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Abstract
Our basic purpose is to derive several existence aspects of solutions for a novel class
of the fractional inclusion problem in terms of the well-defined generalized ϕ-Caputo
and ϕ-Riemann–Liouville operators. The existing boundary conditions in such an
inclusion problem are endowed with mixed generalized ϕ-Riemann–Liouville
conditions. To reach this goal, we utilize the analytical methods on α-ψ -contractive
maps and multifunctions involving approximate endpoint specification to derive the
required results. In the final part, we formulate an illustrative simulation example to
examine obtained theoretical outcomes by computationally and numerically.
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1 Introduction
Discussion of the mathematical modelings of processes is an interesting part of math-
ematics in which the mathematicians discuss behaviors of existing systems in terms of
several mathematical and computational methods. In this regard, there is a vast range
of fractional operators which have a vital role in modeling different phenomena. In fact,
during the past years, a large number of mathematicians have formulated well-defined
operators for their purposes. For the sake of having a high accuracy of the arbitrary order
modelings rather than integer order ones, the fractional versions of these new operators
have been welcomed nowadays. For instance, the Caputo and the Riemann–Liouville op-
erators in the fractional frames have appeared repeatedly for modeling the complicated
mathematical systems; see [1–12]. Later, a wide range of modelings were designed utiliz-
ing the Hadamard and Caputo–Hadamard fractional operators; see [13–18]. In early 2015,
Caputo and Fabrizio [19] propounded a novel nonsingular derivative named the Caputo–
Fabrizio operator, and immediately after them Nieto and Losada [20] turned to checking
some flexible specifications of such newly defined nonsingular operator. The applicability
of this operator was such that many newly designed mathematical models were formu-
lated with respect to the mentioned nonsingular operator; see [21–23].
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In 2017, a generalization of the Caputo fractional operator called the ϕ-Caputo deriva-
tive was introduced by Almeida [24] in which the kernel of this operator depends on an
increasing function ϕ. By using this newly defined operator, a limited number of papers
have been published so far; see [25–29].

Belmor et al. [30] formulated a ϕ-fractional differential inclusion subject to ϕ-integral
conditions as

⎧
⎪⎪⎨

⎪⎪⎩

CDς∗ ;ϕ
0+ φ(s) ∈ Ĕ(s,φ(s)), (0 ≤ s ≤ l),

φ(0) – δ∗
ϕφ(0) = a∗RLIθ ;ϕ

0+ g̃1∗ (p1,φ(p1)),

φ(l) – δ∗
ϕφ(l) = b∗RLIμ;ϕ

0+ g̃2∗(p2,φ(p2)),

where 1 < ς∗ < 2, 0 ≤ p1, p2 ≤ 1 and the constants a∗, b∗ are chosen arbitrarily and further-
more Ĕ : [0, l] × R → P(R) stands for a multifunction where P(R) denotes the family of
all nonempty subsets of R and g̃1∗ , g̃2∗ : [0, l] ×R → R are continuous and δ∗

ϕ = 1
ϕ′(s)

d
ds . The

authors obtained the relevant criteria for the existence by utilizing the endpoint notion
for ψ-weak contractions due to Moradi [31].

In the light of the new operator introduced in [24] and motivated by the aforementioned
work, we design the following ϕ-Caputo differential inclusion boundary value problem:

CDς∗ ;ϕ
a φ(s) ∈ Ĕ

(
s,φ(s)

)
,

(
s ∈ [a, M], a ≥ 0

)
, (1)

supplemented with mixed integro-derivative conditions in the frame of the ϕ-Riemann–
Liouville operators

⎧
⎨

⎩

φ(a) = μ∗
1 + RLDς1;ϕ

a φ(ξ ),

φ(M) = μ∗
2 + 1


(ς2)
∫ σ

a ϕ′(r)(ϕ(σ ) – ϕ(r))ς2–1φ(r) dr,
(2)

so that 1 < ς∗ < 2, 0 < ς1 ≤ 1, ς2 > 0 and CDς∗ ;ϕ
a stands for the ς∗th ϕ-Caputo derivative

with respect to an increasing function ϕ and RLDς1;ϕ
a is the ς1th ϕ-Riemann–Liouville

derivative and RLIς2;ϕ
a indicates the ς2th ϕ-Riemann–Liouville integral. Besides, μ∗

1,μ∗
2 ∈

R, ξ ,σ ∈ (a, M) and Ĕ : [a, M] ×R →P(R) is a multifunction furnished with some speci-
fications which will be indicated later.

Our basic purpose in the current research is to derive existence aspects of solutions for
the above general category of the fractional inclusion boundary value problem in terms of
the well-defined generalized ϕ-Caputo and ϕ-Riemann–Liouville operators. The existing
boundary conditions are considered as mixed generalized ϕ-Riemann–Liouville bound
conditions. To obtain the desired existence criteria, we utilize analytical methods on α-
ψ-contractive maps and multifunctions involving the approximate endpoint specification.
We emphasize that this structure of the ϕ-Caputo inclusion problem and ϕ-Riemann–
Liouville integro-derivative conditions is a general case based on an arbitrary increasing
function ϕ and we can even extend our boundary conditions to multi-strip multi-point
conditions in future work. So this problem is novel and unique in this respect.

We prepare the contents of this research paper by the following settings. Some applied
properties and auxiliary issues are collected in Sect. 2. Next in Sect. 3, we employ two
notions of endpoint and fixed point to derive the existence aspects corresponding to the
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ϕ-inclusion boundary value problem designed by (1)–(2). In the final section, we formu-
late an illustrative simulation model to examine theoretical findings computationally and
numerically.

2 Auxiliary preliminaries
Here, we collect and review several fundamental notions in the framework of our analyt-
ical methods applied in this paper. As is well known, the concept of the ς∗th Riemann–
Liouville integral of a continuous function φ : R≥0 →R is

RLIς∗
0 φ(s) =

∫ s

0

(s – r)ς∗–1


(ς∗)
φ(r) dr, ς∗ > 0 (3)

when the right hand side integral exists finitely [32, 33]. From here onwards, let ς∗ ∈
(m – 1, m) with m = [ς∗] + 1. For a continuous function φ : R≥0 → R, the ς∗th Riemann–
Liouville derivative is represented by

RLDς∗
0 φ(s) =

(
d
ds

)m ∫ s

0

(s – r)m–ς∗–1


(m – ς∗)
φ(r) dr (4)

when the right hand side integral possesses finite values [32, 33]. In the next step, for an
absolutely continuous function φ ∈ AC(m)

R
(R≥0), the ς∗th Caputo derivative is

CDς∗
0 φ(s) =

∫ s

0

(s – r)m–ς∗–1


(m – ς∗)
φ(m)(r) dr (5)

when the right hand side integral possesses values finitely [32, 33].

Definition 2.1 ([33–35]) Let ϕ ∈ Cm([a, b]) be an increasing map so that ϕ′(s) > 0 for any
s ∈ [a, b]. Then the ς∗th ϕ-Riemann–Liouville integral of an existing map φ : [a, b] → R

with respect to ϕ is defined as

RLIς∗ ;ϕ
a φ(s) =

1

(ς∗)

∫ s

a
ϕ′(r)

(
ϕ(s) – ϕ(r)

)ς∗–1
φ(r) dr (6)

provided that the right hand side of equality is finite-valued.

