, and the average population size is being controlled
by the function ψ(t) in the right. In the past few years interest has substantially increased
in solving singularly perturbed differential equations with integral boundary conditions
(see [20–25]). Motivated by the above works, we have designed a finite difference scheme
for a singularly perturbed reaction diffusion problem of partial delay differential equation
with nonlocal boundary condition.

The remaining article is structured as follows: In Sect. 2, the model problem is stated
and some preliminaries are presented. In Sect. 3, uniqueness and stability of the solution
are established. Also we prove that the derivatives of the solution are bounded. A finite
difference method for the continuous problem, the discrete maximum principle, and the
stability result are discussed in Sect. 4. The convergence analysis of the finite difference
method on Shishkin mesh is given in Sect. 5. The theoretical results are verified by nu-
merical examples in Sect. 6. Finally, discussion is given in Sect. 7.

2 Preliminaries
We consider singularly perturbed parabolic partial delay differential equations with inte-
gral boundary condition described by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Luε(r, t) = (–ε ∂2

∂r2 + ∂
∂t + a(r, t))uε(r, t) + b(r, t)uε(r – 1, t) = f (r, t), (r, t) ∈ D,

uε(r, t) = φl(r, t), φl(r, t) ∈ �l = {(r, t); –1 ≤ r ≤ 0 and 0 ≤ t ≤ T},
Kuε(r, t) = uε(2, t) – ε

∫ 2
0 g(r)uε(r, t) dr = φr̄(r, t),

φr̄(r, t) ∈ �r̄ = {(2, t); 0 ≤ t ≤ T},
uε(r, t) = φb(r, t), φb(r, t) ∈ �b = {(r, 0); 0 ≤ r ≤ 2},

(1)

where (r, t) ∈ D = (0, 2) × (0, T], D̄ = [0, 2] × [0, T], D1 = (0, 1) × [0, T], D2 = (1, 2) × [0, T],
D∗ = D1 ∪ D2 and ε is a small positive parameter (0 < ε << 1). Assume that a(r, t) ≥ α > 0,
b(r, t) ≤ β < 0, α +β > 0, f (r, t), φl , φr̃ , φb are sufficiently smooth and g(r) is a monotonically
nonnegative function and satisfies

∫ 2
0 g(r) dr < 1.

Problem (1) is equivalent to

Luε(r, t) = F(r, t),



Elango et al. Advances in Difference Equations        (2021) 2021:151 Page 3 of 20

where

Luε(r, t)

=

⎧
⎨

⎩

L1uε(r, t) = (–ε ∂2

∂r2 + ∂
∂t + a(r, t))uε(r, t), (r, t) ∈ D1,

L2uε(r, t) = (–ε ∂2

∂r2 + ∂
∂t + a(r, t))uε(r, t) + b(r, t)uε(r – 1, t), (r, t) ∈ D2,

(2)

F(r, t) =

⎧
⎨

⎩

f (r, t) – b(r, t)φl(r – 1, t), (r, t) ∈ D1,

f (r, t), (r, t) ∈ D2,
(3)

with boundary conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

uε(r, t) = φl(r, t), φl(r, t) ∈ �l = {(r, t); –1 ≤ r ≤ 0 and 0 ≤ t ≤ T},
uε(1–, t) = uε(1+, t), ∂uε

∂z (1–, t) = ∂uε

∂z (1+, t),

Kuε(r, t) = uε(2, t) – ε
∫ 2

0 g(r)uε(r, t) dr = φr̃(r, t),

φr̄(r, t) ∈ �r̄ = {(2, t); 0 ≤ t ≤ T},
uε(r, t) = φb(r, t), φb(r, t) ∈ �b = {(r, 0); 0 ≤ r ≤ 2}.

(4)

3 The analytical problem
Lemma 1 (Maximum principle) If �(r, t) ∈ C(0,0)(D̄)∩C(1,0)(D)∩C(2,1)(D1 ∪D2) such that
�(0, t) ≥ 0, �(r, 0) ≥ 0, K�(2, t) ≥ 0, L1�(r, t) ≥ 0, ∀(r, t) ∈ D1, L2�(r, t) ≥ 0, ∀(r, t) ∈ D2

and [�r](1, t) = �r(1+, t) – �r(1–, t) ≤ 0, then �(r, t) ≥ 0 for all (r, t) ∈ D̄.

Proof Define a test function

s(r, t) =

⎧
⎨

⎩

1
8 + r

2 , (r, t) ∈ D1,
3
8 + r

4 , (r, t) ∈ D2.
(5)

Note that s(r, t) > 0, ∀(r, t) ∈ D̄, Ls(r, t) > 0, ∀(r, t) ∈ D1 ∪ D2, s(0, t) > 0, s(r, 0) > 0, Ks(2, t) >
0, and [sr](1, t) < 0. Let

μ1 = max

{
–�(r, t)

s(r, t)
: (r, t) ∈ D̄

}

.

Then there exists (r0, t0) ∈ D̄ such that �(r0, t0) + μ1s(r0, t0) = 0 and �(r, t) + μ1s(r, t) ≥ 0,
∀(r, t) ∈ D̄. Then the function is minimum at (r, t) = (r0, t0), and the proof is completed.
Suppose μ1 > 0, we need a contradiction.

Case (i): (r0, t0) = (0, t0)

0 < (� + μ1s)(0, t) = �(0, t0) + μ1s(0, t0) = 0.

Case (ii): (r0, t0) ∈ D1

0 < L1(� + μ1s)(r0, t0)

= –ε(� + μ1s)rr(r0, t0) + (� + μ1s)t(r0, t0) + a(r0, t0)(� + μ1s)(r0, t0) ≤ 0.
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Case (iii): (r0, t0) = (1, t0)

0 ≤ [
(� + μ1s)′

]
(1, t0) =

[
� ′](1, t0) + μ1

[
s′](1, t0) < 0.

Case (iv): (r0, t0) ∈ D2

0 < L2(� + μ1s)(r0, t0)

= –ε(� + μ1s)rr(r0, t0) + (� + μ1s)t(r0, t0)

+ a(r0, t0)(� + μ1s)(r0, t0) + b(r0, t0)(� + μ1s)(r0 – 1, t0) ≤ 0.

