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Abstract
A meta-model of diffusively coupled Lotka–Volterra systems used to model various
biomedical phenomena is considered in this paper. Necessary and sufficient
conditions for the existence of nth order solitary solutions are derived via a modified
inverse balancing technique. It is shown that as the highest possible solitary solution
order n is increased, the number of nonzero solution parameter values remains
constant for solitary solutions of order n > 3. Analytical and computational
experiments are used to illustrate the obtained results.
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1 Introduction
Even though solitons (also called solitary solutions) have been first discovered in the 19th
century by John Scott Russell [32], later formalized by Korteweg and de Vries [14] and
made famous in the mid-20th century by the Fermi–Pasta–Ulam computational experi-
ment [12] and later works by Norman and Zabusky [41], they remain at the forefront of
research to this day due to their unique physical properties.

In recent years, the emergence of powerful computer algebra software coupled with a
marked rise in computing power has sparked a new interest in the subject. Analytical in-
vestigation is central to the construction of solitary solutions and the availability of afore-
mentioned tools has greatly increased the number of studies in this area.

Classical methods used to construct solitary solutions to differential equations include
the inverse scattering transform [2], the Bäcklund transform [31] and the Darboux trans-
form [30] methods.

More recently developed techniques that make use of computer algebra software include
the simplest equation method and its extensions [15, 17], the equivalent (G′/G)-extension
and tanh-extension methods [16, 40], and the homotopy analysis method [1]. A novel
adaptation of the (G′/G)-expansion technique is used to construct solitary wave solutions
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to the (2 + 1) dimensional Konopelchenko–Dubrovsky and Kadomtsev–Petviashvili equa-
tions in [5]. The (G′/G)-expansion method is further adapted and applied to obtain solitary
wave solutions to the (2 + 1)-dimensional time-fractional Schrödinger equation and the
space-time nonlinear conformable fractional Bogoyavlenskii equations in [4]. A technique
based on Lyapunov’s second method is used to conduct an investigation of integrability of
Volterra integro-differential systems in [37].

The determination of solitary solutions to differential equations is an important ques-
tion in applied research. Some recent examples are given below. Soliton crystals have been
observed and characterized in monolothic Kerr resonators, which offers a novel way to
increase the efficiency of Kerr combs [9]. A generalized hydrodynamics theory based on
soliton solutions is developed in [10] and is applied to the Lieb–Liniger model realized in
cold-atom experiments. Solitons have been observed in the cell movement of a cellular
slime mould in [13]. Biological population models have been shown to possess solitary
solutions on multiple occasions, including [3, 29].

The motivation for this study and its contributions to the theory of solitary solutions is
given in the next section.

2 Motivation
2.1 The diffusive and the multiplicative coupling
Mathematical modeling of interacting dynamical systems is a classical field of research.
For example, a diffusive coupling between two (or more) dynamical systems is used to
model the effect of synchronization. The paradigmatic model of two diffusively coupled
dynamics is described by:

x′
t = F(x) + γ (y – x), (1)

y′
t = F(y) + γ (x – y), (2)

where F is the vector field modeling the isolated chaotic dynamics; t is time; γ is the dif-
fusive coupling parameter (usually set a positive constant). The systems are said to be
completely synchronized when there is a set of initial conditions so that the systems even-
tually evolve identically in time and the divergence of trajectories of interacting systems is
suppressed by the diffusive coupling [27].

However, dynamical systems can be coupled not only with terms representing the diffu-
sive coupling. Another type of the coupling is the multiplicative coupling. A paradigmatic
example of such type of coupling is the Lotka–Volterra model:

x′
t = αx – βxy, (3)

y′
t = δxy – γ y, (4)

where α, β , γ , δ are positive real constants. Complete synchronization is not possible in the
Lotka–Volterra model (except for two trivial equilibriums when both competing species
die out or coexist at fixed population levels).

The classical Lotka–Volterra model (3)–(4) reduces to a system of linear uncoupled or-
dinary differential equations when the coupling constants β and δ vanish to zero. A more
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complex variant of the Lotka–Volterra model is the competitive Lotka–Volterra model
which is based on the nonlinear logistic equation [20, 38] instead, namely

x′
t = rx

(
1 –

x
K

)
, (5)

where r is inherent per-capita growth rate, and K is the carrying capacity. The competitive
Lotka–Volterra model reads [6]:

x′
t = rxx

(
1 –

(
x + βxyy

Kx

))
, (6)

y′
t = ryy

(
1 –

(
y + βyxx

Ky

))
, (7)

where the parameter βxy represents the effect species y has on the population of species x,
and βyx represents the effect species x has on the population of species y. Both parameters
βxy and βyx are usually set as positive constants due to harmful (competitive) interaction
between species. Indeed, the dynamics of the competitive Lotka–Volterra model is more
complex compared to the classical Lotka–Volterra model [7].

