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1 Introduction
Environmental pollution because of industry, commerce, agriculture, and the rapid
growth of human population has been increasingly prominent and has become an global
problem. Pollutants have threatened the health of living organisms. For instance, Amoco
Cadiz incident carried off more than 260 thousands tonnes of sea animals in one month
[1]; Bhopal disaster killed about 15 thousands people and injured about 560 thousands
people [2]; according to the United States Fish and Wildlife Service, pesticides carried off
more than 72 million birds every year in US [3].

To probe the influence of pollutants on the evolution of populations, many mathemat-
ical models have been put forward. In the 1980s, Hallam and his co-workers [4–6] first
constructed a series of deterministic models with pollution and uncovered that environ-
mental pollution has serious influence on the persistence and extermination of the species.
These results were improved and extended [7–17]. Particularly, motivated by the fact that
the evolution of populations often encounters environmental perturbations [18], several
authors (see, e.g., [9, 12–17]) paid attention to stochastic population models with pollution
and uncovered that environmental perturbations have vital functions on the persistence
and extermination of the species.

On the other hand, most populations have parasites and predators [19]. In general, these
predation effects have negative functions on the growth of populations. Therefore we need
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to test population models with predation effects in polluted environments. However, little
research has been conducted to exploit this problem (even for deterministic models).

The objective of this paper is testing the above problem. We construct a population
model with predation effects in polluted environments in Sect. 2 and testify that the model
has a unique global positive solution in Sect. 3. Then we offer a threshold between exter-
mination and weak persistence of the species and provide conditions under which the
species is stochastically persistent in Sect. 4. In Sect. 5, we estimate the growth rates of
the solution of the model. Finally, we give the conclusions of this paper and numerically
expound the theoretical findings in Sect. 6.

2 The model
Without pollution and predation effects, suppose that the growth of the species follows
the logistic role:

d�(t)
dt

= �(t)
[
b – ξ�(t)

]
, (1)

where �(t) is the population size at time t, and b > 0 and ξ > 0 stand for the growth rate
and the intraspecific competition rate, respectively.

We consider the predation effects. In general, the predation effects saturate at high prey
density and vanish quadratically as the prey density tends to zero [19]. Therefore it is rea-
sonable to model the predation effects by the following function:

λ�2(t)
ρ2 + �2(t)

,

where λ is the upper limit of the predation effects, and ρ2 measures the saturate effect.
Then model (1) is replaced by

d�(t)
dt

= �(t)
[
b – ξ�(t)

]
–

λ�2(t)
ρ2 + �2(t)

. (2)

As said before, the evolution of populations often encounters environmental perturba-
tions [18]. In general, we can take advantage of a color noise process to portray the envi-
ronmental perturbations [20], and it is suitable to utilize a Gaussian white noise process to
depict a weakly correlated color noise [21]. Various ways were developed to incorporate
the white noise into deterministic population models. A widely accepted way is to suppose
that some parameters in the model are influenced by the white noise (see, e.g., [22–32]).
Adopting these approaches,

b → b + β1ψ̇1(t), –ξ → –ξ + β2ψ̇2(t), –λ → λ + β3ψ̇3(t),

where ψ1(t), ψ2(t), and ψ3(t) are independent standard Wiener processes defined on a
certain complete probability space (�,F , {Ft}t≥0, P), and βi, i = 1, 2, 3, stand for the inten-
sities. As a result, model (2) is replaced by

d�(t) = �(t)
(

b – ξ�(t) –
λ�(t)

ρ2 + �2(t)

)
dt

+ β1�(t) dψ1(t) + β2�
2(t) dψ2(t) +

β3�
2(t)

ρ2 + �2(t)
dψ3(t).

(3)
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To characterize the influence of pollution, we hypothesize that the populations suck up
the pollutants into their bodies [4–6]. Denote by T(t) the concentration of pollutants in
the species, which can lead to a descent of the growth rate [4]:

b → b – H1
(
T(t)

)
,

where H1(T) is a positive continuous increasing function of T . Accordingly, model (3) is
replaced by

d�(t) = �(t)
(

b – H1
(
T(t)

)
– ξ�(t) –

λ�(t)
ρ2 + �2(t)

)
dt

+ β1�(t) dψ1(t) + β2�
2(t) dψ2(t) +

β3�
2(t)

ρ2 + �2(t)
dψ3(t).

(4)

To depict the pollutants in the species, we pay attention to the following equation:

dT(t)
dt

= H2
(
Te(t)

)
– H3

(
T(t)

)
, (5)

where Te(t) represents the concentration of pollutants in the environment, H2(Te(t)) > 0
characterizes the suck up of pollutants from the environment, H3(T(t)) > 0 measures the
loss of pollutants because of excretion and detoxication. Both H2 ∈ C1 and H3 ∈ C1 are
increasing functions.

Finally, we portray the changes of Te(t). Denote by u(t) a continuous and bounded func-
tion of t, the input of pollutants from the outside of the environment. Suppose that the
changes of Te(t) are governed by the following equation:

dTe(t)
dt

= u(t) – H4
(
Te(t)

)
, (6)

where H4 ∈ C1, measuring the loss of the pollutants from the environment, is an increasing
positive function of Te.