Case (v): (r0, t0) = (2, t0)

0 < K(� + μ1s)(2, t0) = (� + μ1s)(2, t0) – ε

∫ 2

0
g(r)(� + μ1s)(r, t) dr ≤ 0.

In all the cases we arrived at a contradiction, and thus the proof is completed. �

Lemma 2 (Stability result) If u(r, t) satisfies problem (2)–(4), then the bound of u(r, t) is

‖u‖D̄ ≤ C max
{‖u‖�l ,‖u‖�b ,‖Ku‖�r̄ ,‖Lu‖D∗

}
, (r, t) ∈ D̄.

Proof It can be easily proved by using the maximum principle (Lemma 1) and the bar-
rier functions θ±(r, t) = CMs(r, t)±u(r, t), (r, t) ∈ D̄, where M = max{‖u‖�l ,‖u‖�b ,‖Ku‖�r̄ ,
‖Lu‖D∗} and s(r, t) is the test function as in (5). �

3.1 Compatibility conditions
For problem (2)–(4) to have existence and uniqueness of a solution, we assume that the
coefficients of the problem are Hölder continuous and also impose proper compatibility
conditions at (0, 0), (2, 0), (–1, 0), and (1, 0) [26]. Necessarily the following conditions are
satisfied:

φb(0, 0) = φl(0, 0), φb(2, 0) = φr̄(2, 0) (6)

and

–ε
∂2φb(0, 0)

∂r2 + a(0, 0)φb(0, 0) +
∂φl(0, 0)

∂t
+ b(0, 0)φl(–1, 0) = f (0, 0),

–ε
∂2φb(2, 0)

∂r2 + a(2, 0)φb(2, 0) +
∂φr̃(2, 0)

∂t
+ b(2, 0)φb(1, 0) = f (2, 0). (7)

Note that φl(r, t), φr̄(r, t), and φb(r, t) are assumed to be smooth for (7) to make sense,
namely φl(r, t) ∈ C1([0, T]), φr̄(r, t) ∈ C1([0, T]), and φb(r, t) ∈ C(2,1)(�b).

The following classical theorem gives sufficient conditions for the existence of a unique
solution of problem (1).

Theorem 1 Suppose a(r, t), b(r, t), f (r, t) ∈ C(α1,α1/2)(D̄) and φl ∈ C1+α1/2([0, T]), φb ∈
C(2+α1,1+α1/2)(�b), φr̄ ∈ C1+α1/2([0, T]), α1 ∈ (0, 1), and assume that the compatibility
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conditions (6) and (7) are satisfied. Then problem (2)–(4) has a unique solution uε ∈
C(2+α1,1+α1/2)(D̄).

Proof See [26]. �

3.2 The solution and its derivatives are bounded
Theorem 2 Suppose a(r, t), b(r, t), f (r, t) ∈ C(2+α1,1+α1/2)(D̄) and φl ∈ C(2+α1/2)([0, T]), φb ∈
C(4+α1,2+α1/2)(�b), φr̄ ∈ C(2+α1/2)([0, T]), where α1 ∈ (0, 1). Then problem (2)–(4) has a unique
solution, which satisfies uε ∈ C(4+α1,2+α1/2)(D̄). Also, the derivatives of the solution uε are
bounded, ∀i, j ∈ Z ≥ 0 such that 0 ≤ i + 2j ≤ 4,

∥
∥
∥
∥
∂ i+juε

∂ri∂tj

∥
∥
∥
∥ ≤ Cε

–i
2 .

Proof The first part of the proof is given in Ladyzhenskaya [26, Chap. IV, p. 320]. The
solution and its derivatives are bounded as follows. Under the stretched transformation
r̃ = r√

ε
, problem (1) can be rewritten as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Lũ(r̃, t) = (– ∂2

∂ r̃2 + ∂
∂t + ã(r̃, t))ũ(r̃, t) + b̃(r̃, t)ũ(r̃ – 1, t) = f (r̃, t), (r̃, t) ∈ D̃ε ,

ũ(r̃, t) = φl(r̃, t), (r̃, t) ∈ �̃l,

Kũ(r̃, t) = ũ(2, t) – ε
∫ 2

0 g(r)ũ(r̃, t) dr = φr̄(r̃, t), (r̃, t) ∈ �̃r̄ ,

ũ(r̃, t) = φb(r̃, t), (r̃, t) ∈ �̃b.

(8)

The equivalent problem is
⎧
⎨

⎩

L1ũ(r̃, t) = (– ∂2

∂ r̃2 + ∂
∂t + ã(r̃, t))ũ(r̃, t) = f (x̃, t) – b̃(r̃, t)φ̃l(r̃ – 1, t), (r̃, t) ∈ D̃1,ε ,

L2ũ(r̃, t) = (– ∂2

∂ r̃2 + ∂
∂t + ã(r̃, t))ũ(r̃, t) + b̃(r̃, t)ũ(r̃ – 1, t) = f (x̃, t), (r̃, t) ∈ D̃2,ε ,

(9)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ũ(r̃, t) = φl(r̃, t), (r̃, t) ∈ �̃l,

ũ(1–, t) = ũ(1+, t), ∂ũ
∂z (1–, t) = ∂ũ

∂z (1+, t),

Kũ(r̃, t) = ũ(2, t) – ε
∫ 2

0 g(r)ũ(r̃, t) dr = φr̄(r̃, t), (r̃, t) ∈ �̃r̄ ,

ũ(r̃, t) = φb(r̃, t), (r̃, t) ∈ �̃b,

(10)

where D̃ε = (0, 2√
ε
) × (0, T] and the boundary conditions �̃ to �.

Note that (8) is independent of ε. Then, using the idea of estimation (10.6) from [26,
p. 352], we get

∥
∥
∥
∥

∂ i+jũ
∂ r̃i∂tj

∥
∥
∥
∥

Ñδ

≤ C
(
1 + ‖ũ‖Ñ2δ

)

for all Ñδ in D̃ε . Here, Ñδ , δ > 0 is a neighborhood with diameter δ in D̃ε . Returning to the
original variable

∥
∥
∥
∥
∂ i+juε

∂ri∂tj

∥
∥
∥
∥

D̄
≤ Cε

–i
2
(
1 + ‖uε‖D̄

)
.

The proof is completed by using the bound on uε in Lemma 2. �
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3.3 Decomposition of the solution
The solution uε of (2)–(4) is decomposed into vε-smooth and wε-singular components.