It is to be noted that, if ϕ(t) = t, then clearly the ϕ-Riemann–Liouville integral (6) reduces
to the standard Riemann–Liouville integral (3).

Definition 2.2 ([33–35]) Let m = [ς∗] + 1. For a real mapping φ ∈ C(R≥0), the ς∗th ϕ-
Riemann–Liouville derivative with respect to ϕ is formulated as

RLDς∗ ;ϕ
a φ(s) =

1

(m – ς∗)

(
1

ϕ′(s)
d
ds

)m ∫ s

a
ϕ′(r)

(
ϕ(s) – ϕ(r)

)m–ς∗–1
φ(r) dr (7)

provided that the right hand side of equality is finite-valued.

In the similar manner, if ϕ(t) = t, then it is obvious that the ς∗th ϕ-Riemann–Liouville
derivative (7) reduces to the standard ς∗th Riemann–Liouville derivative (4). Inspired by
these operators, Almeida presented a new ϕ-version of the Caputo derivative in the fol-
lowing formulation.
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Definition 2.3 ([24]) Let m = [ς∗] + 1 and ϕ ∈ Cm([a, b]) be an increasing map with
ϕ′(s) > 0 for any s ∈ [a, b]. The ϕ-version of the ς∗th Caputo derivative of the absolutely
continuous function φ with respect to ϕ is

CDς∗ ;ϕ
a φ(s) =

1

(m – ς∗)

∫ s

a
ϕ′(r)

(
ϕ(s) – ϕ(r)

)m–ς∗–1
(

1
ϕ′(r)

d
dr

)m

φ(r) dr (8)

when the right hand side of equality possesses values finitely.

It should be noted that, if ϕ(s) = s, then it is obvious that the ς∗th ϕ-Caputo derivative (8)
reduces to the standard ς∗th Caputo derivative (5). In the following, some useful specifi-
cations of the ς∗th ϕ-Caputo and ς∗th ϕ-Riemann–Liouville integro-derivative operators
can be seen.

Proposition 2.4 ([24, 33–35]) Let ς∗,β∗,
 ∗ > 0 and ϕ ∈ Cm([a, b]) is assumed to be an
increasing map with ϕ′(s) > 0 for any a ≤ s ≤ b. Then the following statements hold:

(i1) RLIς∗ ;ϕ
a (RLI
∗ ;ϕ

a φ)(s) = (RLIς∗+
∗ ;ϕ
a φ)(s),

(i2) RLIς∗ ;ϕ
a (ϕ(s) – ϕ(a))β∗ (y) = 
(β∗+1)


(ς∗+β∗+1) (ϕ(y) – ϕ(a))ς∗+β∗ ,
(i3) RLDς∗ ;ϕ

a (ϕ(s) – ϕ(a))β∗ (y) = 
(β∗+1)

(β∗–ς∗+1) (ϕ(y) – ϕ(a))β∗–ς∗ , (β∗ > –1),

(i4) RLDς∗ ;ϕ
a (RLI
∗ ;ϕ

a φ)(s) = (RLI
∗–ς∗ ;ϕ
a φ)(s), (ς∗ < 
 ∗).

Proposition 2.5 ([24]) Let m = 1 + [ς∗] and ϕ ∈ Cm([a, b]) be same above. Then, for every
φ ∈ Cm–1([a, b]), we have

RLIς∗ ;ϕ
a

(CDς∗ ;ϕ
a φ

)
(s) = φ(s) –

m–1∑

j=0

(δϕ)jφ(a)
j!

(
ϕ(s) – ϕ(a)

)j,
(

δϕ =
1

ϕ′(s)
d
ds

)

.

With due attention to the above proposition, it is simply found that the general series
solution of (CDς∗ ;ϕ

a φ)(s) = 0 is given by

φ(s) =
m–1∑

j=0

d∗
j
(
ϕ(s) – ϕ(a)

)j

= d∗
0 + d∗

1
(
ϕ(s) – ϕ(a)

)
+ d∗

2
(
ϕ(s) – ϕ(a)

)2 + · · · + d∗
m–1

(
ϕ(s) – ϕ(a)

)m–1,

where m = 1 + [ς∗] and d∗
0 , d∗

1, . . . , d∗
m–1 ∈ R [24]. In the subsequent stage, some concepts

and the related specifications on the theory of multifunctions are reviewed.

Notation 2.6 Regard an ordered pair (�,‖ · ‖�) which represents a normed space. We
mean by the notations P(�), Pbnd(�), Pcmp(�), Pcls(�) and Pcvx(�) a representation of
the category of all nonempty, all bounded, all compact, all closed and all convex subsets
of �, respectively.

An element φ∗ ∈ � is a fixed point of the given multifunction Ĕ : � → P(�) whenever
φ∗ ∈ Ĕ(φ∗) [36]. We denote the collection of all existing fixed points of Ĕ by the symbol
FIX(Ĕ) [36].
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Definition 2.7 ([36]) The Pompeiu–Hausdorff metric PHd�
: P(�) ×P(�) →R

∗ is con-
structed as follows:

PHd�
(A1, A2) = max

{
sup

l1∈A1

d�(l1, A2), sup
l2∈A2

d�(A1, l2)
}

,

where d�(A1, l2) = infl1∈A1 d�(l1, l2) and d�(l1, A2) = infl2∈A2 d�(l1, l2).

Definition 2.8 ([36]) An arbitrary multifunction Ĕ : � →Pcls(�) is said to be Lipschitzian
furnished with constant λ̃∗ > 0 if

PHd�

(
Ĕ(φ), Ĕ

(
φ′)) ≤ λ̃∗d�

(
φ,φ′)

is valid for each φ,φ′ ∈ �. In addition, the given Lipschitz multifunction Ĕ is named a
contraction when 0 < λ̃∗ < 1.

Definition 2.9 ([36, 37]) With due attention to the symbols in Notation 2.6, we have:
(i1) A multi-valued function Ĕ is named completely continuous when Ĕ(K) possesses

the relative compactness specification for any K ∈Pbnd(�).
(i2) Ĕ : [0, 1] → Pcls(R) is named measurable when s 	−→ d�(υ, Ĕ(s)) is a measurable

map for all υ ∈ R.
(i3) Ĕ is a u.s.c. multifunction if, for any φ∗ ∈ �, Ĕ(φ∗) contained in Pcls(�) and for any

open set V involving Ĕ(φ∗), a neighborhood G∗
0 of φ∗ exists for which Ĕ(G∗

0 ) ⊆V.
(i4) Ĕ : [0, 1] × R → P(R) is a multifunction of the Caratheodory type if s 	→ Ĕ(s,φ) is

measurable for any φ ∈R and φ 	→ Ĕ(s,φ) is u.s.c. for a.e. φ ∈ [0, 1].
(i5) A Caratheodory multifunction Ĕ : [0, 1] ×R →P(R) is named L1-Caratheodory if,

for any α > 0, a map �α ∈L1
R+ ([0, 1]) exists provided that

∥
∥Ĕ(s,φ)

∥
∥ = sup

s∈[0,1]

{|y| : y ∈ Ĕ(s,φ)
} ≤ �α(s)

for every |φ| ≤ α and for a.e. s ∈ [0, 1].
(i6) Ĕ has convex values if the set Ĕ(φ) is convex for every φ ∈�.