According to (4)–(6), we derive the following model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d�(t) = �(t)(b – H1(T(t)) – ξ�(t) – λ�(t)
ρ2+�2(t) ) dt

+ β1�(t) dψ1(t) + β2�
2(t) dψ2(t) + β3�2(t)

ρ2+�2(t) dψ3(t),
dT(t)

dt = H2(Te(t)) – H3(T(t)),
dTe(t)

dt = u(t) – H4(Te(t)).

(7)

The objectives of this paper is probing some dynamical properties of �(t). Note that the
last two equations in model (7) do not depend on �(t), and they have a unique solution
(T(t), Te(t)) for certain initial value. As a result, from now on we concentrate on Eq. (4).

3 The existence and uniqueness of the solution
Theorem 1 For any initial value �(0) > 0, Eq. (4) possesses a unique global positive solu-
tion �(t) almost surely (a.s.).
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Proof We first concentrate on the equation

dx(t) =
[

b – H1
(
T(t)

)
–

β2
1

2
– ξex(t) –

λex(t)

ρ2 + e2x(t) –
β2

2
2

e2x(t) –
β2

3 e2x(t)

2(ρ2 + e2x(t))2

]
dt

+ β1 dψ1(t) + β2ex(t) dψ2(t) +
β3ex(t)

ρ2 + e2x(t) dψ3(t)

(8)

with x(0) = ln�(0). By the locally Lipschitz continuity of the coefficients in Eq. (8) we
deduce that Eq. (8) possesses a unique solution on [0, τe), where τe ≤ +∞. It then follows
from Itô’s formula (see [33], p. 32, Theorem 6.2) that �(t) = ex(t) is the unique positive
solution of (4).

Now we testify that τe = +∞. Let m0 be a positive constant such that m0 > �(0). For each
integer m, define

τm = inf
{

t ∈ [0, τe) : �(t) ≥ m
}

.

Let τ∞ = limm→+∞ τm. We can deduce that τ∞ ≤ τe. If τe < +∞, then we can find out con-
stants T̂ > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T̂} > ε.

It then follows that we can find out an integer m1 ≥ m0 such that for any m ≥ m1,

P{�m} ≥ ε, (9)

where �m = {ω : τm ≤ T̂}. Define

W1(�) = �γ , � > 0, 0 < γ < 1.

Then we deduce by Itô’s formula that

dW1(�)

= γ�γ

[
b – H1

(
T(t)

)
– ξ� –

λ�

ρ2 + �2 +
γ – 1

2
β2

1 +
γ – 1

2
β2

2�2 +
(γ – 1)β2

3�2

2(ρ2 + �2)2

]
dt

+ γβ1�
γ dψ1(t) + γβ2�

γ +1 dψ2(t) +
γβ3�

γ +1

ρ2 + �2 dψ3(t)

≤ γ bW1(�) dt + γ W1(�)
[
β1 dψ1(t) + β2�dψ2(t) +

β3�

ρ2 + �2 dψ3(t)
]

.

Accordingly,

EW1
(
�(τm ∧ T̂)

) ≤ W1
(
�(0)

)
+ γ b

∫ τm∧T̂

0
EW1

(
�(s)

)
ds

≤ W1
(
�(0)

)
+ γ b

∫ T̂

0
EW1

(
�(τm ∧ s)

)
ds.
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By Gronwall’s inequality (see [33], p. 45, Theorem 8.1) we get

EW1
(
�(τm ∧ T̂)

) ≤ W1
(
�(0)

)
eγ bT̂ . (10)

For ω ∈ �m, W1(�(τm,ω)) ≥ mγ . Then by (9) and (10) we can see that

W1
(
�(0)

)
eγ bT̂ ≥ E

[
1�m (ω)W1(�(τm,ω)

] ≥ εmγ .

Letting m → +∞ gives

W1
(
�(0)

)
eγ bT̂ = ∞. (11)

However, by the definitions of W1(�) and T̂ we have

W1
(
�(0)

)
eγ bT̂ < +∞,

which is a contradiction with (11). Thereby, τe = +∞. �

4 Extinction and persistence
Theorem 2 If  < 0, then limt→+∞ �(t) = 0 a.s., that is, the species is extinct, where

 = 1 – lim inf
t→+∞ t–1

∫ t

0
H1

(
T(s)

)
ds, 1 = b –

1
2
β2

1 .

Proof We can deduce from Itô’s formula that

d ln� =
[
1 – H1

(
T(t)

)
– ξ� –

λ�

ρ2 + �2 –
β2

2
2

�2 –
β2

3�2

2(ρ2 + �2)2

]
dt

+ β1 dψ1(t) + β2�dψ2(t) +
β3�

ρ2 + �2 dψ3(t),

that is,

ln�(t) – ln�(0)

= 1t –
∫ t

0
H1

(
T(s)

)
ds

–
∫ t

0

[
ξ�(s) +

λ�(s)
ρ2 + �2(s)

+
β2

2
2

�2(s) +
β2

3�2(s)
2(ρ2 + �2(s))2

]
ds

+ �1(t) + �2(t) + �3(t),

(12)

where

�1(t) = β1ψ1(t), �2(t) =
∫ t

0
β2�(s) dψ2(s), �3(t) =

∫ t

0

β3�(s)
ρ2 + �2(s)

dψ3(s).