Further, vε is separated into

vε = v0 + εv1,

where v0 and v1 are solutions of the following differential equations respectively:

⎧
⎨

⎩

∂v0
∂t (r, t) + a(r, t)v0(r, t) + b(r, t)v0(r – 1, t) = f (r, t), (r, t) ∈ D,

v0(r, t) = 0, (r, t) ∈ �b,
(11)

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Lv1(r, t) = ∂2v0
∂r2 (r, t), (r, t) ∈ D,

v1(r, t) = 0, (r, t) ∈ �l,

Kv1(r, t) = 0, (r, t) ∈ �r̄ ,

v1(r, t) = 0, (r, t) ∈ �b.

(12)

Then vε satisfies the condition

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Lvε(r, t) = f (r, t), (r, t) ∈ D,

vε(r, t) = v0(r, t), (r, t) ∈ �l,

Kvε(r, t) = Kv0(2, t), (r, t) ∈ �r̄ ,

vε(r, t) = φb(r, t), (r, t) ∈ �b.

(13)

The singular component wε is determined from

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1wε(r, t) = 0, (r, t) ∈ D1,

wε(r, t) = φl(r, t) – v0(r, t), (r, t) ∈ �l,

[w](r, t) = –[v](r, t), (r, t) ∈ �r̄ ,

i,e) wr(1+, t) – wr(1–, t) = –(vr(1+, t) – vr(1–, t)),

wε(r, t) = 0, (r, t) ∈ �b,

(14)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L2wε(r, t) = 0, (r, t) ∈ D2,

[w](r, t) = –[v](r, t), (r, t) ∈ �l,

i,e) wr(1+, t) – wr(1–, t) = –(vr(1+, t) – vr(1–, t)),

Kwε(r, t) = Kuε(r, t) – Kv0(r, t), (r, t) ∈ �r̄ ,

wε(r, t) = 0, (r, t) ∈ �b.

(15)
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The reaction diffusion problem has boundary layers on both boundaries �l and �r̄ . Sepa-
rate wε as wε = wl + wr̃ , where wl and wr̃ satisfy the following problems:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L1wl(r, t) = 0, (r, t) ∈ D1,

wl(r, t) = φl(r, t) – v0(r, t), (r, t) ∈ �l,

wl(r, t) = 0, (r, t) ∈ �r̄ ,

wl(r, t) = 0, (r, t) ∈ �b,

(16)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L2wl(r, t) = 0, (r, t) ∈ D2,

wl(r, t) = A, (r, t) ∈ �l,

wl(r, t) = 0, (r, t) ∈ �r̄ ,

wl(r, t) = 0, (r, t) ∈ �b,

(17)

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L1wr̃(r, t) = 0, (r, t) ∈ D1,

wr̃(r, t) = 0, (r, t) ∈ �l,

wr̃(r, t) = A, (r, t) ∈ �r̄ ,

wr̃(r, t) = 0, (r, t) ∈ �b,

(18)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L2wr̃(r, t) = 0, (r, t) ∈ D2,

wr̃(r, t) = 0, (r, t) ∈ �l,

Kwr̃(r, t) = Kw(r, t), (r, t) ∈ �r̄ ,

wr̃(r, t) = 0, (r, t) ∈ �b.

(19)

Here, we choose A to be a suitable constant, then the solution is continuous at r = 1.

Theorem 3 Suppose a(r, t), b(r, t), f (r, t) ∈ C(4+α1,2+α1/2)(D̄) and φl ∈ C(3+α1/2)([0, T]), φb ∈
C(6+α1,3+α1/2)(�b), φr̃ ∈ C(3+α1/2)([0, T]), where α1 ∈ (0, 1). Then we have

∥
∥
∥
∥

∂ i+jvε

∂ri∂tj

∥
∥
∥
∥

D̄
≤ C

(
1 + ε1–i/2), (20)

∣
∣
∣
∣
∂ i+jwl(r, t)

∂ri∂tj

∣
∣
∣
∣ ≤

⎧
⎨

⎩

Cε
–i
2 e

–r√
ε , (r, t) ∈ D1,

Cε
–i
2 e

–(r–1)√
ε , (r, t) ∈ D2,

(21)

∣
∣
∣
∣
∂ i+jwr̃(r, t)

∂ri∂tj

∣
∣
∣
∣ ≤

⎧
⎨

⎩

Cε
–i
2 e

–(1–r)√
ε , (r, t) ∈ D1,

Cε
–i
2 e

–(2–r)√
ε , (r, t) ∈ D2,

(22)

where C is a constant independent of the parameter ε, (r, t) ∈ D̄, i, j ≥ 0, 0 ≤ i + 2j ≤ 4.

Proof The existence and smooth component result follow from [26, Chap. 4, p. 320]. The
derivatives of smooth component functions are bounded and derived as follows.
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First, we estimate that the reduced problem solution v0 is bounded and its derivative is
bounded

∥
∥
∥
∥

∂ i+jv0

∂ri∂tj

∥
∥
∥
∥

D̄
≤ C. (23)

Using Theorem 2, we estimate that the derivative of the solution v1 becomes

∥
∥
∥
∥

∂ i+jv1

∂ri∂tj

∥
∥
∥
∥

D̄
≤ Cε

–i
2 (24)

since

∂ i+jvε

∂ri∂tj =
∂ i+jv0

∂ri∂tj + ε
∂ i+jv1

∂ri∂tj .

By (23) and (24), we establish smooth component vε estimates.
To prove inequality (21), following the procedure adapted in [12], it is easy to find that

∣
∣wl(r, t)

∣
∣ ≤ Ce

–r√
ε , (r, t) ∈ D1.

Now, we derive the bound on wl on D2. From the defining equations for wl , we have

L2wl(r, t) = –εwrr(r, t) + wt(r, t) + a(r, t)wl(r, t) + b(r, t)wl(r – 1, t) = 0

or

L2wl(r, t) = –εwrr(r, t) + wt(r, t) + a(r, t)wl(r, t) = –b(r, t)wl(r – 1, t),

L2wl(r, t) = L1wl(r, t) = –b(r, t)wl(r – 1, t),

∣
∣L2wl(r, t)

∣
∣ ≤ Ce

–(r–1)√
ε

for a choice of suitable C > 0. Using the stability result (Lemma 2), we have |wl(r, t)| ≤
Ce

–(r–1)√
ε .