The competitive Lotka–Volterra model reduces to two uncoupled nonlinear logistic
equations when the coupling constants βyx and βxy vanish. Note that the nonlinear logistic
equation is a partial case of the paradigmatic Riccati equation with constant coefficients
[28]:

x′
t = a0 + a1x + a2x2, (8)

where a0, a1, a2 ∈ R; a2 �= 0.
The analogy between the Lotka–Volterra model (3)–(4) and the competitive Lotka–

Volterra model (6)–(7) suggests the following model with the multiplicative coupling:

x′
t = a0x + a1xx + a2xx2 + βxyxy, (9)

y′
t = b0y + b1yx + b2yx2 + βyxxy, (10)

where a2x, b2y �= 0. The system (9)–(10) reduces to two uncoupled Riccati equations with
constant coefficients when the coupling coefficients βxy and βyx vanish. It appears that
such models are widely used to describe the interaction between healthy and cancer cells
in phenomenological mathematical models of a single cancer tumor [19]. Such models
comprising two Riccati-type equations coupled with multiplicative terms are used for the
description of prostate cancer treatment with androgen deprivation therapy [42], can-
cer stem-cell-targeted immunotherapy [35], the maximization of viability time in general
cancer therapy [8]. Elliptic and hyperbolic problems that stem from mechanical models
also involve Riccati-type equations, as given in the following examples. A Riccati-type
hyperbolic boundary value problem is considered in [18]. An elliptic problem related to
membrane equilibrium equations is studied in [39].
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2.2 The meta-model of coupled prey–predator systems
The mathematical meta-model of diffusively coupled Lotka–Volterra systems on het-
erogenous graphs in presented in [21]. When the number of systems is limited to two,
the model of diffusively coupled predator–prey systems reads [21]:

x′
1 = a11x1 – λ1x1y1, (11)

y′
1 = b11y1 – μ1x1y1 + γ1(y2 – y1), (12)

x′
2 = a12x2 – λ2x2y2, (13)

y′
2 = b12y2 – μ2x2y2 + γ2(y1 – y2). (14)

The system of diffusively coupled Lotka–Volterra models (11)–(14) reduces into a sys-
tem of linear coupled differential equations when the multiplicative coupling constants
λ1, μ1, λ2, μ2 vanish. A natural extension of (11)–(14) is based on the expansion of the
basic Lotka–Volterra model by the nonlinear terms (in accordance to (6)–(7)):

x′
1 = a01 + a11x1 + a21x2

1 + λ1x1y1, (15)

y′
1 = b01 + b11y1 + b21y2

1 + μ1x1y1 + γ1(y2 – y1), (16)

x′
2 = a02 + a12x2 + a22x2

2 + λ2x2y2, (17)

y′
2 = b02 + b12y2 + b22y2

2 + μ2x2y2 + γ2(y1 – y2). (18)

System (15)–(18) does represent a meta-model of two diffusively coupled Riccati sys-
tems (each system comprises two Riccati equations coupled with multiplicative terms).
System (15)–(18) splits into two uncoupled systems described by (9)–(10) when the dif-
fusive coupling constants γ1 and γ2 vanish. Analogously, system (15)–(18) splits into four
uncoupled Riccati equations (8) when both the diffusive and the multiplicative coupling
constants vanish. In other words, the model described by (15)–(18) generalizes the com-
petitive Lotka–Volterra model in the spatial domain.

2.3 The motivation of this paper
The existence of the first-order soliton-type solutions (kink solitons) to Riccati equation
(8) is known for decades [28]. Necessary and sufficient conditions for the existence of
second-order soliton-type solutions (dark/bright solitons) to system (9)–(10) has been re-
cently reported in [23]. The existence of nth order soliton-type solutions to the meta-
model of coupled Riccati equations (15)–(18) poses a serious challenge from the math-
ematical point of view. Providing two answers to the following questions – what is the
maximal order n, and what are the necessary and sufficient conditions for the existence of
solitons up to the nth order – is the main objective of this paper.

3 Preliminaries
3.1 Definition of the solitary solution
Solitary solutions of the following form [22, 33] are considered in this paper:

x(t) = σ

∏n
k=1 (exp(η(t – t0)) – xk)∏n
k=1 (exp(η(t – t0)) – tk)

, (19)

where n ∈N is the order of the solitary solution, t0,σ ,η ∈R, xk , tk ∈C.
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The following independent variable transformation is introduced:

t̂ = exp
(
η(t – t0)

)
. (20)

Using (20) on (19) simplifies the analytical expression of the solitary solution (19) as
follows:

x(t) = x
(

ln t̂
η

+ t0

)
= x̂(̂t) = x̂ = σ

X (̂t)
T (̂t)

, (21)

where

X(θ ) =
n∏

k=1

(θ – xk), T(θ ) =
n∏

k=1

(θ – tk). (22)

3.2 Solitary solutions to Riccati equations
3.2.1 Uncoupled Riccati equations
Consider the following Riccati equation with respect to x = x(t):

x′ = c0 + c1x + c2x2, (23)

where c0, c1, c2 ∈C.
Equation (23) can be transformed via the substitution (20), where η2 = c2

1 – 4c0c2 [28], as
follows:

η̂t̂x′̂
t = c0 + c1̂x + c2̂x2. (24)

The solution to (24) reads [28]:

x̂ = σ
t̂ – sx0

t̂ – st0
= σ

t̂ – x0
t0

æ0

t̂ – æ0
, (25)

where s ∈R is a free constant, æ0 = st0 and parameters σ , x0, t0 satisfy the following iden-
tities:

c0 =
σx0η

x0 – t0
, (26)

c1 =
(t0 + x0)η

t0 – x0
, (27)

c2 =
t0η

σ (x0 – t0)
. (28)

Thus the solution to (23) is

x = σ
exp(ηt) – sx0

exp(ηt) – st0
. (29)

This solution is known as the kink solitary solution [34]. It describes the transition of a
system from one steady state to another via a monotonous trajectory.
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Figure 1 Kink solitary solution to (30) with initial condition x(0) = 1
3

Example Suppose that the following Ricatti differential equation with respect to x = x(t)
is given:

x′ = –1 + 5x – 4x2. (30)

The kink solitary solution to (30) is displayed in Fig. 1.