The graph of the multifunction Ĕ : � →Pcls(�) is constructed thus:

G(Ĕ) =
{

(φ, q) ∈�× � : q ∈ Ĕ(φ)
}

.

Definition 2.10 ([36, 37]) The graph G(Ĕ) is closed whenever for both sequences
{φn}n≥1 ⊆ � and {qn}n≥1 ⊆ � with φn → φ0, qn → q0 and qn ∈ Ĕ(φn), we have the in-
clusion q0 ∈ Ĕ(φ0).

By [36], it is found that, if Ĕ : � → Pcls(�) involves a u.s.c. specification, then G(Ĕ) is
closed contained in � × �. In reverse, if Ĕ possesses both specifications of the closed
graph and the complete continuity, Ĕ is u.s.c. [36]. In addition to these, a family of existing
selections of Ĕ at φ ∈ CR([0, 1]) is arranged as

S
Ĕ,φ :=

{
�̂

∗ ∈L1
R

(
[0, 1]

)
: �̂∗(s) ∈ Ĕ

(
s,φ(s)

)}
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for a.e. s ∈ [0, 1] [36, 37]. It should be noted that, for any φ ∈ C�([0, 1]), S
Ĕ,φ �= ∅ if dim(�)

possesses a value finitely [36].
Samet and Vetro et al. [38] propounded a novel construction of nondecreasing maps

say ψ : [0,∞) → [0,∞) by � . For such ψ ∈ � ,
∑∞

k=1 ψk(s) < ∞ holds and s > ψ(s) for any
s ∈ R

>0 [38]. After them in 2013, Mohammadi, Rezapour and Shahzad [39] extended this
structure to multifunctions in general.

Definition 2.11 ([39]) A given multifunction Ĕ : � → Pcls,bnd(�) is named a α-ψ-
contraction whenever

α
(
φ,φ′)PHd�

(
Ĕφ, Ĕφ′) ≤ ψ

(
d�

(
φ,φ′))

is valid for each φ,φ′ ∈�.

Definition 2.12 ([39]) Regard � as a normed space. In this case:
(i1) We say that � possesses the specification (Cα) if for any sequence {φn} ⊆ � with

φn → φ and α(φn,φn+1) ≥ 1 for n ∈ N, a subsequence {φnj} of {φn} exists for which
α(φnj ,φ) ≥ 1 for each j ∈N.

(i2) Ĕ is named an α-admissible whenever for any φ ∈ � and φ′ ∈ Ĕ(φ) with α(φ,φ′) ≥ 1,
an inequality α(φ′,φ′′) ≥ 1 is valid for each φ′′ ∈ Ĕ(φ′).

Definition 2.13 ([40]) Regard � as a normed space. In this case:
(i1) φ ∈� is named an endpoint of Ĕ : � →P(�) if Ĕ(φ) = {φ}.
(i2) E possesses an approximate endpoint specification if infφ∈� supq∈Ĕφ d�(φ, q) = 0.

The next propositions are required logical tools for establishing the desired results in
this research.

Proposition 2.14 ([41]) Let a Banach space � be separable and
(i1) Ĕ : [0, 1] ×� →Pcmp,cvx(�) be L1-Carathéodory;
(i2) a linear map � : L1

�
([0, 1]) → C�([0, 1]) be continuous.

Then � ◦ S
Ĕ

: C�([0, 1]) → Pcmp,cvx(C�([0, 1])) is another multifunction in [C�([0, 1])]2

endowed with φ 	→ (� ◦S
Ĕ

)(φ) = �(S
Ĕ,φ) involving a closed graph specification.

Proposition 2.15 ([39]) Let a metric space (�, d�) be complete and
(i1) a map α be nonnegative on �×� and ψ ∈ � be strictly increasing;
(i2) Ĕ : � → Pcls,bnd(�) be α-admissible and α-ψ-contraction so that α(φ,φ′) ≥ 1 for

some φ ∈� and φ′ ∈ Ĕ(φ).
Then Ĕ possesses a fixed point if � involves the specification (Cα).

Proposition 2.16 ([40]) Let a metric space (�, d�) be complete and
(i1) ψ : R≥0 → R

≥0 be u.s.c. equipped with the property ψ(s) < s and lim infs→∞(s –
ψ(s)) > 0 for all s ∈R

>0;
(i2) Ĕ : �→Pcls,bnd(�) be such that PHd�

(Ĕφ, Ĕφ′) ≤ ψ(d�(φ,φ′)) for any φ,φ′ ∈�.
Then Ĕ possesses an endpoint uniquely iff Ĕ possesses an approximate endpoint specifica-
tion.
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3 Existence theorems
After presenting some required concepts in the previous two sections, we are going
to indicate our desired existence theorems. To arrive at this goal, we define ‖φ‖� =
sups∈[a,M] |φ(s)| for each member of the space � = {φ(s) : φ(s) ∈ CR([a, M])}. In this phase,
(�,‖ · ‖�) will be a Banach space. In addition to this, keep in mind the following for con-
venience:

O
∗
0 := 1 –

(ϕ(ξ ) – ϕ(a))–ς1


(1 – ς1)
, O

∗
1 :=

(ϕ(ξ ) – ϕ(a))1–ς1


(2 – ς1)
,

O
∗
2 :=

(ϕ(σ ) – ϕ(a))ς2


(1 + ς2)
– 1, O

∗
3 :=

(ϕ(σ ) – ϕ(a))1+ς2


(2 + ς2)
–

(
ϕ(M) – ϕ(a)

)
. (9)

In the subsequent stage, we derive an equivalent relation as an integral equation for the
generalized ϕ-Caputo inclusion boundary value problem (1)–(2).

Lemma 3.1 Let 1 < ς∗ < 2, ς1 ∈ (0, 1], ς2 > 0, μ∗
1,μ∗

2 ∈ R and �̆ ∈ �. Then φ0 satisfies the
linear ϕ-Caputo differential equation

CDς∗ ;ϕ
a φ(s) = �̆(s) (10)

furnished with ϕ-Riemann–Liouville conditions

⎧
⎨

⎩

φ(a) = μ∗
1 + RLDς1;ϕ

a φ(ξ ),

φ(M) = μ∗
2 + 1


(ς2)
∫ σ

a ϕ′(r)(ϕ(σ ) – ϕ(r))ς2–1φ(r) dr,
(11)

if and only if φ0 is a solution of the ϕ-Riemann–Liouville integral equation

φ(s) =
1


(ς∗)

∫ s

a
ϕ′(r)

(
ϕ(s) – ϕ(r)

)ς∗–1h̆(r) dr

+ B̃
∗
1(s)

1

(ς∗)

∫ M

a
ϕ′(r)

(
ϕ(M) – ϕ(r)

)ς∗–1h̆(r) dr

+ B̃
∗
2(s)

1

(ς∗ – ς1)

∫ ξ

a
ϕ′(r)

(
ϕ(ξ ) – ϕ(r)

)ς∗–ς1–1h̆(r) dr

– B̃
∗
1(s)

1

(ς∗ + ς2)

∫ σ

a
ϕ′(r)

(
ϕ(σ ) – ϕ(r)

)ς∗+ς2–1h̆(r) dr + B̃
∗
3(s) (12)

so that B̃∗
1(s), B̃∗

2(s) and B̃∗
3(s) are three functions depending on a variable s endowed with

the following rules:

B̃
∗
1(s) :=

1
O∗

(
O

∗
1 + O

∗
0
(
ϕ(s) – ϕ(a)

))
, B̃

∗
2(s) :=

1
O∗

(
O

∗
3 – O

∗
2
(
ϕ(s) – ϕ(a)

))
,

B̃
∗
3(s) := μ∗

1B̃
∗
2(s) – μ∗

2B̃
∗
1(s) (13)

and O∗ = O∗
0O

∗
3 + O∗

1O
∗
2 �= 0.