Hence,

∣
∣wl(r, t)

∣
∣ ≤

⎧
⎨

⎩

Ce
–(r)√

ε , (r, t) ∈ D1,

Ce
–(r–1)√

ε , (r, t) ∈ D2.

Let r̃ = r√
ε

. Clearly, under the transformation, stretched variable r̃ domain is (0, 2√
ε
), note

that (r, t) ⇒ (r̃, t) and the parameter ε is independent of problem (16)–(17), then suitable
estimates in [26, Sect. 4.10] are the solution of w̃l . The position of r̃ argument is divided
into two cases. In the first case, for a neighborhood of Ñδ in (0, 2√

ε
) × (0, T], apply [26,

Sect. 4.10], then

∥
∥
∥
∥
∂ i+jw̃l

∂ r̃i∂tj

∥
∥
∥
∥ ≤ C

(‖w̃l‖Ñ2δ

)
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and derive the essential bound of r, the variable r̃ changing into variable r, using the bound
of wl .

Similarly, for any neighborhood Ñδ in (0, 2] × (0, T], apply [26, Sect. 4.10], then

∥
∥
∥
∥
∂ i+jw̃l

∂ r̃i∂tj

∥
∥
∥
∥ ≤ C

(
1 + ‖w̃l‖Ñ2δ

)
,

and derive the essential bound of r, the variable r̃ changing into variable r, using the wl

bound, and observe e
–r√

ε ≥ e–2 = C for r̃ ≤ 2.
Now to prove (22), consider

θ±(r, t) = C

⎧
⎨

⎩

eα∗te
–(1–r)√

ε , (r, t) ∈ D1

eβ∗te
–(2–r)√

ε , (r, t) ∈ D2

± wr̃(r, t),

where α∗ = max{0, 1 – min(r,t)∈D̄ a(r, t)} and β∗ = max{0, 1 – min(r,t)∈D̄(a(r, t) + b(r, t))}.
Note that θ±(0, t) ≥ 0,

L1θ
±(r, t) = –εθ±

rr (r, t) + θ±
t (r, t) + a(r, t)θ±(r, t)

= C
(
α∗ – 1 + a(r, t)

)
e

–(1–r)√
ε eα∗t

≥ 0,

L2θ
±(r, t) = –εθ±

rr (r, t) + θ±
t (r, t) + a(r, t)θ±(r, t) + b(r, t)θ±(r – 1, t)

= C
(
β∗ – 1 + a(r, t) + b(r, t)e

–1√
ε
)
e

–(2–r)√
ε eβ∗t

≥ C
(
α∗ – 1 + a(r, t) + b(r, t)

)
e

–(2–r)√
ε eα∗t

≥ 0,

and

Kθ±(2, t) = θ±(2, t) – ε

∫ 2

0
g(r)θ±(r, t) dr

= C – Cε

∫ 1

0
g(r)θ±(r, t) dr – Cε

∫ 2

1
g(r)θ±(r, t) dr

= C – Cε

∫ 1

0
g(r)e

–(1–r)√
ε dr – Cε

∫ 2

1
g(r)e

–(2–r)√
ε dr

≥ C
(

1 – ε

∫ 2

0
g(r) dr

)

≥ 0

for a choice of suitable C > 0. Using the maximum principle (Lemma 1), we have

∣
∣wr̃(r, t)

∣
∣ ≤

⎧
⎨

⎩

Ce
–(1–r)√

ε , (r, t) ∈ D1,

Ce
–(2–r)√

ε , (r, t) ∈ D2.



Elango et al. Advances in Difference Equations        (2021) 2021:151 Page 10 of 20

Let r̃ = r√
ε

. Clearly, under the transformation, the stretched variable r̃ domain is (0, 2√
ε
),

note that (r, t) ⇒ (r̃, t) and the parameter ε is independent of problem (18)–(19), then
suitable estimates in [26, Sect. 4.10] are the solution of w̃r̃ . The position of r̃ argument
is divided into two cases. In the first case, for the neighborhood of Ñδ in (0, 2√

ε
) × (0, T],

applying [26, Sect. 4.10], we get

∥
∥
∥
∥
∂ i+jw̃r̃

∂ r̃i∂tj

∥
∥
∥
∥ ≤ C

(‖w̃r̃‖Ñ2δ

)

and derive the essential bound of r, variable r̃ changing into variable r, using the wr̃ bound.
Similarly, for any neighborhood Ñδ in (0, 2] × (0, T] applying [26, Sect. 4.10], we get

∥
∥
∥
∥
∂ i+jw̃r̃

∂ r̃i∂tj

∥
∥
∥
∥ ≤ C

(
1 + ‖w̃r̃‖Ñ2δ

)

and derive the essential bound of r; moreover, the variable r̃ changing into variable r and
using bound of wr̃ , observe e

–r√
ε ≥ e–2 = C for r̃ ≤ 2. Hence proved. �

4 The discretised problem
In this part, we apply the finite difference method to the continuous problem (2)–(4) on a
piecewise uniform mesh. The second order space derivative (urr) is replaced by the cen-
tral difference scheme (δ2

r U), and the first order time derivative (ut) is replaced by the
backward difference scheme (D–

t U). In r-direction the interval � = [0, 2] is divided into
�̄1 = [0, 1] and �̄2 = [1, 2] with N

2 equal mesh points. Furthermore, the piecewise uniform
mesh (Shishkin mesh) �̄1 = [0, 1] is divided into three subintervals

�̄1 = �̄l ∪ �̄c ∪ �̄r̃ ,

where �l = (0,μ), �c = (μ, 1 – μ), �r̃ = (1 – μ, 1).
Similarly, the interval �̄2 = [1, 2] is divided into three subintervals

�̄2 = �̄l ∪ �̄c ∪ �̄r̃ ,

where �l = (1, 1 + μ), �c = (1 + μ, 2 – μ), �r̃ = (2 – μ, 2). Furthermore, μ is called a fitting
factor, and it satisfies the following condition:

μ = min

{
1
4

, 2
√

ε ln(Nr)
}

,

where Nr denotes the number of mesh elements in the r-direction.
A piecewise uniform mesh �Nr

μ is on � with Nr mesh elements. Both intervals �l and
�r̃ are uniform meshes with Nr

8 elements and �c is also a uniform mesh with Nr
4 mesh ele-

ment, and thus we divide r-direction. Uniform meshes on t-direction on step size �t and
the number mesh denotes Nt in t-direction. DN

μ = �Nr
μ ×�Nt and the boundary analogues

�N
μ of DN

μ are �N
μ = D̄N

μ ∩ �. We put �N
l,μ = �N

μ ∩ �l , �N
r,μ = �N

μ ∩ �r̄ , and �N
b,μ = �N

μ ∩ �b.
Using the finite difference method for the continuous problem (2)–(4).