The quadratic variations of �2(t) and �3(t) are

〈
�2(t),�2(t)

〉
=

∫ t

0
β2

2�2(s) ds
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and

〈
�3(t),�3(t)

〉
=

∫ t

0

β2
3�2(s)

(ρ2 + �2(s))2 ds ≤ β2
3

2ρ2 t,

respectively. We can easily obtain that

lim
t→+∞ t–1�i(t) = 0 a.s., i = 1, 3. (13)

By the exponential martingale inequality (see [33], p. 44, Theorem 7.4) we deduce that

P
{

sup
0≤t≤M

[
�2(t) –

1
2
〈
�2(t),�2(t)

〉]
> 2 ln M

}
≤ 1/M2.

By the Borel–Cantelli lemma (see [33], p. 7, Lemma 2.4), for almost all ω ∈ �, there exists
an integer M0 = M0(ω) such that for M ≥ M0,

sup
0≤t≤M

[
�2(t) –

1
2
〈
�2(t),�2(t)

〉] ≤ 2 ln M.

Therefore, for any 0 ≤ t ≤ M, M ≥ M0,

�2(t) ≤ 2 ln M +
1
2
〈
�2(t),�2(t)

〉
= 2 ln M + 0.5

∫ t

0
β2

2�2(s) ds. (14)

Then we deduce from (12) and (14) that for any 0 ≤ t ≤ M, M ≥ M0,

ln�(t) – ln�(0) ≤ 1t –
∫ t

0
H1

(
T(s)

)
ds – ξ

∫ t

0
�(s) ds + 2 ln M + �1(t) + �3(t). (15)

For 0 < M – 1 ≤ t ≤ M, M ≥ M0, we have

t–1{ln�(t) – ln�(0)
} ≤ 1 – t–1

∫ t

0
H1

(
T(s)

)
ds + 2(M – 1)–1 ln M + t–1�1(t) + t–1�3(t).

Then (13) shows that

lim sup
t→+∞

t–1 ln�(t) ≤ 1 – lim inf
t→+∞ t–1

∫ t

0
H1

(
T(s)

)
ds =  < 0.

Therefore, for any ε ∈ (0, –), there is T1 such that for all t > T1,

t–1 ln�(t) ≤ ε +  < 0,

That is, for all t > T1

�(t) ≤ e(ε+)t .

Hence limt→+∞ �(t) = 0 a.s. �
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Theorem 3 If  ≥ 0, then

lim sup
t→+∞

t–1
∫ t

0
�(s) ds ≤ 

ξ
a.s. (16)

In particular,  = 0 ⇒ limt→+∞ t–1 ∫ t
0 �(s) ds = 0, that is, the species is nonpersistent in the

mean.

Proof For arbitrary ε > 0, we can find T̃ > 0 such that for 0 < T̃ < M – 1 ≤ t ≤ M, M ≥ M0,

t–1
[

ln�(0) + 1 –
∫ t

0
H1

(
T(s)

)
ds + 2 ln M + �1(t) + �3(t)

]
≤  + ε.

Set � =  + ε. In view of (15), for arbitrary 0 < T̃ < M – 1 ≤ t ≤ M, M ≥ M0, we obtain

ln�(t) ≤ ln�(0) + 1t –
∫ t

0
H1

(
T(s)

)
ds – ξ

∫ t

0
�(s) ds + 2 ln M + �1(t) + �3(t)

≤ �t – ξ

∫ t

0
�(s) ds.

Set α(t) =
∫ t

0 �(s) ds. Then we can see that

eξα(t)(dα/dt) ≤ e�t , t ≥ T̃ .

Integrating both sides from T̃ to t, we get

∫ t

T̃
eξα(s) dα(s) ≤

∫ t

T̃
e�s ds.

Therefore

eξα(t) ≤ eξα(T̃) + ξ�–1e�t – ξ�–1e�T̃ .

Taking logarithms leads to

α(t) ≤ (ξ )–1 ln
{
ξ�–1e�t + eξα(T̃) – ξ�–1eεT̃}

.

As a result,

lim sup
t→+∞

t–1
∫ t

0
�(s) ds ≤ ξ–1 lim sup

t→+∞

{
t–1 ln

{
ξ�–1e�t + eξα(T̃) – ξ�–1e�T̃}}

.

It then follows from L’Hospital’s rule that

lim sup
t→+∞

t–1
∫ t

0
�(s) ds ≤ �

ξ
=

 + ε

ξ
.

Since ε is arbitrary, we get (16). �
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Theorem 4 If  > 0, then lim supt→+∞ �(t) > 0, that is, the species is weakly persistent.

Proof Denote

L =
{
ω : lim

t→+∞�(t,ω) = 0
}

.