Proof First φ0 is assumed to satisfy the generalized ϕ-Caputo differential equation (10).
Obviously, we have CDς∗ ;ϕ

a φ0(s) = �̆(s). By taking the ς∗th ϕ-Riemann–Liouville integral
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on both sides of the latter relation, we obtain

φ0(s) =
1


(ς∗)

∫ s

a
ϕ′(r)

(
ϕ(s) – ϕ(r)

)ς∗–1
�̆(r) dr + c∗

0 + c∗
1
(
ϕ(s) – ϕ(a)

)
. (14)

Now, we intend to seek unknown real constants c∗
0 and c∗

1. If we take the ς1th ϕ-Riemann–
Liouville derivative and the ς2th ϕ-Riemann–Liouville integral in s on both sides of (14),
respectively, we deduce that

RLDς1;ϕ
a φ0(s) =

1

(ς∗ – ς1)

∫ s

a
ϕ′(r)

(
ϕ(s) – ϕ(r)

)ς∗–ς1–1
�̆(r) dr

+ c∗
0

(ϕ(s) – ϕ(a))–ς1


(1 – ς1)
+ c∗

1
(ϕ(s) – ϕ(a))1–ς1


(2 – ς1)

and

RLIς2;ϕ
a φ0(s) =

1

(ς∗ + ς2)

∫ s

a
ϕ′(r)

(
ϕ(s) – ϕ(r)

)ς∗+ς2–1
�̆(r) dr

+ c∗
0

(ϕ(s) – ϕ(a))ς2


(1 + ς2)
+ c∗

1
(ϕ(s) – ϕ(a))1+ς2


(2 + ς2)
.

By virtue of the mixed generalized ϕ-Riemann–Liouville boundary value conditions, we
get

O
∗
0c∗

0 – O
∗
1c∗

1 =
1


(ς∗ – ς1)

∫ ξ

a
ϕ′(r)

(
ϕ(ξ ) – ϕ(r)

)ς∗–ς1–1
�̆(r) dr + μ∗

1 (15)

and

O
∗
2c∗

0 + O
∗
3c∗

1 =
1


(ς∗)

∫ M

a
ϕ′(r)

(
ϕ(M) – ϕ(r)

)ς∗–1
�̆(r) dr

–
1


(ς∗ + ς2)

∫ σ

a
ϕ′(r)

(
ϕ(σ ) – ϕ(r)

)ς∗+ς2–1
�̆(r) dr – μ∗

2, (16)

where O∗
0, O∗

1, O∗
2, O∗

3 are arranged in (9). After doing some straightforward calculations
on (15)–(16), we obtain

c∗
0 =

1
O∗

[

O
∗
3

(
1


(ς∗ – ς1)

∫ ξ

a
ϕ′(r)

(
ϕ(ξ ) – ϕ(r)

)ς∗–ς1–1
�̆(r) dr + μ∗

1

)

+ O
∗
1

(
1


(ς∗)

∫ M

a
ϕ′(r)

(
ϕ(M) – ϕ(r)

)ς∗–1
�̆(r) dr

–
1


(ς∗ + ς2)

∫ σ

a
ϕ′(r)

(
ϕ(σ ) – ϕ(r)

)ς∗+ς2–1
�̆(r) dr – μ∗

2

)]

and

c∗
1 =

1
O∗

[

–O∗
2

(
1


(ς∗ – ς1)

∫ ξ

a
ϕ′(r)

(
ϕ(ξ ) – ϕ(r)

)ς∗–ς1–1
�̆(r) dr + μ∗

1

)
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+ O
∗
0

(
1


(ς∗)

∫ M

a
ϕ′(r)

(
ϕ(M) – ϕ(r)

)ς∗–1
�̆(r) dr

–
1


(ς∗ + ς2)

∫ σ

a
ϕ′(r)

(
ϕ(σ ) – ϕ(r)

)ς∗+ς2–1
�̆(r) dr – μ∗

2

)]

.

Now we insert c∗
0 and c∗

1 into (14). In this case, one may write

φ0(s) =
1


(ς∗)

∫ s

a
ϕ′(r)

(
ϕ(s) – ϕ(r)

)ς∗–1
�̆(r) dr

+ B̃
∗
1(s)

1

(ς∗)

∫ M

a
ϕ′(r)

(
ϕ(M) – ϕ(r)

)ς∗–1
�̆(r) dr

+ B̃
∗
2(s)

1

(ς∗ – ς1)

∫ ξ

a
ϕ′(r)

(
ϕ(ξ ) – ϕ(r)

)ς∗–ς1–1
�̆(r) dr

– B̃
∗
1(s)

1

(ς∗ + ς2)

∫ σ

a
ϕ′(r)

(
ϕ(σ ) – ϕ(r)

)ς∗+ς2–1
�̆(r) dr + B̃

∗
3(s),

which illustrates that φ0 satisfies (12). Conversely, we can simply see that φ0 is a solution
for the generalized ϕ-Caputo fractional boundary value problem (10)–(11) whenever φ0

satisfies (12). This finishes the argument. �

Notation 3.2 For simplicity in some required calculations, set

∣
∣B̃∗

1(s)
∣
∣ ≤ B̃

∗
1 :=

1
|O∗|

(∣
∣O∗

0
∣
∣
(
ϕ(M) – ϕ(a)

)
+

∣
∣O∗

1
∣
∣
)
,

∣
∣B̃∗

2(s)
∣
∣ ≤ B̃

∗
2 :=

1
|O∗|

(∣
∣O∗

2
∣
∣
(
ϕ(M) – ϕ(a)

)
+

∣
∣O∗

3
∣
∣
)
,

∣
∣B̃∗

3(s)
∣
∣ ≤ B̃

∗
3 :=

∣
∣μ∗

1
∣
∣B̃∗

2 +
∣
∣μ∗

2
∣
∣B̃∗

1,

Z
∗ =

(
1 + B̃

∗
1
) (ϕ(M) – ϕ(a))ς∗


(ς∗ + 1)
+ B̃

∗
2

(ϕ(ξ ) – ϕ(a))ς∗–ς1


(ς∗ – ς1 + 1)
+ B̃

∗
1

(ϕ(σ ) – ϕ(a))ς∗+ς2


(ς∗ + ς2 + 1)
. (17)

Definition 3.3 The function φ ∈ ACR([a, M]) is defined as a solution for the general-
ized ϕ-Caputo inclusion boundary value problem (1)–(2) if an integrable function �̂

∗ ∈
L1

R
([a, M]) exists provided that �̂∗ ∈ Ĕ(s,φ(s)) for a.e. s ∈ [a, M] and the mixed generalized

ϕ-Riemann–Liouville boundary value conditions

⎧
⎨

⎩

φ(a) = μ∗
1 + RLDς1;ϕ

a φ(ξ ),

φ(M) = μ∗
2 + 1


(ς2)
∫ σ

a ϕ′(r)(ϕ(σ ) – ϕ(r))ς2–1φ(r) dr,

hold and also, for any s ∈ [a, M],

φ(s) =
1


(ς∗)