LN Uε(ri, tj) = F(ri, tj),
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where

LN Uε(ri, tj) =

⎧
⎪⎪⎨

⎪⎪⎩

LN
1 Uε(ri, tj) = (–εδ2

r Uε + D–
t Uε + aUε)(ri, tj), (ri, tj) ∈ DN

1 ,

LN
2 Uε(ri, tj) = (–εδ2

r Uε + D–
t Uε + aUε)(ri, tj)

+ bUε(ri– N
2

, tj), (ri, tj) ∈ DN
2 ,

(25)

F(ri, tj) =

⎧
⎨

⎩

f (ri, tj) – b(ri, tj)φl(ri– N
2

, tj), (ri, tj) ∈ DN
1 ,

f (ri, tj), (ri, tj) ∈ DN
2 ,

(26)

with boundary conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uε(ri, tj) = φl(ri, tj), φl(ri, tj) ∈ �N
l ,

KN Uε(rN , tj) = Uε(rN , tj) – ε
∑N

i=1
g(ri–1)Uε(ri–1,tj)+g(ri)Uε(ri ,tj)

2 hi

= φr̃ , φr̃(ri, tj) ∈ �N
r̃ ,

D–
r Uε(r N

2
, tj) = D+

r Uε(r N
2

, tj),

Uε(ri, tj) = φb(ri, tj), φb(ri, tj) ∈ �N
b , where i, j = 1, 2, . . . , N .

(27)

The differential operator notation is

⎧
⎪⎪⎨

⎪⎪⎩

δ2
r Ui,j = (D+

r –D–
r )Ui,j

(ri+1–ri–1)/2

with

D+
r Ui,j = Ui+1,j–Ui,j

ri+1–ri
, D–

r Ui,j = Ui,j–Ui–1,j
ri–ri–1

and an analogous definition of D–
t .

Lemma 3 (Discrete maximum principle) Let Z be any mesh function satisfying Z(r0, tj) ≥
0, Z(ri, t0) ≥ 0, KN Z(rN , tj) ≥ 0, LN

1 Z(ri, tj) ≥ 0, ∀(ri, tj) ∈ DN
1 , LN

2 Z(ri, tj) ≥ 0, ∀(ri, tj) ∈ DN
2 ,

and [Dr]Z(r N
2

, tj) = D+
r Z(r N

2
, tj) – D–

r Z(r N
2

, tj) ≤ 0. Then Z(ri, tj) ≥ 0 for all (ri, tj) ∈ D̄N .

Proof Define a test function S(ri, tj) as

S(ri, tj) =

⎧
⎨

⎩

1
8 + ri

2 , (ri, tj) ∈ DN
1 ,

3
8 + ri

4 , (ri, tj) ∈ DN
2 .

(28)

Note that S(ri, tj) > 0, ∀(ri, tj) ∈ D̄N , LN S(ri, tj) > 0, ∀(ri, tj) ∈ DN
1 ∪ DN

2 , S(r0, tj) > 0, S(ri, t0) >
0, KN S(rN , tj) > 0, and [Dr]S(r N

2
, tj) < 0. Let

η = max

{
–r(ri, tj)
S(ri, tj)

: (ri, tj) ∈ D̄N
}

.

Then there exists (r∗, t∗) ∈ D̄N such that Z(r∗, t∗) + ηS(r∗, t∗) = 0 and Z(ri, tj) + ηS(ri, tj) ≥ 0,
∀(ri, tj) ∈ D̄N . Then the function is minimum at (r, t) = (r∗, t∗) and this proof is completed.
Suppose η > 0, we need a contradiction.

Case (i): (r∗, t∗) = (r0, t∗)

0 < (r + ηS)
(
r0, t∗) = Z

(
r0, t∗) + ηS

(
r0, t∗) = 0.
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Case (ii): (r∗, t∗) ∈ DN
1

0 < LN
1 (r + ηS)

(
r∗, t∗) =

(
–εδ2

r + Dt + a
)
(r + ηS)

(
r∗, t∗) ≤ 0.

Case (iii): (r∗, t∗) = (r N
2

, t∗)

0 ≤ [
Dr(� + ηs)

](
r N

2
, t∗) < 0.

Case (iv): (r∗, t∗) ∈ DN
2

0 < LN
2 (r + ηS)

(
r∗, t∗)

=
(
–εδ2

r + Dt + a
)
(r + ηS)

(
r∗, t∗) + b(r + ηS)

(
r∗ – r N

2
, t∗) ≤ 0.

Case (v): (r∗, t∗) = (rN , t∗)

0 < KN (r + ηS)
(
rN , t∗) = (r + ηS)

(
rN , t∗) – ε

N∑

i=1

gi–1(r + ηS)i–1,j + gi(r + ηS)i,j

2
hi ≤ 0.

In all the cases we arrived at a contradiction. Hence proved. �

Lemma 4 Prove that

‖Z‖D̄N ≤ C max
{
‖Z‖�N

l
,‖Z‖�N

b
,
∥
∥KN Z

∥
∥

�N
r̄

, max
(ri ,tj)∈DN

1 ∪DN
2

∥
∥LN Z

∥
∥
}

, (ri, tj) ∈ D̄N .