We hypothesize that P{L} > 0. For arbitrary ω ∈ L, limt→+∞ �(t,ω) = 0. Therefore, for any
ε ∈ (0, 1), there is T such that �(t,ω) ≤ ε for all t ≥ T . As a result, for sufficiently large t,

t–1[ln�(t,ω) – ln�(0)
] ≤ ln ε/t ≤ 0,

∫ t

0
β2

2�2(s,ω) ds =
∫ T

0
β2

2�2(s,ω) ds +
∫ t

T
β2

2�2(s,ω) ds

≤ β2
2 M1 + β2

2ε(t – T) ≤ 2β2
2εt,

and

∫ t

0

[
ξ�(s,ω) +

λ�(s,ω)
ρ2 + �2(s,ω)

+
β2

2
2

�2(s,ω) +
β2

3�2(s,ω)
2(ρ2 + �2(s,ω))2

]
ds

=
∫ T

0

[
ξ�(s,ω) +

λ�(s,ω)
ρ2 + �2(s,ω)

+
β2

2
2

�2(s,ω) +
β2

3�2(s,ω)
2(ρ2 + �2(s,ω))2

]
ds

+
∫ t

T

[
ξ�(s,ω) +

λ�(s,ω)
ρ2 + �2(s,ω)

+
β2

2
2

�2(s,ω) +
β2

3�2(s,ω)
2(ρ2 + �2(s,ω))2

]
ds

≤ M2 +
(

ξ + λ/ρ2 +
β2

2
2

ε +
β2

3
2ρ4 ε

)
ε(t – T)

≤ 2
(

ξ + λ/ρ2 +
β2

2
2

+
β2

3
2ρ4

)
εt,

where M1 and M2 are positive constants. Consequently,

lim sup
t→+∞

t–1[ln�(t,ω) – ln�(0)
] ≤ 0, lim

t→+∞ t–1
∫ t

0
β2�(s,ω) dψ2(s) = 0,

lim
t→+∞ t–1

∫ t

0

[
ξ�(s,ω) +

λ�(s,ω)
ρ2 + �2(s,ω)

+
β2

2
2

�2(s,ω) +
β2

3�2(s,ω)
2(ρ2 + �2(s,ω))2

]
ds = 0.

We then deduce from (12) and (13) that

0 > lim sup
t→+∞

t–1 ln�(t,ω) =  > 0,

a contradiction. As a result, P{L} = 0.
Denote

L̃ =
{
ω : lim sup

t→+∞
�(t,ω) > 0

}
,

and hence L̃ ∩ L = ∅. Note that �(t) > 0, and therefore L̃ ∪ L = �. Then we deduce from
P{L} = 0 that P{̃L} = 1, which is the required statement. �
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Theorems 2–4 uncover that  is the threshold between extermination and weak persis-
tence of the species. Now let us test the permanence of the species.

Theorem 5 If ̄ := 1 – lim supt→+∞ H1(T(t)) > 0, then the species is stochastically perma-
nent, that is, for any ε ∈ (0, 1), we can find two constants σ1 = σ1(ε) > 0 and σ2 = σ2(ε) > 0
such that

lim inf
t→+∞ P

{
�(t) ≥ σ1

} ≥ 1 – ε, lim inf
t→+∞ P

{
�(t) ≤ σ2

} ≥ 1 – ε.

Proof Set

W2(�) = 1/�2, � > 0.

Then we deduce by Itô’s formula that

dW2(�)

= 2W2(�)
[
ξ� +

λ�

ρ2 + �2 – b + H1
(
T(t)

)]
dt

+ 3β2
1 W2(�) dt + 3β2

2 dt +
3β2

3
(ρ2 + �2)2 dt

– 2β1W2(�) dψ1(t) – 2β2�
–1 dψ2(t) –

2β3
√

W2(�)
ρ2 + �2 dψ3(t)

= 2W2(�)
{

1.5β2
2�2 + ξ� – b + H1

(
T(t)

)
+ 1.5β2

1 +
λ�

ρ2 + �2 +
1.5β2

3�2

(ρ2 + �2)2

}
dt

– 2β1W2(�) dψ1(t) – 2β2�
–1 dψ2(t) –

2β3
√

W2(�)
ρ2 + �2 dψ3(t).

Choose a constant � ∈ (0, 1) that satisfies

� < ̄/β2
1 . (17)

Set

W3(�) =
(
1 + W2(�)

)� .