∫ s

a
ϕ′(r)

(
ϕ(s) – ϕ(r)

)ς∗–1
�̂

∗(r) dr

+ B̃
∗
1(s)

1

(ς∗)

∫ M

a
ϕ′(r)

(
ϕ(M) – ϕ(r)

)ς∗–1
�̂

∗(r) dr

+ B̃
∗
2(s)

1

(ς∗ – ς1)

∫ ξ

a
ϕ′(r)

(
ϕ(ξ ) – ϕ(r)

)ς∗–ς1–1
�̂

∗(r) dr



Alzabut et al. Advances in Difference Equations        (2021) 2021:135 Page 10 of 18

– B̃
∗
1(s)

1

(ς∗ + ς2)

∫ σ

a
ϕ′(r)

(
ϕ(σ ) – ϕ(r)

)ς∗+ς2–1
�̂

∗(r) dr + B̃
∗
3(s)

is valid.

In the following, we denote the family of existing selections of Ĕ for each φ ∈� by

S
Ĕ,φ =

{
�̂

∗ ∈L1([a, M]
)

: �̂∗(s) ∈ Ĕ
(
s,φ(s)

)}

for a.e. s ∈ [a, M]. In addition to this, we construct the multifunction K : �→P(�) as

K(φ) =
{

g∗ ∈� : there is �̂∗ ∈S
Ĕ,φ s.t. g∗(s) = f∗(s) for all s ∈ [a, M]

}
, (18)

in which

f∗(s) =
1


(ς∗)

∫ s

a
ϕ′(r)

(
ϕ(s) – ϕ(r)

)ς∗–1
�̂

∗(r) dr

+ B̃
∗
1(s)

1

(ς∗)

∫ M

a
ϕ′(r)

(
ϕ(M) – ϕ(r)

)ς∗–1
�̂

∗(r) dr

+ B̃
∗
2(s)

1

(ς∗ – ς1)

∫ ξ

a
ϕ′(r)

(
ϕ(ξ ) – ϕ(r)

)ς∗–ς1–1
�̂

∗(r) dr

– B̃
∗
1(s)

1

(ς∗ + ς2)

∫ σ

a
ϕ′(r)

(
ϕ(σ ) – ϕ(r)

)ς∗+ς2–1
�̂

∗(r) dr + B̃
∗
3(s).

Theorem 3.4 Let Ĕ : [a, M] × � → Pcmp(�) be a compact multifunction along with the
following hypotheses:

(C1) Ĕ is bounded and integrable and Ĕ(·,φ) : [a, M] → Pcmp(�) is a measurable set for
any φ ∈�;

(C2) ψ ∈ � and c̆ ∈ CR≥0 ([a, M]) exist provided that

PHd�

(
Ĕ(s,φ), Ĕ

(
s,φ′)) ≤ c̆(s)ψ

(∣
∣φ – φ′∣∣) 1

Z∗‖c̆‖ (19)

for any s ∈ [a, M] and φ,φ′ ∈ � in which sups∈[a,M] |c̆(s)| = ‖c̆‖ and Z∗ is formulated
by (17);

(C3) a real function ζ̂ : R×R →R exists with ζ̂ (φ,φ′) ≥ 0 for any φ,φ′ ∈�;
(C4) when the sequence {φn}n≥1 ⊆ � approaches φ and ζ̂ (φn(s),φn+1(s)) ≥ 0 for all s ∈

[a, M] and n ≥ 1, then a subsequence {φnl }l≥1 of {φn} exists so that ζ̂ (φnl (s),φ(s)) ≥ 0
for every s ∈ [a, M] and l ≥ 1;

(C5) two members φ0 ∈� and g∗ ∈ K(φ0) exist with ζ̂ (φ0(s), g∗(s)) ≥ 0 for each s ∈ [a, M]
in which K : �→P(�) is the same multifunction regarded in (18);

(C6) for any functions φ ∈� and g∗ ∈ K(φ) furnished with the property ζ̂ (φ(s), g∗(s)) ≥ 0,
there exists f∗ ∈ K(φ) such that ζ̂ (g∗(s), f∗(s)) ≥ 0 for each s ∈ [a, M].

Then the generalized ϕ-Caputo inclusion boundary value problem (1)–(2) possesses at least
one solution on [a, M].

Proof It is an obvious issue that each solution of the generalized ϕ-Caputo fractional in-
clusion boundary value problem (1)–(2) will be a fixed point of K : � → P(�) as demon-
strated by (18). By (C1), the measurability of the multifunction s 	→ Ĕ(s,φ(s)) is simply
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deduced and so it possesses closed values for φ ∈�. In consequence, Ĕ involves the mea-
surable selection and S

Ĕ,φ �= ∅. In the current position, we first prefer to check that K(φ)
is a closed set contained in � for any φ ∈ �. To confirm this issue, we regard a sequence
{φn}n≥1 contained in K(φ) which goes to φ. For all indices n, we pick out �̂∗

n ∈ S
Ĕ,φ so that

φn(s) =
1


(ς∗)

∫ s

a
ϕ′(r)

(
ϕ(s) – ϕ(r)

)ς∗–1
�̂

∗
n(r) dr

+ B̃
∗
1(s)

1

(ς∗)

∫ M

a
ϕ′(r)

(
ϕ(M) – ϕ(r)

)ς∗–1
�̂

∗
n(r) dr

+ B̃
∗
2(s)

1

(ς∗ – ς1)

∫ ξ

a
ϕ′(r)

(
ϕ(ξ ) – ϕ(r)

)ς∗–ς1–1
�̂

∗
n(r) dr

– B̃
∗
1(s)

1

(ς∗ + ς2)

∫ σ

a
ϕ′(r)

(
ϕ(σ ) – ϕ(r)

)ς∗+ς2–1
�̂

∗
n(r) dr + B̃

∗
3(s),

for almost all s ∈ [a, M]. Because of the compactness of the mentioned multifunction Ĕ,
one can (if necessary) obtain a convergent subsequence {�̂∗

n}n≥1 which goes to some �̂
∗ ∈

L1([a, M]). Consequently, �̂∗ ∈S
Ĕ,φ and so

lim
n→∞φn(s) =

1

(ς∗)

∫ s

a
ϕ′(r)

(
ϕ(s) – ϕ(r)

)ς∗–1
�̂

∗(r) dr

+ B̃
∗
1(s)

1

(ς∗)

∫ M

a
ϕ′(r)

(
ϕ(M) – ϕ(r)

)ς∗–1
�̂

∗(r) dr

+ B̃
∗
2(s)

1

(ς∗ – ς1)

∫ ξ

a
ϕ′(r)

(
ϕ(ξ ) – ϕ(r)

)ς∗–ς1–1
�̂

∗(r) dr

– B̃
∗
1(s)

1

(ς∗ + ς2)

∫ σ

a
ϕ′(r)

(
ϕ(σ ) – ϕ(r)

)ς∗+ς2–1
�̂

∗(r) dr + B̃
∗
3(s)