3.2.2 System of Riccati equations coupled via multiplicative terms
Let us consider the following system of Riccati equations coupled via multiplicative terms:

x′ = a0 + a1x + a2x2 + a3xy, (31)

y′ = b0 + b1y + b2y2 + b3xy. (32)

It is shown in [26] that equations (31)–(32) can be uncoupled under the assumption that
solutions x, y are in an inverse relationship:

xy = 
, 
 ∈R. (33)

In this case, the solutions have the same kink solitary solution form as described in the
previous subsection.

Furthermore, it has been shown in [23] that if the condition (33) does not hold, the
system (31)–(32) admits the following dark/bright solitary solutions:

x = σ
(exp(η(t – t0)) – x1)(exp(η(t – t0)) – x2)
(exp(η(t – t0)) – t1)(exp(η(t – t0)) – t2)

, (34)

y = γ
(exp(η(t – t0)) – y1)(exp(η(t – t0)) – y2)
(exp(η(t – t0)) – t1)(exp(η(t – t0)) – t2)

, (35)

where σ , γ , η, t0 are constants and parameters t1, t2, x1, x2, y1, y2 are functions of initial
conditions posed for system (31)–(32) at the point t = t0.

It is proven in [23] that the above solution holds if and only if the solution parameters
satisfy the relations:

(x1 – t1)(x1 – t2)
(x2 – t1)(x2 – t2)

= –
x1

x2
,

(y1 – t1)(y1 – t2)
(y2 – t1)(y2 – t2)

= –
y1
y2

. (36)
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Figure 2 Dark/bright solitary solutions to (40)–(41) with initial conditions x(0) = 10 and y(0) = 4: (a) x(t) and
(b) y(t)

The system parameters ak , bk , k = 0, . . . , 3 must satisfy the following conditions:

a3 = b2, a2 = b3, (37)

9a0a1a2 + 9b0b1b2 – 18a0a2b1 – 18b0b2a1 + 3a1b2
1 + 3b1a2

1 – 2a3
1 – 2b3

1 = 0. (38)

Furthermore, the parameter η is

η =
a2

1 – a1b1 + b2
1

3
– a0a2 – b0b2. (39)

Example Suppose that the following system of Riccati equations with respect to x = x(t)
and y = y(t) is given:

x′ =
136
11

–
828
319

x +
29

187
x2 –

550
1479

xy, (40)

y′ = –
51
29

+
345
319

y –
550

1479
y2 +

29
187

xy. (41)

The dark/bright solitary solutions to (40)–(41) are illustrated in Fig. 2.

It will be demonstrated in this paper that the system (15)–(18) also has both kink and
dark/bright solitary solutions, as well as admits higher-order solitary solutions.

3.3 Inverse balancing technique
The inverse balancing technique [24] is used in order to obtain necessary and sufficient
conditions for the existence of solitary solutions to a system of differential equations, as
well as to determine the possible order of such solutions. The main idea of this technique
is to insert the solitary solution as an anzatz into the considered model, which yields a
system of linear equations from which the model parameters can be determined in terms
of solitary solution parameters. The inverse balancing technique is applied to the system
(15)–(18) in Sects. 4 and 5.

Note that a direct balancing approach consisting of inserting the solutions of the form
(19) into the system (15)–(18) would result in a high-order nonlinear system of algebraic
equations with respect to the solution parameters. Direct construction of a solution to
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this system would not be possible. Due to this, the inverse balancing technique is applied
for the analysis of the system (15)–(18).

4 Derivation of necessary and sufficient conditions for the existence of solitary
solutions to (15)–(18)

The system of equations (15)–(18) can be transformed via the substitution (20) as follows:

η̂tx̂1
′̂
t = a01 + a11x̂1 + a21x̂1

2 + λ1x̂1ŷ1, (42)

η̂tŷ1
′̂
t = b01 + b11ŷ1 + b21ŷ1

2 + μ1x̂1ŷ1 + γ1(ŷ2 – ŷ1), (43)

η̂tx̂2
′̂
t = a02 + a12x̂2 + a22x̂2

2 + λ2x̂2ŷ2, (44)

η̂tŷ2
′̂
t = b02 + b12ŷ2 + b22ŷ2

2 + μ2x̂2ŷ2 + γ2(ŷ1 – ŷ2). (45)

Let

xl(t) = x̂l (̂t) = σ1l
Xl

T
, yl(t) = ŷl (̂t) = σ2l

Yl

T
, (46)

Xl = Xl (̂t) = (̂t – x1l)(̂t – x2l) · · · (̂t – xnl) = t̂n + χ(n–1)l̂tn–1 + · · · + χ0l, (47)

Yl = Yl (̂t) = (̂t – y1l)(̂t – y2l) · · · (̂t – ynl) = t̂n + θ(n–1)l̂tn–1 + · · · + θ0l, (48)

T = T (̂t) = (̂t – t1)(̂t – t2) · · · (̂t – tn) = t̂n + æn–1̂tn–1 + · · · + æ0, (49)

X ′
l =

(
Xl (̂t)

)′
t̂ , Y ′

l =
(
Yl (̂t)

)′
t̂ , T ′ =

(
T (̂t)

)′
t̂ , (50)

where æk ,χkl, θkl ∈ C, k = 1, . . . , n – 1, l = 1, 2. Note that in this paper the order of the soli-
tary solution is defined by the value of the parameter n.

