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Abstract
A new sequence space related to the space �p, 1≤ p <∞ (the space of all absolutely
p-summable sequences) is established in the present paper. It turns out that it is
Banach and a BK space with Schauder basis. The Hausdorff measure of
noncompactness of this space is presented and proven. This formula with the aid the
Darbo’s fixed point theorem is used to investigate the existence results for an infinite
system of Langevin equations involving generalized derivative of two distinct
fractional orders with three-point boundary condition.
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1 Introduction
Infinite systems of differential equations play a significant role in many subjects of non-
linear analysis. The infinite systems of ODEs represent some problems faced within the
theories of neural nets, branching processes, and dissociation of polymers. Therefore, the
notion of infinite systems of differential equations is considered a substantial part of the
theory of differential equations, especially in Banach spaces [1, 2]. To date, many existence
results have been obtained for the infinite systems of ODEs in Banach spaces. Banas and
Lecko [3] discussed the existence of solutions for an infinite system

x′
i = fi(t, x0, x1, x2, . . . ), t ∈ [0, T]

with the initial conditions xi(0) = x0
i , i = N0 in the classical Banach sequence spaces c0, c,

and �1. In 2012, Mursaleen and Mohiuddineb [4] investigated it in the space �p, p > 1. Also,
Mursaleen [5] investigated the same infinite system on the sequence space n(φ) of W.L.C.
Sargent.
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The authors in [6, 7] considered the second-order infinite system

x′′
i = –fi(t, x1, x2, x3, . . . ), t ∈ [0, T]

with the initial conditions xi(0) = xi(T), i ∈N in the space �p, p > 1.
Mursaleen [8] discussed the fractional infinite system

Dαui(t) = fi
(
t, u(t)

)
, t ∈ (0, T), 1 < α < 2,

where u(t) = {ui(t)}∞i=0, with the initial conditions

ui(0) = u0
i = 0, ui(T) = aui(ξ ), i ∈ N0, aξα–1 < Tα–1

in Banach spaces, where Dα is the R–L fractional derivative of order α.
Recently, Seemab and Rehman [9] investigated the fractional infinite system

ρ
c Dαui(t) = fi

(
t, u(t),ψ

(
ρ
c Dβu(t)

))
, t ∈ (0, 1)

in the Banach space c0, where u(t) = {ui(t)}∞i=1 and ψ : c0 → c0 is a continuous linear func-
tion such that ψ(0) = 0, with the initial conditions

ui(1) = aui(ξ ), u′
i(0) = 0, i ∈N, aξα–1 < 1,

where 0 < ρ ≤ 1, 1 < α ≤ 2, 0 < β < 1, and ρ
c Dα is the Caputo generalized fractional deriva-

tive.
Fractional calculus, differentiation and integration, appears naturally in several fields of

science and engineering; see, for instance, [10] and more recent [11, 12], and the references
given therein. A large number of existence results of differential and fractional differential
equations have been formulated in terms of measures of noncompactness. Measures of
noncompactness provide helpful information, which is extensively used in the theory of
integral and integro-differential equations. Especially, the measure of noncompactness has
been used extensively by many authors when studying infinite systems of differential and
fractional differential equations.

Motivated by the former contributions, we consider the infinite system of the general-
ized Langevin equations

ρi
c Dλi

(
ρi
c Dμi + ξi

)
ui(t) = hi

(
t, u(t),φ

(
ρ
c Dνu(t)

))
, t ∈ [0, 1], i ∈ N, (1.1)

where u(t) = {ui(t)}∞i=1 ∈ �p, φ(ρc Dνu(t)) = {φi(ρi
c Dνi ui(t))}∞n=1 ∈ �p, φi : [0, 1] × �p → �p are

continuous functions, hi : [0, 1] × �p × �p → �p are continuously differentiable functions,
0 < ρi ≤ 1, 1 < λi ≤ 2, 0 < νi < μi ≤ 1, ρ

c Dα is the generalized Liouville–Caputo derivative as
in [13], and the space �p, 1 ≤ p < ∞ is the space of all absolutely p-summable sequences.