= φ(s)

for any s ∈ [a, M]. By virtue of the latter argument, we conclude that φ ∈ K(φ) and then
K possesses closed values. The hypothesis of the present theorem guarantees that Ĕ is a
compact multifunction. Accordingly, the boundedness of the set K(φ) is simply realized
for every φ ∈ �. In the following, we shall review that K is α-ψ-contractive. To verify this
matter, we present a function, say α : �×� → [0,∞) as α(φ,φ′) = 1 if ζ̂ (φ(s),φ′(s)) ≥ 0 and
also α(φ,φ′) = 0 otherwise. In addition, let φ,φ′ ∈ � and g ′∗ ∈ K(φ′). We have �̂

∗
1 ∈ S

Ĕ,φ′
provided that

g ′
∗(s) =

1

(ς∗)

∫ s

a
ϕ′(r)

(
ϕ(s) – ϕ(r)

)ς∗–1
�̂

∗
1(r) dr

+ B̃
∗
1(s)

1

(ς∗)

∫ M

a
ϕ′(r)

(
ϕ(M) – ϕ(r)

)ς∗–1
�̂

∗
1(r) dr

+ B̃
∗
2(s)

1

(ς∗ – ς1)

∫ ξ

a
ϕ′(r)

(
ϕ(ξ ) – ϕ(r)

)ς∗–ς1–1
�̂

∗
1(r) dr

– B̃
∗
1(s)

1

(ς∗ + ς2)

∫ σ

a
ϕ′(r)

(
ϕ(σ ) – ϕ(r)

)ς∗+ς2–1
�̂

∗
1(r) dr + B̃

∗
3(s),
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for all s ∈ [a, M]. The given inequality (19) guarantees that

PHd�

(
Ĕ
(
s,φ(s)

)
, Ĕ

(
s,φ′(s)

)) ≤ c̆(s)ψ
(∣
∣φ(s) – φ′(s)

∣
∣
) 1
Z∗‖c̆‖

is valid for each φ,φ′ ∈� along with the specification ζ̂ (φ(s),φ′(s)) ≥ 0 for s ∈ [a, M]. Con-
sequently, f∗ ∈ Ĕ(s,φ(s)) exists with |�̂∗

1(s) – f∗| ≤ c̆(s)ψ(|φ(s) – φ′(s)|) 1
Z∗‖c̆‖ . In the sequel,

introduce a new multifunction R∗ : [a, M] →P(�) of the following structure:

R
∗(s) =

{

f∗ ∈� :
∣
∣�̂∗

1(s) – f∗
∣
∣ ≤ c̆(s)ψ

(∣
∣φ(s) – φ′(s)

∣
∣
) 1
Z∗‖c̆‖

}

for any s ∈ [a, M]. But �̂
∗
1 and p = c̆ψ(|φ – φ′|) 1

Z∗‖c̆‖ are measurable, thus we conclude
that R∗(·) ∩ Ĕ(·,φ(·)) is measurable. To follow the rest of the argument, we pick out
�̂

∗
2 ∈ Ĕ(s,φ(s)) provided that

∣
∣�̂∗

1(s) – �̂
∗
2(s)

∣
∣ ≤ c̆(s)ψ

(∣
∣φ(s) – φ′(s)

∣
∣
) 1
Z∗‖c̆‖

for all s ∈ [a, M]. Now, define g ′′∗ ∈ K(φ) by

g ′′
∗ (s) =

1

(ς∗)

∫ s

a
ϕ′(r)

(
ϕ(s) – ϕ(r)

)ς∗–1
�̂

∗
2(r) dr

+ B̃
∗
1(s)

1

(ς∗)

∫ M

a
ϕ′(r)

(
ϕ(M) – ϕ(r)

)ς∗–1
�̂

∗
2(r) dr

+ B̃
∗
2(s)

1

(ς∗ – ς1)

∫ ξ

a
ϕ′(r)

(
ϕ(ξ ) – ϕ(r)

)ς∗–ς1–1
�̂

∗
2(r) dr

– B̃
∗
1(s)

1

(ς∗ + ς2)

∫ σ

a
ϕ′(r)

(
ϕ(σ ) – ϕ(r)

)ς∗+ς2–1
�̂

∗
2(r) dr + B̃

∗
3(s),

for each s ∈ [a, M]. In this phase, we have the following estimate:

∣
∣g ′

∗(s) – g ′′
∗ (s)

∣
∣

≤ 1

(ς∗)

∫ s

a
ϕ′(r)

(
ϕ(s) – ϕ(r)

)ς∗–1∣∣�̂∗
1(r) – �̂

∗
2(r)

∣
∣dr

+
∣
∣B̃∗

1(s)
∣
∣ 1

(ς∗)

∫ M

a
ϕ′(r)

(
ϕ(M) – ϕ(r)

)ς∗–1∣∣�̂∗
1(r) – �̂

∗
2(r)

∣
∣dr

+
∣
∣B̃∗

2(s)
∣
∣ 1

(ς∗ – ς1)

∫ ξ

a
ϕ′(r)

(
ϕ(ξ ) – ϕ(r)

)ς∗–ς1–1∣∣�̂∗
1(r) – �̂

∗
2(r)

∣
∣dr

+
∣
∣B̃∗

1(s)
∣
∣ 1

(ς∗ + ς2)

∫ σ

a
ϕ′(r)

(
ϕ(σ ) – ϕ(r)

)ς∗+ς2–1∣∣�̂∗
1(r) – �̂

∗
2(r)

∣
∣dr

≤
[
(
1 + B̃

∗
1
) (ϕ(M) – ϕ(a))ς∗


(ς∗ + 1)
+ B̃

∗
2

(ϕ(ξ ) – ϕ(a))ς∗–ς1


(ς∗ – ς1 + 1)
+ B̃

∗
1

(ϕ(σ ) – ϕ(a))ς∗+ς2


(ς∗ + ς2 + 1)

]

× ‖c̆‖ψ(∥
∥φ – φ′∥∥) 1

Z∗‖c̆‖ = Z
∗‖c̆‖ψ(∥

∥φ – φ′∥∥) 1
Z∗‖c̆‖ = ψ

(∥
∥φ – φ′∥∥)
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for all s ∈ [a, M]. Accordingly, we arrive at the following:

∥
∥g ′

∗ – g ′′
∗
∥
∥ = sup

s∈[a,M]

∣
∣g ′

∗(s) – g ′′
∗ (s)

∣
∣ ≤ ψ

(∥
∥φ – φ′∥∥)

.

In conclusion, α(φ,φ′)PHd�
(K(φ),K(φ′)) ≤ ψ(‖φ – φ′‖) for each φ,φ′ ∈� meaning that K

is α-ψ-contractive.
In what follows, we regard φ ∈ � and φ′ ∈ K(φ) along with α(φ,φ′) ≥ 1. By virtue of

the definition of ζ̂ , we get ζ̂ (φ(s),φ′(s)) ≥ 0. Thus a function f∗ ∈ K(φ′) exists so that
ζ̂ (φ′(s), f∗(s)) ≥ 0. Therefore α(φ′, f∗) ≥ 1 and the latter inequality demonstrates that K is
α-admissible.