Necessary and sufficient conditions for the existence of solitary solutions to (15)–(18)
are further obtained by inserting the solitary solutions (46) into (42)–(45). The system can
then be rewritten in the following way:

η̂tσ1l
X ′

lT – XlT ′

T2 = a0l + a1lσ1l
Xl

T
+ a2lσ

2
1l

X2
l

T2 + λlσ1lσ2l
XlYl

T2 , (51)

η̂tσ2l
Y ′

l T – YlT ′

T2 = b0l + clσ2l
Yl

T
+ b2lσ

2
2l

Y 2
l

T2 + μlσ1lσ2l
XlYl

T2 + γlσ2r
Yr

T
, (52)

where cl = b1l – γl , l, r = 1, 2, r �= l.
Multiplying both sides of the equations (51)–(52) by T2

Xl
and T , respectively, and rear-

ranging the resulting equations yields:

η̂tσ1lX ′
lT

Xl
–

a0lT2

Xl
= η̂tσ1lT ′ + a1lσ1lT + a2lσ

2
1lXl + λlσ1lσ2lYl, (53)

–
η̂tσ2lYlT ′

T
–

b2lσ
2
2lY

2
l

T
–

μlσ1lσ2lXlYl

T
= –η̂tσ2lY ′

l + b0lT + clσ2lYl + γlσ2rYr . (54)

Note that all the terms on the right-hand side of the equations (53)–(54) have order n;
numerators on the left-hand side of the equations (53)–(54) have order 2n; denomina-
tors on the left-hand side of the equations (53)–(54) have order n. Thus, in order for the
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equations (53)–(54) to hold, the denominators must be canceled out, i.e., the following
conditions must be satisfied:

η̂tσ1lX ′
l – a0lT = σ1lαlXl, (55)

–η̂tσ2lT ′ – b2lσ
2
2lYl – μlσ1lσ2lXl = σ2lβlT , (56)

where α1,α2,β1,β2 ∈ R\{0} are arbitrary constants.
Consequently, conditions (55)–(56) are necessary for the existence of solitary solutions

(46) in the system (15)–(18). Note that conditions (55)–(56) can be rearranged as follows:

a0lT + αlσ1lXl – η̂tσ1lX ′
l = 0, (57)

η̂tT ′ + βlT + μlσ1lXl + b2lσ2lYl = 0, (58)

where l = 1, 2.
Inserting (55)–(56) into (53)–(54) yields the following system of algebraic equations:

αlT = η̂tT ′ + a1lT + a2lσ1lXl + λlσ2lYl, (59)

σ2lβlYl = –η̂tσ2lY ′
l + b0lT + clσ2lYl + γlσ2rYr , (60)

where l, r = 1, 2; l �= r.
Equations (59)–(60) correspond to the sufficient conditions for the existence of solitary

solutions (46) in the system (15)–(18). Note that those conditions can be rearranged as
follows:

η̂tT ′ + (a1l – αl)T + a2lσ1lXl + λlσ2lYl = 0, (61)

γlσ2rYr + (cl – βl)σ2lYl + b0lT – ησ2l̂tY ′
l = 0. (62)

Lemma 1 Solitary solutions (46) satisfy the system (15)–(18) if and only if the conditions
(57)–(58) and (61)–(62) hold true.

5 Determination of the maximal order of the solitary solution (46) to (15)–(18)
In this subsection the inverse balancing technique (see Sect. 3.3) is applied in order to ex-
press the coefficients of the system (15)–(18) in terms of the solitary solution (46) param-
eters, as well as to determine the maximal order of the solitary solution (46) to (15)–(18).
Consider the following one-to-one mappings:

T �→ −→
T = (1, æn–1, . . . , æ0), (63)

Xl �→ −→
Xl = (1,χ(n–1)l, . . . ,χ0l), (64)

Yl �→ −→
Yl = (1, θ(n–1)l, . . . , θ0l), (65)

t̂T ′ �→
−−→(̂
tT ′) =

(
n, (n – 1)æn–1, . . . , æ1, 0

)
, (66)

t̂X ′
l �→

−−→(̂
tT ′) =

(
n, (n – 1)χ(n–1)l, . . . ,χ1l, 0

)
, (67)
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t̂Y ′
l �→

−−→(̂
tT ′) =

(
n, (n – 1)θ(n–1)l, . . . , θ1l, 0

)
, (68)

where l = 1, 2 and Xl , Yl , T are defined in (47)–(49), respectively. Let A1l , A2l , L1l , L2l ,
L3l , N1l , N2l , N3l , K1l , K2l , K3l ∈ R; l = 1, 2. Then using (63)–(68), necessary and sufficient
conditions (57)–(58) and (61)–(62) can be rewritten in the vector form as follows:

−→
T + A1l

−→
Xl + A2l

−−→(̂
tX ′

l
)

= 0, (69)

−−→(̂
tT ′) + L1l

−→
T + L2l

−→
Xl + L3l

−→
Yl = 0, (70)

−−→(̂
tT ′) + N1l

−→
T + N2l

−→
Xl + N3l

−→
Yl = 0, (71)