Proof It can be easily proved using the discrete maximum principle (Lemma 3) and the
barrier functions �±(ri, tj) = CMS(ri, tj) ± Z(ri, tj), (ri, tj) ∈ D̄N , where

M = max
{
‖Z‖�N

l
,‖Z‖�N

b
,
∥
∥KN Z

∥
∥

�N
r̄

, max
(ri ,tj)∈DN

1 ∪DN
2

∥
∥LN Z

∥
∥
}

, (29)

and S(ri, tj) is the test function as in Lemma 3. �

5 Error estimate
In this section, we prove parameter uniform convergence of the numerical solution.

Theorem 4 Let uε and Uε be solutions of problems (2)–(4) and (25)–(27). Assume that
the coefficients a(r, t), b(r, t), f (r, t) ∈ C(4+α1,2+α1/2)(D̄) and the boundary conditions satisfy
φl ∈ C(3+α1/2)([0, T]), φb ∈ C(6+α1,3+α1/2)(�b), φr̃ ∈ C(3+α1/2)([0, T]), where α1 ∈ (0, 1). Then
we have

sup
0<ε≤1

‖Uε – uε‖D̄N ≤ C
(
N–2

r ln2 Nr + N–1
t

)
.

Proof Since the continuous problem solution uε of Lε is decomposed into smooth and
singular components, by the same process, the discrete problem solution Uε of LN

ε is de-
composed into smooth and singular components as

Uε = Vε + Wε ,
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where the Vε-smooth component is the solution of the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

LN Vε(ri, tj) = f (ri, tj), (ri, tj) ∈ DN ,

Vε(ri, tj) = φ0(ri, tj), (ri, tj) ∈ �N
l ,

KN Vε(rN , tj) = KN V0(rN , tj), (ri, tj) ∈ �N
r̄ ,

Vε(ri, tj) = φb(ri, tj), (ri, tj) ∈ �N
b ,

and therefore Wε must satisfy

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

LN Wε(ri, tj) = 0, (ri, tj) ∈ DN ,

Wε(ri, tj) = Uε(ri, tj) – Vε(ri, tj), (ri, tj) ∈ �N
l ,

KN Wε(rN , tj) = KN Uε(rN , tj) – KN V0(rN , tj), (ri, tj) ∈ �N
r̄ ,

Wε(ri, tj) = 0, (ri, tj) ∈ �N
b .

The error can be written in the form

Uε – uε = (Vε – vε) + (Wε – wε),

and we prove separately the error estimates of smooth and singular components.
First, we derive the error estimate for the smooth component using the following clas-

sical argument.
At the point ri = rN ,

KN (Vε – vε)(rN , tj) = KN Vε(rN , tj) – KN vε(rN , tj)

= φr̃ – KN vε(rN , tj)

= Kvε(rN , t) – KN vε(rN , tj)

= vε(rN , t) –
∫ rN

r0

g(r)vε(r, t) dr – vε(rN , tj) +
N∑

i=1

gi–1vi–1,j + givi,j

2
hi

=
g0v0,j + g1v1,j

2
h1 + · · · +

gN–1vN–1,j + gN vN ,j

2
hN

–
∫ r1

r0

g(r)vε(r, t) dr – · · · –
∫ rN

rN–1

g(r)vε(r, t) dr

= –
h3

1
12

g ′′(χ1)v′′
ε (χ1, t) – · · · –

h3
2N

12
g ′′(χN )v′′

ε (χN , t),
∣
∣KN (Vε – vε)(rN , tj)

∣
∣ =

∣
∣C

(
h3

1v′′
ε (χ1, t) + · · · + h3

N v′′
ε (χN , t)

)∣
∣,

∣
∣KN (Vε – vε)(rN , tj)

∣
∣ ≤ Cε(

(
h3

1v′′
ε (χ1, t) + · · · + h3

N v′′
ε (χN , t)

)

≤ Cε–1(e–χ1
√

α
ε h3

1 + · · · + e–χN
√

α
ε h3

N
)

≤ Cε
(
h3

1 + · · · + h3
N
)

≤ CN–2
r ,

where ri–1 ≤ χi ≤ ri, 1 ≤ i ≤ N , for a proper choice of C.
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From the difference and differential equations, it is not hard to see that

LN
1 (Vε – vε) = f – LN

1 vε =
(
L1 – LN

1
)
vε .

Then

LN
1 (Vε – vε) = –ε

(
∂2

∂r2 – δ2
r

)

vε +
(

∂

∂t
– D–

t

)

vε .

It follows from classical estimates [12], at each point (ri, tj) in DN
1 ,

∣
∣LN

1 (Vε – vε)(ri, tj)
∣
∣ ≤ C

⎧
⎨

⎩

(
√

εN–1
r + N–1

t ), if ri = μ or ri = 1 – μ,

(N–2
r + N–1

t ), otherwise.

Similarly,

∣
∣LN

2 (Vε – vε)(ri, tj)
∣
∣ ≤ C

⎧
⎨

⎩

(
√

εN–1
r + N–1

t ), if ri = 1 + μ or ri = 2 – μ,

(N–2
r + N–1

t ), otherwise.

Define

φ(ri, tj) = C

⎧
⎨

⎩

μ√
ε
θ1(ri)N–2

r + (1 + tj)N–2
r + tjN–1

t , (ri, tj) ∈ DN
1 ,

(1+μ)√
ε

θ2(ri)N–2
r + (1 + tj)N–2

r + tjN–1
t , (ri, tj) ∈ DN

2 ,

where θ1 and θ2 are piecewise linear polynomials

θ1 =

⎧
⎪⎪⎨

⎪⎪⎩

r
μ

for 0 ≤ z ≤ μ,

1 for μ ≤ z ≤ 1 – μ,
1–r
μ

for 1 – μ ≤ z ≤ 1,

and

θ2 =

⎧
⎪⎪⎨

⎪⎪⎩

r
1+μ

for 1 ≤ z ≤ 1 + μ,

1 for 1 + μ ≤ z ≤ 2 – μ,
3–r
1+μ

for 2 – μ ≤ z ≤ 2.

Then, for all (ri, tj) ∈ D̄N ,

0 ≤ φ(ri, tj) ≤ C
(
N–2

r ln Nr + N–1
t

)
,

and also

LN
1 φ(ri, tj) ≥

⎧
⎨

⎩

C(
√

εN–1
r + N–2

r + N–1
t ), if ri = μ or 1 – μ,

C(N–2
r + N–1

t ), otherwise,
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note that μ√
ε

≤ 2 ln N and

LN
1 θ (ri) =

⎧
⎨

⎩

εNr
μ

+ a(ri), if ri = μ or ri = 1 – μ,

a(ri)θ (ri), otherwise.