Then we deduce by Itô’s formula that for sufficiently large t,

EW3
(
�(t)

)
= W3

(
�(0)

)
+ E

∫ t

0
LW3

(
�(s)

)
ds,

where

LW3(�)

= 2�
(
1 + W2(�)

)�–2
{(

W2(�) + W 2
2 (�)

)[
1.5β2

2�2 + ξ� +
λ�

ρ2 + �2
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+
1.5β2

3�2

(ρ2 + �2)2 – b + H1
(
T(t)

)
+ 1.5β2

1

]

+ (� – 1)W 2
2 (�)β2

1 + (� – 1)W2(�)β2
2 +

(� – 1)W2(�)β2
3

(ρ2 + �2)2

}

= 2�
(
1 + W2(�)

)�–2
{[

–b + H1
(
T(t)

)
+

β2
1

2
+ �β2

1

]
W 2

2 (�)

+ ξW 1.5
2 (�) +

λ

ρ2 + �2 W 1.5
2 (�)

+
[

–b + H1
(
T(t)

)
+ 1.5β2

1 +
λ�

ρ2 + �2 +
(� + 0.5)β2

3
(ρ2 + �2)2 + (� + 0.5)β2

2

]
W2(�)

+ ξW 0.5
2 (�) + 1.5β2

2 +
1.5β2

3
(ρ2 + �2)2

}

≤ 2�
(
1 + W2(�)

)�–2
{[

–1 + lim sup
t→+∞

H1
(
T(t)

)
+ ε + �β2

1

]
W 2

2 (�)

+
(

ξ +
λ

ρ2

)
W 1.5

2 (�)

+
[

lim sup
t→+∞

H1
(
T(t)

)
+ ε + 1.5

(
β2

1 + β2
2 + β2

3 /ρ4) +
λ

2ρ

]
W2(�)

+ ξW 0.5
2 (�) + 1.5β2

2 + 1.5β2
3 /ρ4

}

= 2�
(
1 + W2(�)

)�–2
{

–
[
 – �β2

1 – ε
]
W 2

2 (a) +
(

ξ +
λ

ρ2

)
W 1.5

2 (�)

+
[

lim sup
t→+∞

H1
(
T(t)

)
+ ε + 1.5

(
β2

1 + β2
2 + β2

3 /ρ4) +
λ

2ρ

]
W2(�)

+ ξW 0.5
2 (�) + 1.5β2

2 + 1.5β2
3 /ρ4

}
.

Here ε < ̄ – �β2
1 . Choose a constant ν > 0 that satisfies

 – �β2
1 – ε –

ν

2�
> 0. (18)

Set

W4(�) = eνtW3(�).

Then we deduce bymItô’s formula that for sufficiently large t,

EW4
(
�(t)

)
= W3

(
�(0)

)
+ E

∫ t

0
LW4

(
�(s)

)
ds,

where

LW4(�) = νeνt(1 + W2(�)
)� + eνtLW3(�)

≤ 2eνt�
(
1 + W2(�)

)�–2
{

–
[
 – �β2

1 –
ν

2�
– ε

]
W 2

2 (�)
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+
(

ξ +
λ

ρ2

)
W 1.5

2 (�)

+
[

lim sup
t→+∞

H1
(
T(t)

)
+ ε + 1.5

(
β2

1 + β2
2 + β2

3 /ρ4) +
λ

2ρ
+

ν

�

]
W2(�)

+ ξW 0.5
2 (�) + 1.5β2

2 + 1.5β2
3 /ρ4 +

ν

2�

}

=: eνtσ (�).

According to (18),

σ̃ := sup
�>0

σ (�) < +∞.

Thereby

E
[
eνt(1 + W2

(
�(t)

))� ] ≤ (
1 + �–2(0)

)� + ν–1σ̃
(
eνt – 1

)
.

Accordingly,

lim sup
t→+∞

E
[
�–2� (t)

]
= lim sup

t→+∞
E

[
W �

2
(
�(t)

)]

≤ lim sup
t→+∞

E
[(

1 + W2
(
�(t)

))� ] ≤ σ̃ .
(19)

For any ε > 0, set σ1 = (ε/σ̃ ) 1
2� . By Chebyshev’s inequality (see [33], p. 5),

P
{
�(t) < σ1

}
= P

{
�–2� (t) > σ –2�

1
} ≤ E[�–2� (t)]

σ –2�
1

= σ 2�
1 E

[
�–2� (t)

]
.

Thereby

lim sup
t→+∞

P
{
�(t) < σ1

} ≤ ε.

Accordingly,

lim inf
t→+∞ P

{
�(t) ≥ σ1

} ≥ 1 – ε.

Now we testify

lim inf
t→+∞ P

{
�(t) ≤ σ2

} ≥ 1 – ε. (20)

Set

W5(�) = �c, � > 0, 0 < c < 1.

Then we deduce by Itô’s formula that

d
(
etW5(�)

)
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= et
{
�c + c�c

[
b – ξ� –

λ�

ρ2 + �2 +
c – 1

2
β2

1 +
c – 1

2
β2

2�2 +
(c – 1)β2

3�2

2(ρ2 + �2)2

]}
dt

+ cβ1et�c dψ1(t) + cβ2et�c+1 dψ2(t) + cβ3et �c+1

ρ2 + �2 dψ3(t)

≤ etσ3 dt + cet�c
[
β1 dψ1(t) + β2�dψ2(t) +

β3�

ρ2 + �2 dψ3(t)
]

,

where σ3 > 0 is a constant. Accordingly,

lim sup
t→+∞

E
[
�c(t)

] ≤ σ3.