−→
Yr + K1l

−→
Yl + K2l

−→
T + K3l

−−→(̂
tY ′

l
)

= 0, (72)

where

A1l =
αlσ1l

a0l
, A2l = –

ησ1l

a0l
, (73)

L1l =
βl

η
, L2l =

μlσ1l

η
, L3l =

b2lσ2l

η
, (74)

N1l =
a1l – αl

η
, N2l =

a2lσ1l

η
, N3l =

λlσ2l

η
, (75)

K1l =
(cl – βl)σ2l

γlσ2r
, K2l =

b0l

γlσ2r
, K3l = –

ησ2l

γlσ2r
, (76)

for l, r = 1, 2, l �= r.
This section will consider three types of parameters:
• Parameters of the system of differential equations (15)–(18), namely akl , bkl , λl , μl ,

and γl , where k = 0, 1, 2; l = 1, 2.
• Parameters of the solitary solution (46), namely η, t0, σkl , æm, χml , and θml , where

m = 0, . . . , n – 1; l, k = 1, 2.
• Auxiliary parameters, namely αl , βl , Akl , Lml , Nml , and Kml , where m = 1, 2, 3;

l, k = 1, 2. As mentioned previously, parameters αl and βl are required for the
derivation of necessary and sufficient conditions (69)–(72) (see Eqs. (55)–(56)).
Parameters Akl , Lml , Nml , and Kml relate parameters of the system (15)–(18) to solitary
solution parameters through necessary and sufficient conditions (69)–(72).

Note that if auxiliary and solitary solution (46) parameters could be determined by solv-
ing (69)–(72), then parameters of the system (15)–(18) could be expressed as follows:

a0l = –η
σ1l

A2l
, a1l = η

(
N1l –

A1l

A2l

)
, a2l =

N2lη

σ1l
,

λl =
N3lη

σ2l
, b0l = –

ησ2lK2l

K3l
,

(77)

b1l = –η

(
K1l

K3l
+

σ2l

K3lσ2r
+ L1l

)
, b2l =

L3lη

σ2l
, μl =

L2lη

σ1l
, γl = –

ησ2l

K3lσ2r
, (78)

where l, r = 1, 2, l �= r.



Timofejeva et al. Advances in Difference Equations        (2021) 2021:133 Page 11 of 19

Insert (63), (64), and (67) into (69) and consider the elements of the obtained vector
results in the following system of equations with respect to A1l , A2l , æk , and χkl (where
k = 0, . . . , n – 1, l = 1, 2):

⎧⎨
⎩

1 + A1l + nA2l = 0,

æk + A1lχkl + A2lkχkl = 0, k = n – 1, . . . , 0,
(79)

where l = 1, 2. Note that system (79) has 2n + 2 equations and 3n + 4 unknowns. Solving
(79) yields:

A2l = –
1 + A1l

n
, χkl =

æk

1 + (n – k)A2l
= pklæk , A1l, æk ∈R, (80)

where pkl = 1
1+(n–k)A2l

and k = 0, . . . , n – 1, l = 1, 2.
Inserting (63)–(66) into (70) results in the following system of linear equations with

respect to L1l , L2l , L3l :

⎧⎨
⎩

n + L1l + L2l + L3l = 0,

kæk + L1læk + L2lχkl + L3lθkl = 0, k = n – 1, . . . , 0,
(81)

where l = 1, 2.
Let

θkl = hklæk , hkl ∈C, (82)

where k = 0, . . . , n – 1, l = 1, 2.
Then dividing the second equation in (81) by æk yields

⎧⎨
⎩

n + L1l + L2l + L3l = 0,

k + L1l + L2lpkl + L3lhkl = 0, k = n – 1, . . . , 0,
(83)

where l = 1, 2. Note that if æk = 0 for some k = 0, . . . , n – 1, then the respective equation
always holds true. Analogously, inserting (63)–(66) into (71) results in the following system
with respect to N1l , N2l , N3l :

⎧⎨
⎩

n + N1l + N2l + N3l = 0,

k + N1l + N2lpkl + N3lhkl = 0, k = n – 1, . . . , 0,
(84)

where l = 1, 2.
Note that systems (81) and (84) are identical. When (46) are kink solitary solutions

(n = 1), systems (81) and (84) have infinitely many solutions of the following form:

L1l =
(1 + L3l)p0l – L3lh0l

1 – p0l
, L2l =

–(1 + L3l) + L3lh0l

1 – p0l
, L3l ∈R, (85)

N1l =
(1 + N3l)p0l – N3lh0l

1 – p0l
, N2l =

–(1 + N3l) + N3lh0l

1 – p0l
, N3l ∈R, (86)
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where l = 1, 2. Note that in this case solutions Lkl and Nkl (k = 1, 2, 3) are not necessarily
equal.