Similarly,

LN
2 φ(ri, tj) ≥

⎧
⎨

⎩

C(
√

εN–1
r + N–2

r + N–1
t ), if ri = 1 + μ or 2 – μ,

C(N–2
r + N–1

t ), otherwise,

note that 1+μ√
ε

≤ 2 ln N and

LN
2 θ (ri) =

⎧
⎨

⎩

εNr
1+μ

+ a(ri) + b(ri), if ri = 1 + μ or ri = 2 – μ,

a(ri)θ (ri) + b(ri)θ (ri– N
2

), otherwise,

and ∀(ri, tj) ∈ �N , then φ(ri, tj) ≥ 0.
Observe that KNθ (rN , tj) ≥ 0.
Define the barrier functions

�±(ri, tj) = φ(ri, tj) ± (Vε – vε)(ri, tj),

it follows from ∀(ri, tj) ∈ DN
1 , ∀(ri, tj) ∈ DN

2 ,

LN
1 �±(ri, tj) ≥ 0 and LN

2 �±(ri, tj) ≥ 0.

Then, from the discrete maximum principle,

�±(ri, tj) ≥ 0, (ri, tj) ∈ D̄N .

Then we have

∣
∣(Vε – vε)(ri, tj)

∣
∣ ≤ φ(ri, tj) ≤ C

(
N–2

r ln Nr + N–1
t

)
,

∣
∣(Vε – vε)(ri, tj)

∣
∣ ≤ C

(
N–2

r ln Nr + N–1
t

)
.

Next, we derive an error estimate for the singular component. We decompose Wε into
Wl and Wr̃ , where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

LN
1 Wl(ri, tj) = 0, (ri, tj) ∈ DN

1 ,

Wl(ri, tj) = φl(ri, tj) – v0(ri, tj), (ri, tj) ∈ �N
l ,

Wl(ri, tj) = 0, (ri, tj) ∈ �N
r̄ ,

Wl(ri, tj) = 0, (ri, tj) ∈ �N
b ,
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

LN
2 Wl(ri, tj) = 0, (ri, tj) ∈ DN

2 ,

Wl(ri, tj) = A, (ri, tj) ∈ �N
l ,

KN Wl(ri, tj) = 0, (ri, tj) ∈ �N
r̄ ,

Wl(ri, tj) = 0, (ri, tj) ∈ �N
b ,

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

LN
1 Wr̃(ri, tj) = 0, (ri, tj) ∈ DN

1 ,

Wr̃(ri, tj) = 0, (ri, tj) ∈ �N
l ,

Wr̃(ri, tj) = A, (ri, tj) ∈ �N
r̄ ,

Wr̃(ri, tj) = 0, (ri, tj) ∈ �N
b ,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

LN
2 Wr̃(r, t) = 0, (ri, tj) ∈ DN

2 ,

Wr̃(ri, tj) = 0, (ri, tj) ∈ �N
l ,

KN Wr̃(ri, tj) = KN W (ri, tj), (ri, tj) ∈ �N
r̄ ,

Wr̃(ri, tj) = 0, (ri, tj) ∈ �N
b .

The singular component error is equivalent to

Wε – wε = (Wl – wl) + (Wr̃ – wr̃),

LN (Wε – wε) = –ε

(
∂2

∂r2 – δ2
r

)

wε +
(

∂

∂t
– D–

t

)

wε .

It follows from classical estimates [12], at each point (ri, tj) in DN
1 ,

∣
∣LN (Wε – wε)(ri, tj)

∣
∣ ≤ C

⎧
⎨

⎩

((N–1
r ln Nr)2 + N–1

t ), if (ri, tj) ∈ DN
1 ,

((N–1
r ln Nr)2 + N–1

t ), if (ri, tj) ∈ DN
2 .

First, the estimate for Wl – wl is given. The argument depends on whether μ = 1
4 or

μ = 2
√

ε ln N
Case(i): μ = 1

4 .
In this case the mesh is uniform and 2

√
ε ln N ≥ 1

4 . It is clear that ri – ri–1 = N–1 and
ε– 1

2 ≤ C ln N . By [12] we have

KN (Wl – wl)(rN , tj) = KN Wl(rN , tj) – KN wl(rN , tj)

= φr̃ – KN wl(rN , tj)

= Kwl(rN , t) – KN wl(rN , tj),
∣
∣KN (Wl – wl)(rN )

∣
∣ ≤ Cε(

(
h3

1w′′
l (χ1, tj) + · · · + h3

N w′′
l (χN , tj)

)

≤ Cε–1(h3
1 + · · · + h3

N
)

≤ CN–2
r ,
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where ri–1 ≤ χi ≤ ri. Using Lemma 4 to the function (Wl – wl)(ri) gives

∣
∣(Wl – wl)(ri)

∣
∣ ≤ C

(
N–2

r ln2 Nr
)
.

Case(ii): μ < 1
4 .

Since the mesh is piecewise uniform with the subinterval [μ, 1 – μ], mesh elements are
4(1 – 2μ)/N and the rest of the intervals [0,μ] and [1 – μ, 1] with 8μ/N mesh elements.

By [12], we have

∣
∣KN (Wl – wl)(ri)

∣
∣ ≤ C

(
N–2

r ln2 Nr
)

and

∣
∣KN (Wl – wl)(rN )

∣
∣ ≤ ε

∣
∣C

(
h3

1w′′(χ1) + · · · + h3
N w′′(χN )

)∣
∣

≤ C
(
h3

1 + · · · + h3
N
)

≤ CN–2
r ,

where ri–1 ≤ χi ≤ ri. Using Lemma 4 to the function (Wl – wl)(ri) gives

∣
∣(Wl – wl)(ri)

∣
∣ ≤ C

(
N–2

r ln2 Nr + N–1
t

)
.

Analogous arguments are used to establish the error estimate for WR. Hence proved. �

6 Numerical examples
As the exact solutions of these problems are not known, to compute the error estimate,
the double mesh principle is used, which is stated as follows:

EN ,�t
ε = max

(ri ,tj)∈D̄N

∣
∣UN ,�t(ri, tj) – U2N ,�t/2(ri, tj)

∣
∣.

We determine the uniform error EN ,�t = maxε EN ,�t and the rate of convergence as pN ,�t =
log2( EN ,�t

E2N ,�t/2 ).