By Chebyshev’s inequality we derive (20). �

5 Upper- and lower-growth rates
Theorem 6 For model (4), we have

lim sup
t→+∞

ln�(t)
ln t

≤ 1, a.s. (21)

Proof We deduce from Itô’s formula that

d
[
et ln�

]

= et
[

ln� + b – H1
(
T(t)

)
–

β2
1

2
– ξ� –

β2
2

2
�2 –

λ�

ρ2 + �2 –
β2

3�2

2(ρ2 + �2)2

]
dt

+ β1et dψ1(t) + β2et�dψ2(t) +
β3et�

ρ2 + �2 dψ3(t).

Accordingly,

et ln�(t) – ln�(0)

=
∫ t

0
es

[
ln�(s) + b – H1

(
T(s)

)
–

β2
1

2
– ξ�(s) –

β2
2

2
�2(s) –

λ�(s)
ρ2 + �2(s)

–
β2

3�2(s)
2(ρ2 + �2(s))2

]
ds + �4(t) + �5(t) + �6(t),

(22)

where

�4(t) =
∫ t

0
β1es dψ1(s), �5(t) =

∫ t

0
β2es�(s) dψ2(s),

�6(t) =
∫ t

0

β3es�(s)
ρ2 + �2(s)

dψ3(s).

Set

�(t) = �4(t) + �5(t) + �6(t).
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Thereby

〈
�(t),�(t)

〉
=

∫ t

0
e2s

[
β2

1 + β2
2�2(s) +

β2
3�2(s)

(ρ2 + �2(s))2

]
ds.

By the exponential martingale inequality (see [33], p. 44, Theorem 7.4), for any κ > 1 and
� > 0,

P
{

sup
0≤t≤�m

[
�(t) –

e–�m

2
〈
�(t),�(t)

〉]
> κe�m ln m

}
≤ m–κ .

By Borel–Cantelli’s lemma (see [33], p. 7, Lemma 2.4) we deduce that for almost all ω ∈ �,
there is m2 such that for any m ≥ m2,

�(t) ≤ e–�m

2
〈
�(t),�(t)

〉
+ e�m ln m, 0 ≤ t ≤ �m.

Accordingly, for m ≥ m2 and 0 ≤ t ≤ �m,

�(t) ≤ e–�m

2

∫ t

0
e2s

[
β2

1 + β2
2�2(s) +

β2
3�2(s)

(ρ2 + �2(s))2

]
ds + κe�m ln m.

Then from (22) it follows that for m ≥ m2 and 0 ≤ t ≤ �m,

et ln�(t) – ln�(0)

≤
∫ t

0
es

[
ln�(s) + b – H1

(
T(s)

)
–

β2
1

2
– ξ�(s) –

β2
2

2
�2(s)

–
λ�(s)

ρ2 + �2(s)
–

β2
3�2(s))

2(ρ2 + �2(s))2

]
ds

+
e–�m

2

∫ t

0
e2s

[
β2

1 + β2
2�2(s) +

β2
3�2(s))

(ρ2 + �2(s))2

]
ds + κe�m ln m

=
∫ t

0
es

[
ln�(s) + b – H1

(
T(s)

)
– ξ�(s)

–
1 – es–�m

2

(
β2

1 + β2
2�2(s) +

β2
3�2(s)

ρ2 + �2(s))2

)]
ds + κe�m ln m

≤
∫ t

0
es[ln�(s) + b – ξ�(s)

]
ds + κe�m ln m

≤ σ4
(
et – 1

)
+ κe�m ln m,

where σ4 = max{1, – ln ξ + b – 1}. As a result, for 0 < �(m – 1) ≤ t ≤ �m and m ≥ m2, we
derive

ln�(t)
ln t

≤ e–t ln�(0)
ln t

+
σ4(1 – e–t)

ln t
+

κe–�(m–1)e�m ln m
ln(�(m – 1))

.

Note that

lim
m→+∞

ln m
ln(�(m – 1))

= lim
m→+∞

ln m
ln� + ln(m – 1)

= 1.
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Accordingly,

lim sup
t→+∞

ln�(t)
ln t

≤ κe� .

Letting κ → 1 and � → 0, we obtain (21). �

Theorem 6 probes the upper-growth rate of �(t). Now let us consider the lower-growth
rate of �(t).

Theorem 7 If ̄ > 0, then

lim inf
t→+∞

ln�(t)
ln t

≥ –
1

2�
. (23)

Proof We can deduce from (19) that there is a constant σ5 > 0 such that

E
[(

1 + W2
(
�(t)

))� ] ≤ σ5, t ≥ 0. (24)

By Itô’s formula,

d
[(

1 + W2(�)
)� ]

= 2�
(
1 + W2(�)

)�–2
{[

–b + H1
(
T(t)

)
+

β2
1

2
+

λ�

ρ2 + �2 + �β2
1

]
W 2

2 (�)

+ ξW 1.5
2 (�) +

[
–b + H1

(
T(t)

)
+ 1.5β2

1 +
λ�

ρ2 + �2

+
(� + 1/2)β2

3
(ρ2 + �2)2 + (� + 1/2)β2

2

]
W2(�)

+ ξW 0.5
2 (�) + 1.5β2

2 +
1.5β2

3
(ρ2 + �2)2

}

– 2�
(
1 + W2(�)