However, when n ≥ 2, systems (81) and (84) can only have a single unique solution:

L1l = N1l =
(p1ln – 1)h0l – p0l(nh1l – 1)

(1 – p1l)h0l + (h1l – 1)p0l + (p1l – h1l)
,

L2l = N2l =
(1 – n)h0l – 1 + nh1l

(1 – p1l)h0l + (h1l – 1)p0l + (p1l – h1l)
,

L3l = N2l =
(n – 1)p0l + 1 – np1l

(1 – p1l)h0l + (h1l – 1)p0l + (p1l – h1l)

(87)

if and only if the following conditions with respect to solitary solution (46) parameters
hold true:

k + L1l + L2lpkl + L3lhkl = 0, k = 2, . . . , n – 1, (88)

(1 – p1l)h0l + (–1 + h1l)p0l + p1l – h1l �= 0, (89)

where l = 1, 2.
Note that in this case, applying Lkl = Nkl (k = 1, 2, 3) to (73)–(76) yields

a2l = μl, b2l = λl, (90)

where l = 1, 2.
Applying (63), (65), and (68) to (72) results in the following system of linear equations

with respect to K1l , K2l , and K3l :

⎧⎨
⎩

1 + K1l + K2l + nK3l = 0,

hkr + K1lhkl + K2l + K3lkhkl = 0, k = n – 1, . . . , 0,
(91)

where l, r = 1, 2, l �= r.
The system (91) yields the expressions for K1l , K2l :

K1l =
h0r – nK3l – 1

1 – h0l
, K2l =

(nK3l + 1)h0l – h0r

1 – h0l
, (92)

and the following conditions:

hkr + K1lhkl + K2l + K3lkhkl = 0, k = 1, . . . , n – 1, (93)

where l, r = 1, 2, l �= r.
Thus, necessary and sufficient conditions for the existence of solitary solutions (46) to

the system (15)–(18) can be reformulated in terms of solitary solution parameters as fol-
lows:

Lemma 2 Solitary solutions (46) satisfy the system (15)–(18) if and only if the conditions
(88) and (93) hold true.
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Note that applying (80) and (82) to (46) yields the following expression of the solitary
solution:

xl(t) = x̂l (̂t) = σ1l
Xl

T
= σ1l

(̂t)n + p(n–1)læn–1(̂t)n–1 + · · · + p0læ0

(̂t)n + æn–1(̂t)n–1 + · · · + æ0
, (94)

yl(t) = ŷl (̂t) = σ2l
Yl

T
= σ2l

(̂t)n + h(n–1)læn–1(̂t)n–1 + · · · + h0læ0

(̂t)n + æn–1(̂t)n–1 + · · · + æ0
, (95)

for l = 1, 2.
Algebraically solving the system of necessary and sufficient conditions defined in

Lemma 2 for various values of n yields the conclusion, summarized in the lemma below.

Lemma 3 The system of differential equations (15)–(18) can admit solitary solutions of
any order n ∈N. However, two cases are present:

• If n ≤ 3, the system of necessary and sufficient conditions defined in Lemma 2 can be
solved without additional constraints on solitary solution parameters. Moreover,
selecting different values of æk , k = 0, . . . , n – 1 in (94)–(95) generates an infinite
number of solitary solutions corresponding to a single system of differential equations
(15)–(18). Note that in the case of n = 2, 3, constraints (90) on differential equation
parameters must be satisfied in order to ensure the existence of the solitary solution,
whereas for n = 1 these constraints are unnecessary.

• If n > 3, the system of necessary and sufficient conditions defined in Lemma 2 can be
solved if any (n – 3) parameters æk , k ∈ {0, . . . , n – 1} are equal to zero. Then, selecting
different values of the remaining parameters æk in (94)–(95) generates an infinite
number of solitary solutions corresponding to a single system of differential equations
(15)–(18). Moreover, constraints (90) on the differential equation parameters must be
satisfied in order to ensure the existence of the solitary solution.

The auxiliary parameters Akl , Lml , Nml , and Kml form an essential link between the pa-
rameters of the system (15)–(18) and the solitary solution (46). If it is possible to determine
the auxiliary parameters from the solitary solution, the system parameters can be com-
puted via (77) and (78). Conversely, if the system parameters are known they can be used
to determine auxiliary parameters, which in turn yield the solitary solution parameters via
(69)–(76).

6 Computational experiments. Third-order solitary solutions to (15)–(18)
6.1 Analytical computation of auxiliary parameters from solitary solution

parameters
In this subsection, the presented derivations are illustrated: starting from the given third-
order solitary solutions (n = 3), the auxiliary parameters are first derived. From the auxil-
iary parameters, the coefficients of the system (15)–(18) are then computed.

The following example demonstrates these steps in detail, closely following the deriva-
tions presented in Sects. 4 and 5. See Sect. 6.2 for a more application-oriented example,
where solitary solutions to a given system of diffusively coupled Lotka–Volterra equations
are constructed.
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Lemma 2 is applied in order to show that system (15)–(18) can admit third order (n = 3)
solitary solutions:

x1(t) = x̂1(̂t) = σ11
X1

T
= σ11

(̂t)3 + p21æ2(̂t)2 + p11æ1̂t + p01æ0

(̂t)3 + æ2(̂t)2 + æ1̂t + æ0
, (96)

x2(t) = x̂2(̂t) = σ12
X2

T
= σ12

(̂t)3 + p22æ2(̂t)2 + p12æ1̂t + p02æ0

(̂t)3 + æ2(̂t)2 + æ1̂t + æ0
, (97)

y1(t) = ŷ1(̂t) = σ21
Y1

T
= σ21

(̂t)3 + h21æ2(̂t)2 + h11æ1̂t + h01æ0

(̂t)3 + æ2(̂t)2 + æ1̂t + æ0
, (98)

y2(t) = ŷ2(̂t) = σ22
Y2

T
= σ22

(̂t)3 + h22æ2(̂t)2 + h12æ1̂t + h02æ0

(̂t)3 + æ2(̂t)2 + æ1̂t + æ0
. (99)