Example 6.1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(–ε ∂2uε

∂r2 + ∂uε

∂t + 5uε)(r, t) – uε(r – 1, t) = e–r , (r, t) ∈ (0, 2) × (0, 2],

uε(r, t) = 0, ∀(r, t) ∈ �l,

Kuε(2, t) = uε(2, t) – ε
∫ 2

0
r
3 uε(r, t) dr = 0, ∀(r, t) ∈ �r̄ ,

uε(r, t) = 0, ∀(r, t) ∈ �b.

Example 6.2

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(–ε ∂2uε

∂r2 + ∂uε

∂t + 5uε)(r, t) – ruε(r – 1, t) = 1, (r, t) ∈ (0, 2) × (0, 2],

uε(r, t) = 0, ∀(r, t) ∈ �l,

Kuε(2, t) = uε(2, t) – ε
∫ 2

0
1
6 uε(r, t) dr = 0, ∀(r, t) ∈ �r̄ ,

uε(r, t) = sin(πr), ∀(r, t) ∈ �b.
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7 Discussion
In the literature, so far, no one has considered singularly perturbed parabolic partial dif-
ferential equation with nonlocal boundary condition. We considered a class of singularly
perturbed partial differential equations with delay in space and integral boundary condi-
tion. A finite difference method and a trapezoidal rule were proposed. We showed that the
order of convergence and the error is of order O(N–2

r ln N2
r + N–1

t ). The theory has been
validated with two examples. Our numerical results reflect the theoretical estimates. Max-
imum point-wise errors and the order of convergence of Example 6.1 and Example 6.2 are
given in Tables 1 and 2 respectively. The numerical solution of Examples 6.1 and 6.2 are
plotted in Figs. 1 and 2.

Table 1 Example 6.1 corresponding maximum pointwise errors and the rate of convergence such as
EN,�t
ε , EN,�t , pN,�t

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

�t = 0.1 �t = 0.1/2 �t = 0.1/22 �t = 0.1/23 �t = 0.1/24 �t = 0.1/25 �t = 0.1/26

1 1.1975e–02 9.7873e–03 6.8849e–03 4.3534e–03 2.5602e–03 1.4343e–03 7.7788e-04
10–1 1.9191e–02 1.4963e–02 9.7686e–03 5.7576e–03 3.1867e–03 1.6990e–03 8.8579e-04
10–2 2.5748e–02 1.8063e–02 1.1329e–02 6.4557e–03 3.4830e–03 1.8181e–03 9.3259e-04
10–3 2.8666e–02 1.9764e–02 1.2063e–02 6.7764e–03 3.6094e–03 1.8676e–03 9.5132e-04
10–4 2.9667e–02 2.0342e–02 1.2358e–02 6.9012e–03 3.6589e–03 1.8864e–03 9.5841e-04
10–5 2.9991e–02 2.0528e–02 1.2473e–02 6.9477e–03 3.6771e–03 1.8933e–03 9.6099e-04
10–6 3.0094e–02 2.0588e–02 1.2515e–02 6.9646e–03 3.6838e–03 1.8958e–03 9.6192e-04
10–7 3.0127e–02 2.0607e–02 1.2528e–02 6.9707e–03 3.6861e–03 1.8967e–03 9.6224e-04
10–8 3.0137e–02 2.0613e–02 1.2532e–02 6.9728e–03 3.6869e–03 1.8970e–03 9.6236e-04
10–9 3.0140e–02 2.0614e–02 1.2534e–02 6.9736e–03 3.6872e–03 1.8971e–03 9.6240e-04
10–10 3.0142e–02 2.0615e–02 1.2534e–02 6.9738e–03 3.6873e–03 1.8972e–03 9.6241e-04
EN,�t 3.0142e–02 2.0615e–02 1.2534e–02 6.9738e–03 3.6873e–03 1.8972e–03 9.6241e-04
pN,�t 5.4806e–01 7.1783e–01 8.4584e–01 9.1937e–01 9.5873e–01 9.7912e–01 –

Table 2 Example 6.2 corresponding maximum pointwise errors and the rate of convergence such as
EN,�t
ε , EN,�t , pN,�t

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

�t = 0.1 �t = 0.1/2 �t = 0.1/22 �t = 0.1/23 �t = 0.1/24 �t = 0.1/25 �t = 0.1/26

1 1.9169e–01 1.8765e–01 1.4776e–01 9.7571e–02 5.7092e–02 3.1057e–02 1.6222e-02
10–1 2.0157e–01 1.5386e–01 9.9026e–02 5.6998e–02 3.0701e–02 1.5952e–02 8.1328e-03
10–2 1.9835e–01 1.4615e–01 9.1730e–02 5.1998e–02 2.7761e–02 1.4356e–02 7.3013e-03
10–3 1.9792e–01 1.4531e–01 9.0969e–02 5.1441e–02 2.7447e–02 1.4189e–02 7.2176e-03
10–4 1.9789e–01 1.4523e–01 9.0893e–02 5.1389e–02 2.7427e–02 1.4176e–02 7.2080e-03
10–5 1.9788e–01 1.4522e–01 9.0885e–02 5.1384e–02 2.7429e–02 1.4176e–02 7.2082e-03
10–6 1.9788e–01 1.4522e–01 9.0885e–02 5.1384e–02 2.7430e–02 1.4177e–02 7.2085e-03
10–7 1.9788e–01 1.4522e–01 9.0885e–02 5.1384e–02 2.7430e–02 1.4177e–02 7.2086e-03
10–8 1.9788e–01 1.4522e–01 9.0885e–02 5.1384e–02 2.7431e–02 1.4177e–02 7.2087e-03
10–9 1.9788e–01 1.4522e–01 9.0885e–02 5.1384e–02 2.7431e–02 1.4177e–02 7.2087e-03
10–10 1.9788e–01 1.4522e–01 9.0885e–02 5.1384e–02 2.7431e–02 1.4177e–02 7.2087e-03
EN,�t 2.0157e–01 1.8765e–01 1.4776e–01 9.7571e–02 5.7092e–02 3.1057e–02 1.6222e-02
pN,�t 1.0324e–01 3.4479e–01 5.9873e–01 7.7316e–01 8.7837e–01 9.3697e–01 –
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Figure 1 Solution graph of Example 6.1

Figure 2 Solution graph of Example 6.2
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