To end the argument, let φ0 ∈ � and φ′ ∈ K(φ0) be so that ζ̂ (φ0(s),φ′(s)) ≥ 0 for any s.
Then α(φ0,φ′) ≥ 1. Moreover, consider the sequence {φn}n≥1 of � which goes to φ and
α(φn,φn+1) ≥ 1 for all n. In this phase, we have ζ̂ (φn(s),φn+1(s)) ≥ 0. By the aid of (C4), a
subsequence {φnl }l≥1 of {φn} exists so that ζ̂ (φnl (s),φ(s)) ≥ 0 for any s ∈ [a, M]. In con-
sequence, α(φnl ,φ) ≥ 1 for all l ≥ 1 and it follows that � features the specification (Cα).
Eventually, with due attention to Proposition 2.15, we understand that K possesses a fixed
point and this guarantees that a solution exists for the generalized ϕ-Caputo fractional
inclusion boundary value problem (1)–(2). �

In the following we address another criterion for the generalized ϕ-Caputo fractional
inclusion boundary value problem (1)–(2) under new hypotheses. More precisely, we in-
fer the existence result with respect to a new property due to Amini [40]. We invoke the
approximate endpoint specification for K which is demonstrated in (18).

Theorem 3.5 Let Ĕ : [a, M] × � → Pcmp(�) be a compact multifunction and regard the
following:

(C7) the nondecreasing map ψ : [0,∞) → [0,∞) involves the u.s.c. specification and
lim infs→∞(s – ψ(s)) > 0 and s > ψ(s) for s ∈R

>0;
(C8) the multifunction Ĕ : [a, M] ×� →Pcmp,bnd(�) is integrable and Ĕ(·,φ) : [a, M] →

Pcp(�) is measurable for any φ ∈�;
(C9) a function η ∈ CR≥0 ([a, M]) exists for which

PHd�

(
Ĕ(s,φ) – Ĕ

(
s,φ′)) ≤ η(s)ψ

(∣
∣φ – φ′∣∣) 1

Z∗‖η‖ (20)

for any s ∈ [a, M] and φ,φ′ ∈ �, where sups∈[a,M] |η(s)| = ‖η‖ and Z∗ is illustrated
in (17);

(C10) the multifunction K formulated in (18) possesses the approximate endpoint specifi-
cation.

Then the generalized ϕ-Caputo fractional inclusion boundary value problem (1)–(2) in-
volves a solution.

Proof As a main purpose, we intend to check the existence of an endpoint for the mul-
tifunction K : � → P(�). To fulfill the mentioned demand, we try to verify that K(φ) is
closed for any φ ∈ �. Due to (C8) and by the measurability of the mapping s 	→ Ĕ(s,φ(s))
and closedness of it for each φ ∈ �, it is deduced that Ĕ possesses a measurable selection
and so S

Ĕ,φ �= ∅ for each φ ∈ �. Accordingly, like the proof of Theorem 3.4, it is simple
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to confirm that K(φ) is a closed set contained in � and hence we omit it. Moreover, it is
well known that K(φ) is bounded for any φ ∈ � for the sake of the compactness of Ĕ. We
end the proof by checking PHd�

(K(φ),K(φ′)) ≤ ψ(‖φ – φ′‖) for φ,φ′ ∈ �. To observe this
issue, let φ,φ′ ∈ � and g ′∗ ∈ K(φ′). We have �̂

∗
1 ∈S

Ĕ,φ′ provided that

g ′
∗(s) =

1

(ς∗)

∫ s

a
ϕ′(r)

(
ϕ(s) – ϕ(r)

)ς∗–1
�̂

∗
1(r) dr

+ B̃
∗
1(s)

1

(ς∗)

∫ M

a
ϕ′(r)

(
ϕ(M) – ϕ(r)

)ς∗–1
�̂

∗
1(r) dr

+ B̃
∗
2(s)

1

(ς∗ – ς1)

∫ ξ

a
ϕ′(r)

(
ϕ(ξ ) – ϕ(r)

)ς∗–ς1–1
�̂

∗
1(r) dr

– B̃
∗
1(s)

1

(ς∗ + ς2)

∫ σ

a
ϕ′(r)

(
ϕ(σ ) – ϕ(r)

)ς∗+ς2–1
�̂

∗
1(r) dr + B̃

∗
3(s),

for a.e. s ∈ [a, M]. Because of (20) expressed in (C9), we get

PHd�

(
Ĕ
(
s,φ(s)

)
, Ĕ

(
s,φ′(s)

)) ≤ η(s)ψ
(∣
∣φ(s) – φ′(s)

∣
∣
) 1
Z∗‖η‖

for a.e. s ∈ [a, M], thus f ∗ ∈ Ĕ(s,φ(s)) exists for which we have

∣
∣�̂∗

1(s) – f ∗∣∣ ≤ η(s)ψ
(∣
∣φ(s) – φ′(s)

∣
∣
) 1
Z∗‖η‖

for a.e. s ∈ [a, M]. Here, we construct a new multifunction O : [a, M] → P(�) which is
introduced by

O(s) =
{

f ∗ ∈� :
∣
∣�̂∗

1(s) – f ∗∣∣ ≤ η(s)ψ
(∣
∣φ(s) – φ′(s)

∣
∣
) 1
Z∗‖η‖

}

.

For as far as �̂∗
1 and p = ηψ(|φ – φ′|) 1

Z∗‖η‖ are measurable, O(·) ∩ Ĕ(·,φ(·)) is measurable.
In this position, we elect the function �̂

∗
2(s) ∈ Ĕ(s,φ(s)) so that

∣
∣�̂∗

1(s) – �̂
∗
2(s)

∣
∣ ≤ η(s)ψ

(∣
∣φ(s) – φ′(s)

∣
∣
) 1
Z∗‖η‖

for a.e. s ∈ [a, M]. Furthermore, we have g ′′∗ ∈ K(φ) such that

g ′′
∗ (s) =

1

(ς∗)

∫ s

a
ϕ′(r)

(
ϕ(s) – ϕ(r)

)ς∗–1
�̂

∗
2(r) dr

+ B̃
∗
1(s)

1

(ς∗)

∫ M

a
ϕ′(r)

(
ϕ(M) – ϕ(r)

)ς∗–1
�̂

∗
2(r) dr

+ B̃
∗
2(s)

1

(ς∗ – ς1)

∫ ξ

a
ϕ′(r)

(
ϕ(ξ ) – ϕ(r)

)ς∗–ς1–1
�̂

∗
2(r) dr

– B̃
∗
1(s)

1

(ς∗ + ς2)

∫ σ

a
ϕ′(r)

(
ϕ(σ ) – ϕ(r)

)ς∗+ς2–1
�̂

∗
2(r) dr + B̃

∗
3(s)
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for a.e. s ∈ [a, M]. In conclusion, similar to the proof of Theorem 3.4, we have

∥
∥g ′

∗ – g ′′
∗
∥
∥ = sup

s∈[a,M]

∣
∣g ′

∗(s) – g ′′
∗ (s)

∣
∣ ≤ Z

∗‖η‖ψ(∥
∥φ – φ′∥∥) 1

Z∗‖η‖ = ψ
(∥
∥φ – φ′∥∥)

.

The above result yields PHd�
(K(φ),K(φ′)) ≤ ψ(‖φ – φ′‖) for each φ,φ′ ∈ �. Along with

this, the condition (C10) expresses that K possesses an approximate endpoint specifica-
tion. In conclusion, by Proposition 2.16, we arrive at the intended purpose which confirms
the issue that K possesses an endpoint uniquely; that is, K(φ∗) = {φ∗} for some φ∗ ∈ �.
Hence, it is followed that φ∗ is a solution for the generalized ϕ-Caputo fractional inclu-
sion boundary value problem (1)–(2). �

4 Simulation example
Finally, we support our results by proposing an example to demonstrate the applicability
of the findings numerically. Indeed, the theoretical results obtained in Theorem 3.5 are
guaranteed by a numerical example.