As shown in Sect. 5, solitary solutions (96)–(99) satisfy the model (15)–(18) if and only
if the following conditions hold true:

2 + L1l + L2lp2l + L3lh2l = 0, (100)

h1r + K1lh1l + K2l + K3lh1l = 0, (101)

h2r + K1lh2l + K2l + 2K3lh2l = 0, (102)

where

L1l =
(3p1l – 1)h0l – p0l(3h1l – 1)

(1 – p1l)h0l + (h1l – 1)p0l + (p1l – h1l)
, (103)

L2l =
–2h0l – 1 + 3h1l

(1 – p1l)h0l + (h1l – 1)p0l + (p1l – h1l)
, (104)

L3l =
2p0l + 1 – 3p1l

(1 – p1l)h0l + (h1l – 1)p0l + (p1l – h1l)
, (105)

K1l =
h0r – 3K3l – 1

1 – h0l
, (106)

K2l =
(3K3l + 1)h0l – h0r

1 – h0l
, (107)

pkl =
1

1 + (3 – k)A2l
, (108)

A2l = –
1 + A1l

3
, (109)

for l, r = 1, 2; l �= r, and k = 0, 1, 2. Note that the system (100)–(102) has 6 equations and 10
unknowns, namely, K31, K32, A11, A12, h01, h02, h11, h12, h21, and h22. Four unknowns from
the system (100)–(102) can be chosen arbitrarily, however, they can be used to determine
if the solitary solutions have the desired number of maxima and minima. In this example,
the following parameter values are selected to ensure that at least two solitary solutions
have no fewer than three extrema:

A11 =
4
5

, A12 =
2
5

, h12 =
139,919

7619
, h22 =

39,493
15,238

. (110)
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Then, solving (100)–(102) with respect to K31, K32, h01, h02, h11, h21 yields:

K31 = –
7,834,855
274,284

, K32 = –
685,710
223,853

, h01 = –
34,171
31,979

,

h02 = –
10,021
7619

, h11 = –
170,881
31,979

, h21 =
89,309
31,979

.
(111)

Using (110) and (111), parameters (103)–(109) can be evaluated as follows:

L11 = –
9929
4410

, L12 = –
12,029
4410

, L21 = –8, L22 = –2,

L31 =
31,979
4410

, L32 =
7619
4410

, K11 =
199,005,317

4,937,112
, K12 =

33,736,932
10,968,797

,

K21 =
219,139,741

4,937,112
, K22 =

56,093,641
10,968,797

, p01 = –
5
4

, p02 = –
5
2

,

p11 = –5, p12 = 15, p21 =
5
2

, p22 =
15
8

,

A21 = –
3
5

, A22 = –
7

15
.

(112)

Since parameters (110) and (111) ensure the validity of conditions (100)–(102), solitary
solution (96)–(97) parameters æ0, æ1, æ2, σ11, σ12, σ21, σ22, η, t0 can be chosen freely.
Moreover, selecting different values of æ0, æ1, æ2 generates an infinite number of third-
order solitary solutions corresponding to a single system of differential equations (15)–
(18). Consider the case with

æ0 = 8, æ1 = 14, æ2 = 7, η = 4, t0 = –5,

σ11 =
3
5

, σ12 =
7

15
, σ21 =

7,834,855
274,284

, σ22 =
685,710
223,853

.
(113)

Then, inserting obtained parameter values and applying (20) to solitons (96)–(97) yields:

x1(t) =
3(2 exp (12t – 15) + 35 exp (8t – 10) – 140 exp (4t – 5) – 20)

10(exp (12t – 15) + 7 exp (8t – 10) + 14 exp (4t – 5) + 8)
, (114)

x2(t) =
7(8 exp (12t – 15) + 105 exp (8t – 10) + 1680 exp (4t – 5) – 160)

120(exp (12t – 15) + 7 exp (8t – 10) + 14 exp (4t – 5) + 8)
, (115)

y1(t) =
(
245(31,979 exp (12t – 15) + 625,163 exp (8t – 10)

– 2,392,334 exp (4t – 5) – 273,368)
)

/
(
274,284(exp (12t – 15) + 7 exp (8t – 10) + 14 exp (4t – 5) + 8)

)
, (116)

y2(t) =
(
45(15,238 exp (12t – 15) + 276,451 exp (8t – 10)

+ 3,917,732 exp (4t – 5) – 160,336)
)

/
(
223,853(exp (12t – 15) + 7 exp (8t – 10) + 14 exp (4t – 5) + 8)

)
. (117)

Once the auxiliary and solitary solution parameters are computed, (77)–(78) can be used
to obtain the parameters of the system (15)–(18) which admits the solitary solution (114)–
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(117). The system (15)–(18) reads:

x′
1 = 1 –

4049
4410

x1 –
40
3

x2
1 +

15,238
60,025

x1y1, (118)

y′
1 =

219,139,741
4,937,112

–
5,755,739

11,199,930
y1 +

15,238
60,025

y2
1 –

40
3

x1y1 +
223,853
685,710

(y2 – y1), (119)

x′
2 = 1 –

8249
4410

x2 –
30
7

x2
2 +

31,979
56,700

x2y2, (120)

y′
2 =

56,093,641
10,968,797

–
238,135,267
141,027,390

y2 +
31,979
56,700

y2
2 –

30
7

x2y2 +
274,284

7,834,855
(y1 – y2). (121)