)�–1
[
β1W2(�) dψ1(t) + β2�

–1 dψ2(t) +
β3�

–1

ρ2 + �2 dψ3(t)
]

≤ 2�
(
1 + W2(�)

)�–2{
μ1W 2

2 (�) + μ2W 1.5
2 (�) + μ3W2(�) + μ2W 0.5

2 (�) + μ4
}

– 2�
(
1 + W2(�)

)�–1
[
β1W2(�) dψ1(t) + β2�

–1 dψ2(t) +
β3�

–1

ρ2 + �2 dψ3(t)
]

,

where

μ1 = –b + lim sup
t→+∞

H1
(
T(t)

)
+ ε +

(
� +

1
2

)
β2

1 +
λ

2ρ
, μ2 = ξ ,

μ3 = –b + lim sup
t→+∞

H1
(
T(t)

)
+ ε + 1.5

(
β2

1 +
β2

3
2ρ2

)
+

λ

2ρ
+

(
� +

1
2

)
β2

2 ,

μ4 = 1.5
{
β2

2 +
β2

3
2ρ2

}
.

Choose a positive constant σ6 such that

2�
(
μ1W 2

2 (�) + μ2W 1.5
2 (�) + μ3W2(�) + μ2W 0.5

2 (�) + μ4
) ≤ σ6

(
1 + W2(�)

)2.
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Accordingly,

d
((

1 + W2(�)
)� ) ≤ σ6

(
1 + W2(�)

)� dt – 2�
(
1 + W2(�)

)�–1

×
[
β1W2(�) dψ1(t) + β2�

–1 dψ2(t) +
β3�

–1

ρ2 + �2 dψ3(t)
]

.
(25)

Choose a positive constant θ such that

σ6θ + 12�θ0.5(β1 + β2 + β3/ρ2) <
1
2

. (26)

Let N = 1, 2, . . . . Then from (25) we deduce that

E( sup
(N–1)θ≤t≤Nθ

(
1 + W2

(
�(t)

)� )

≤ E
(
1 + W2

(
�

(
(N – 1)θ

)))�

+ σ6E

(
sup

(N–1)θ≤t≤Nθ

∣∣
∣∣

∫ t

(N–1)θ

(
1 + W2

(
�(s)

))� ds
∣∣
∣∣

)

+ 2�E

(
sup

(N–1)θ≤t≤Nθ

∣∣
∣∣

∫ t

(N–1)θ

(
1 + W2

(
�(s)

))�–1
[
β1W2

(
�(s)

)
dψ1(s)

+ β2�
–1(s) dψ2(s) +

β3�
–1(s)

ρ2 + �2(s)
dψ3(s)

]∣∣
∣∣

)
.

(27)

By the Burkholder–Davis–Gundy inequality (see [33], p. 40, Theorem 7.3) we have

E

(
sup

(N–1)θ≤t≤Nθ

∣∣
∣∣

∫ t

(N–1)θ

(
1 + W2

(
�(s)

))�–1
[
β1W2

(
�(s)

)
dψ1(s)

+ β2�
–1(s) dψ2(s) +

β3�
–1(s)

ρ2 + �2(s)
dψ3(s)

]∣∣
∣∣

)

≤ E

(
sup

(N–1)θ≤t≤Nθ

∣
∣∣
∣

∫ t

(N–1)θ

(
1 + W2

(
�(s)

))�–1[
β1W2

(
�(s)

)]
dψ1(s)

∣
∣∣
∣

)

+ E

(
sup

(N–1)θ≤t≤Nθ

∣
∣∣∣

∫ t

(N–1)θ

(
1 + W2

(
�(s)

))�–1[
β2�

–1(s)
]

dψ2(s)
∣
∣∣∣

)

+ E

(
sup

(N–1)θ≤t≤Nθ

∣
∣∣
∣

∫ t

(N–1)θ

(
1 + W2

(
�(s)

))�–1
[

β3�
–1(s)

ρ2 + �2(s)

]
dψ3(s)

∣
∣∣
∣

)

≤ 6E
(∫ Nθ

(N–1)θ

(
1 + W2

(
�(s)

))2�–2[
β1W2

(
�(s)

)]2 ds
)0.5

+ 6E
(∫ Nθ

(N–1)θ

(
1 + W2

(
�(s)

))2�–2[
β2�

–1(s)
]2 ds

)0.5

+ 6E
(∫ Nθ

(N–1)θ

(
1 + W2

(
�(s)

))2�–2
[

β3

ρ2 �–1(s)
]2

ds
)0.5

≤ 6θ0.5[β1 + β2 + β3/ρ2]
E

(
sup

(N–1)θ≤t≤Nθ

(
1 + W2

(
�(t)

))�
)

.

(28)
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Moreover,

E

(
sup

(N–1)θ≤t≤Nθ

∣
∣∣
∣

∫ t

(N–1)θ

(
1 + W2

(
�(s)

))� ds
∣
∣∣
∣

)

≤ E

(∫ Nθ

(N–1)θ

∣
∣(1 + W2

(
�(s)

))� ∣
∣ds

)

≤ θE
(

sup
(N–1)θ≤t≤Nθ

(
1 + W2

(
�(t)

))�
)

.