Example 4.1 According to the parameters ς∗ = 1.5, ς1 = 0.03, ς2 = 0.5, ξ = 0.06, σ = 0.07,
μ∗

1 = 0.46, μ∗
2 = 0.23, a = 0, M = 1 and also by considering the proposed boundary value

problem (1)–(2), we regard the fractional generalized ϕ-Caputo differential inclusion

CD1.5;s2
0 φ(s) ∈

[

0,
125s| arctanφ(s)|

1000| arctanφ(s)| + 1000

]

,
(
s ∈ [0, 1]

)
, (21)

subject to the mixed generalized ϕ-Riemann–Liouville boundary value conditions

φ(0) = RLD0.04;s2
0 φ(0.06) + 0.46, φ(1) = RLI0.5;s2

0 φ(0.07) + 0.23, (22)

so that CD1.5;ϕ
0 stands for the generalized ϕ-Caputo derivative of ς∗ = 1.5 with respect to

ϕ(s) = s2, RLD0.03;ϕ
0 indicates the generalized ϕ-Riemann–Liouville derivative of ς1 = 0.03

with respect to ϕ(s) = s2 and RLI0.5;ϕ
0 represents the generalized ϕ-Riemann–Liouville

integral of ς2 = 0.5 depending on ϕ(s) = s2. It is obvious that the function ϕ is increasing on
[0, 1] and ϕ′(s) = 2s > 0 on (0, 1). In the light of the values considered above, we obtainO∗

0 �
–0.1627, O∗

1 � 0.00431, O∗
2 � –0.92102, O∗

3 � –0.99975 and so O∗ = O∗
0O

∗
3 + O∗

1O
∗
2 �

0.1587 �= 0. In this position, prior to checking the specifications of desired multifunction,
we firstly introduce the Banach space � = {φ(s) : φ(s) ∈ CR([0, 1])} endowed with ‖φ‖� =
sups∈[0,1] |φ(s)|. Regard the multi-valued mapping Ĕ : [0, 1] ×� →P(�)

Ĕ
(
s,φ(s)

)
=

[

0,
125s| arctanφ(s)|

1000| arctanφ(s)| + 1000

]

(23)

for each s ∈ [0, 1]. With due attention to the method implemented in the argument of
Theorem 3.5, we formulate K : � →P(�) by the following rule:

K(φ) =
{

g∗ ∈� : there is �̂∗ ∈S
Ĕ,φ so that g∗(s) = f∗(s) for any s ∈ [0, 1]

}
,

so that

f∗(s) =
1


(1.5)

∫ s

0
2r

(
s2 – r2)1.5–1

�̂
∗(r) dr
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+ B̃
∗
1(s)

1

(1.5)

∫ 1

0
2r

(
12 – r2)1.5–1

�̂
∗(r) dr

+ B̃
∗
2(s)

1

(1.5 – 0.03)

∫ 0.06

0
2r

(
0.062 – r2)1.5–0.03–1

�̂
∗(r) dr

– B̃
∗
1(s)

1

(1.5 + 0.5)

∫ 0.07

0
2r

(
0.072 – r2)1.5+0.5–1

�̂
∗(r) dr + B̃

∗
3(s)

=
1


(1.5)

∫ s

0
2r

(
s2 – r2)0.5

�̂
∗(r) dr

+ B̃
∗
1(s)

1

(1.5)

∫ 1

0
2r

(
1 – r2)0.5

�̂
∗(r) dr

+ B̃
∗
2(s)

1

(1.47)

∫ 0.06

0
2r

(
0.0036 – r2)0.47

�̂
∗(r) dr

– B̃
∗
1(s)

1

(2)

∫ 0.07

0
2r

(
0.0049 – r2)1

�̂
∗(r) dr + B̃

∗
3(s),

where the following estimates hold:

∣
∣B̃∗

1(s)
∣
∣ =

∣
∣0.02715 – 1.0252s2∣∣ ≤ |0.02715| +

∣
∣1.0252s2∣∣ ≤ B̃

∗
1 := 1.05235,

∣
∣B̃∗

2(s)
∣
∣ =

∣
∣–6.29962 + 5.8035s2∣∣ ≤ | – 6.29962| +

∣
∣5.8035s2∣∣ ≤ B̃

∗
2 := 12.10312,

∣
∣B̃∗

3(s)
∣
∣ =

∣
∣–2.904 + 2.9054s2∣∣ ≤ | – 2.904| +

∣
∣2.9054s2∣∣ ≤ B̃

∗
3 := 5.8094,

for all s ∈ [0, 1]. Obviously, we get Z∗ � 1.54618. In addition, the nondecreasing map ψ :
R

≥0 → R
≥0 with u.s.c. specification is given by ψ(s) = s

2 for each s > 0. Also, we have
lim infs→∞(s – ψ(s)) > 0 and s > ψ(s) for all s ∈R

>0. Moreover, for all φ,φ′ ∈�, we obtain

PHd�

(
Ĕ
(
s,φ(s)

)
, Ĕ

(
s,φ′(s)

)) ≤ 125s
1000

(∣
∣φ – φ′∣∣) =

0.25s
2

(∣
∣φ – φ′∣∣)

= 0.25sψ
(∣
∣φ – φ′∣∣) ≤ η(s)ψ

(∣
∣φ – φ′∣∣) 1

Z∗‖η‖ .

Setting η ∈ CR≥0 ([0, 1]) formulated by η(s) = 0.25s for any s, we get ‖η‖ = 0.25 for which
1

Z∗‖η‖ � 2.58702. Consequently, by the aid of Theorem 3.5 on the current simulation ex-
ample, it is deduced that the generalized ϕ-Caputo fractional inclusion boundary value
problem (21)–(22) possesses a solution and accordingly, the simulation findings of the
current numerical model are consistent with the analytical results discussed in Theo-
rem 3.5. Also, since η(s) = c̆(s) = 0.25s again Z∗ � 1.54618 is obtained, thus we can con-
clude that all assumptions of Theorem 3.4 are valid for the suggested inclusion boundary
value problem (21)–(22) with the same defined structure for Ĕ : [0, 1] ×� →P(�) in (23)
and ζ̂ (φ,φ′) = 1 ≥ 0 and, consequently, Theorem 3.4 guarantees the existence of solutions
for the boundary value problem (21)–(22).

5 Conclusion
The basic purpose in the current research is to derive several existence aspects of solu-
tions for a novel general class of inclusion problems in terms of the well-defined general-
ized ϕ-Caputo and ϕ-Riemann–Liouville operators. The existing boundary conditions in
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such inclusion problem are endowed with mixed generalized ϕ-Riemann–Liouville con-
ditions. To reach this goal, we utilize two notions of endpoint and fixed point to deduce
the existence aspects in relation to the existing inclusion boundary value problem (1)–(2).
In other words, the analytical methods on α-ψ-contractions and multifunctions involv-
ing an approximate endpoint specification are applied to verify the required theoretical
findings. Finally, we present a simulation example to examine our theoretical results com-
putationally and numerically.
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