6.2 Construction of solitary solutions to a diffusively coupled Lotka–Volterra
system

Let us consider the following system of diffusively coupled Lotka–Volterra equations:

x′
1 =

5
3

–
16
9

x1 –
68
5

x2
1 +

617
135

x1y1, (122)

y′
1 =

153,745
31,467

–
656,207
377,604

y1 +
617
135

y2
1 –

68
5

x1y1 –
243

41,956
(y2 – y1), (123)

x′
2 =

30
7

–
172
63

x2 +
68

315
x2

2 +
7

180
x2y2, (124)

y′
2 = –

740
153

+
6317
3213

y2 +
7

180
y2

2 +
68

315
x2y2 +

2468
459

(y1 – y2). (125)

Third-order solitary solutions of the form (96)–(99) to the above system are constructed
in this subsection via the computational scheme presented in the paper.

Using the parameters of the system of differential equations (122)–(125), auxiliary pa-
rameters αl , βl , Akl , Lml , Nml , and Kml (m = 1, 2, 3; l, k = 1, 2), as well as solitary solutions
parameters η, t0, and σkl (l, k = 1, 2), can be obtained by solving (73)–(76). One of the pos-
sible sets of such parameters (solutions of (73)–(76)) reads:

α1 =
4
3

, α2 =
6
7

, β1 = –
28
9

, β2 = –
226
63

, A11 =
4
5

, A12 =
2
5

,

A21 = –
3
5

, A22 = –
7

15
, L11 = N11 = –

28
9

, L12 = N12 = –
226
63

,

L21 = N21 = –
68
5

, L22 = N22 =
136
315

, L31 = N31 =
617
45

,

L32 = N32 =
7

45
, K11 = –

130,187
729

, K12 =
27

617
,

K21 = –
153,745

729
, K22 = –

185
617

, K31 =
10,489

81
, K31 = –

153
617

,

η = 1, t0 = –5, σ11 = 1, σ12 = 2, σ21 = 3, σ22 = 4.

(126)
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Using the obtained values (126), the rest of solitary solution (96)–(99) parameters (æm,
pml , and hml , m = 0, 1, 2; l = 1, 2) can be derived by solving (80), (87), (88), (92), and (93):

æ0 = 1, æ1 = 5, æ2 = 15,

p01 = –
5
4

, p02 = –
5
2

, p11 = –5, p12 = 15,

p21 =
5
2

, p22 =
15
8

, h01 = –
625
617

, h02 = 30,

h11 = –
2965
617

, h12 = –25, h21 =
1580
617

, h22 = 5.

(127)

Thus, third-order solitary solutions to the system (122)–(125) read:

x1(t) =
4 exp (3t – 15) + 150 exp (2t – 10) – 100 exp (t – 5) – 5

4(exp (3t – 15) + 15 exp (2t – 10) + 5 exp (t – 5) + 1)
, (128)

x2(t) =
8 exp (3t – 15) + 225 exp (2t – 10) + 600 exp (t – 5) – 20

4(exp (3t – 15) + 15 exp (2t – 10) + 5 exp (t – 5) + 1)
, (129)

y1(t) =
3(617 exp (3t – 15) + 23,700 exp (2t – 10) – 14,825 exp (t – 5) – 625)

617(exp (3t – 15) + 15 exp (2t – 10) + 5 exp (t – 5) + 1)
, (130)

y2(t) =
4(exp (3t – 15) + 75 exp (2t – 10) – 125 exp (t – 5) + 30)

exp (3t – 15) + 15 exp (2t – 10) + 5 exp (t – 5) + 1
. (131)

The third-order solitary solutions (128)–(131) to (122)–(125) are illustrated in Fig. 3.

7 Concluding remarks
It is well known that separatrices in the phase space play a pivotal role in understanding
the evolution of solutions to nonlinear dynamical systems. As a rule of thumb, separatrices
are usually represented by soliton-type solutions [25, 36]. A small impulse can be used to
control the evolution of the transient trajectories of different nonlinear systems – provided
it is possible to derive the analytic structure of separatrices in the phase space.

Kink solitary solutions do represent the separatrix between the silent mode and the fir-
ing mode of a dendritic neuron represented by a system of nonlinear differential equations
[36]. Dark solitary solutions do represent a system of separatrices in the paradigmatic
Hodgkin–Huxley model [36]. A control technique based on small impulses for silencing
a random network of such neurons is proposed in [11, 36].

It was demonstrated in this paper that solitary solutions of an arbitrary order do exist
in the diffusively coupled Lotka–Volterra systems. Necessary and sufficient conditions for
the existence of such solutions were derived in terms of the system and solution parame-
ters using the inverse balancing technique.

Finding soliton-type solutions to the meta-model of coupled Lotka–Volterra systems
would allow us to identify the structure of separatrices in the 4-dimensional phase space.
The knowledge of the system of separatrices would serve for designing algorithms for the
control of transient processes. The meta-model of coupled Lotka–Volterra systems has
some connections with the phenomenological model of metastasis and the SEIR COVID-
19 model. Tuning these connections and designing algorithms for the control of transient
processes remains a definite objective of future research.
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Figure 3 Third-order solitary solutions to (122)–(125): (a) x1(t); (b) x2(t); (c) y1(t); and (d) y2(t)
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