(29)

Then from (27), (28), and (29) it follows that

E( sup
(N–1)θ≤t≤Nθ

(
1 + W2

(
�(t)

)� )

≤ E
(
1 + W2

(
�

(
(N – 1)θ

)))�

+
[
σ6θ + 12�θ0.5(β1 + β2 + β3/ρ2)]

E

(
sup

(N–1)θ≤t≤Nθ

(
1 + W2

(
�(t)

))�
)

.

By (24) and (26) we get that

E( sup
(N–1)θ≤t≤Nθ

(
1 + W2

(
�(t)

)� ) ≤ 2σ5.

For any ε > 0, Chebyshev’s inequality suggests that

P
{

sup
(N–1)θ≤t≤Nθ

(1 + W2
(
�(t)

)� > (Nθ )1+ε
}

≤ 2σ5

(Nθ )1+ε
, N = 1, 2, . . . .

By the Borel–Cantelli lemma, for almost all ω ∈ �, we can find an integer N0 such that for
any N ≥ N0 and (N – 1)θ ≤ t ≤ Nθ ,

ln(1 + W2(�(t))�

ln t
≤ (1 + ε) ln(Nθ )

ln((N – 1)θ )
.

Accordingly,

lim sup
t→+∞

ln(1 + W2(�(t))�

ln t
≤ 1 + ε.

Letting ε → 0 results in

lim sup
t→+∞

ln(1 + W2(�(t))�

ln t
≤ 1.

Thereby

lim sup
t→+∞

ln(�–2� (t))
ln t

≤ 1,

which is (23). �
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Figure 1 Trajectories of model (4) with b = 0.4, b1 = 0.2, T (t) = 0.25 + 0.1 sin t, ξ = 0.3, λ = 0.2, ρ = 0.1,
β2
2 = 0.1, β2

3 = 0.2. (a) β2
1 = 0.36, which reflects the extermination of the species. (b) β2

1 = 0.3, which reflects
the nonpersistence in mean of the species. (c) β2

1 = 0.25, which reflects the weak persistence of the species.
(d) β2

1 = 0.04, which reflects the permanence of the species

6 Conclusions and simulations
In this paper, we have constructed a stochastic single-species model with predator effects
in polluted environments. We have probed some dynamical properties of the model, in-
cluding the existence and uniqueness of the solution (Theorem 1), the threshold between
extermination and persistence (Theorems 2–4), stochastic permanence (Theorem 5), and
upper- and lower-growth rates (Theorems 6 and 7). To our best knowledge, this paper is
the first one to probe population models with predation effect in a polluted environment.

Now let us numerically expound the theoretical findings by the Milstein method [34].
We choose H(T(t)) = b1T(t) and pay attention to the following discretization equation of
model (4):

�k+1 = �k + �k

(
b – b1T(k�t) – ξ�k –

λ�k

ρ2 + �2
k

)
�t

+ β1�k
√

�tξ1k + 0.5β2
1�2

k
(
ξ 2

1k�t – �t
)

+ β2�
2
k
√

�tξ2k + 0.5β2
2�4

k
(
ξ 2

2k�t – �t
)

+
β3�

2
k

ρ2 + �2
k

√
�tξ3k +

β2
3�4

k
2(ρ2 + �2

k)2

√
�t

(
ξ 2

3k�t – �t
)
,
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where ξ1k , ξ2k , and ξ3k are standard Gaussian random variables. We set b = 0.4, b1 = 1,
T(t) = 0.25 + 0.1 sin t, ξ = 0.3, λ = 0.2, ρ = 0.1, β2

2 = 0.1, β2
3 = 0.2. For different β1, we plot

the trajectories of �(t) in Fig. 1(a)–(d).
1. In Fig. 1(a), β2

1 = 0.36, and hence

 = b –
1
2
β2

1 – lim inf
t→+∞ t–1

∫ t

0
H1

(
T(s)

)
ds = –0.03.

Then from Theorem 2 we deduce that limt→+∞ �(t) = 0. See Fig. 1(a).
2. In Fig. 1(b), β2

1 = 0.3, and hence  = 0. Then from Theorem 3 we deduce that
limt→+∞ t–1 ∫ t

0 �(s) ds = 0. See Fig. 1(b).
3. In Fig. 1(c), β2

1 = 0.25, and hence  = 0.025. Then from Theorem 4 we deduce that
lim supt→+∞ �(t) > 0. See Fig. 1(c).

4. In Fig. 1(d), β2
1 = 0.04, and hence

 = b –
1
2
β2

1 – lim sup
t→+∞

H1
(
T(t)

)
= 0.03.

Then from Theorem 5 we deduce that �(t) is permanent. See Fig. 1(d).
To finish this paper, we want to point out that our model (7) may be used to describe

the effect of pollution in the usual situation, but it may not well describe some extreme
pollution cases (for instance, some extreme examples given in Sect. 1). For these extreme
cases, more complicate models should be constructed. We leave these problems for further
research.
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