This infinite system is subject to the boundary conditions

ui(0) = 0, ρi
c Dμi ui(0) = 0, ui(1) = aiui(ηi), (1.2)

where ai ∈R, 0 < ηi < 1 and aiη
μi–1
i �= 1 for all i ∈N.
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By using the measure of noncompactness technique and applying the Darbo’s fixed point
theorem, we investigate the existence of solutions for the infinite system (1.1)–(1.2) in the
Banach spaces �p, p ≥ 1.

It worth pointing out that the Langevin equations (formulated by Langevin in 1908)
present an accurate way to describe the evolution of physical phenomena in a fluctuating
environment [14]. There is a clear progress on fractional Langevin equations in physics
[15–19]. New results on the existence of solutions for fractional Langevin equations under
variety of boundary value conditions have been published; see [20–29] and the references
mentioned therein.

2 Preliminaries
This section is divided into three subsections: The first introduces the concepts and the
main results in fractional calculus that the paper needs. The second subsection represents
a brief review on the measure of noncompactness and its applications when investigating
the existence of solutions for differential equations. The last subsection presents a brief
review about the sequence spaces used in this paper.

2.1 Fractional calculus
In our paper, we deal with the generalized Liouville–Caputo derivative which is consid-
ered a generalization for many known fractional derivatives [15]. Historically, in 2011,
Katugampola [30] introduced a new version of fractional integral given by

ρIν
a f (x) =

ρ1–ν

�(ν)

∫ x

a
sρ–1(xρ – sρ

)ν–1f (s) ds, (2.1)

where ρ and ν are positive real numbers, while the function f ∈ X
p
c (a, b) (the space of

Lebesgue measurable functions). He proved that this fractional operator satisfies the semi-
group property:

ρIν
a

ρIμ
a f (x) = ρIν+μ

a f (x), ν > 0,μ > 0, (2.2)

ρIν
a
(
xρ – aρ

)δ =
�(δ + 1)

ρν�(ν + δ + 1)
(
xρ – aρ

)δ+ν , ν > 0, δ > –1. (2.3)

The importance of this approach comes from the fact that it is a generalization of
Riemann–Liouville and Hadamard fractional integrals. It is easy to show that

lim
ρ→1

ρIν
a f (x) =

1
�(ν)

∫ x

a
(x – s)ν–1f (s) ds = RLIν

a f (x),

lim
ρ→0

ρIν
a f (x) =

1
�(ν)

∫ x

a

(
log

x
s

)ν–1

f (s)
ds
s

= HIν
a f (x),

where RLIν
a and HIν

a are the Riemann–Liouville and Hadamard fractional integral opera-
tors, respectively. Also, it is considered a special case of Erdélyi–Kober fractional integral
operator [31, formula (1.1.17)]

Iγ ,ν
ρ f (x) =

ρx–ρ(ν+γ )

�(ν)

∫ x

a
sρ(γ +1)–1(xρ – sρ

)ν–1f (s) ds, ν > 0,ρ > 0,γ ∈R,

as ρIν
a f (x) = xρνρ–νI0,ν

ρ f (x).
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Jarad et al. [32] introduced a new version of a fractional derivative in the Caputo sense
which later became known as the generalized Liouville–Caputo derivative, given by

ρ
c Dν

af (x) =
(

ρIn–ν
a

(
x1–ρ d

dx

)n

f
)

(x), n – 1 < ν ≤ n, n ∈ N. (2.4)

It is worth mentioning that the previous formula tends to Caputo derivative as ρ → 1 and
tends to Caputo–Hadamard derivative as ρ → 0. Some of its semigroup properties are
presented as follows.

Lemma 2.1 ([15, 32]) Suppose that n ∈N, n – 1 < ν ≤ n, 0 < ρ ≤ 1, and f ∈X
p
c (a, b). Then

we have

• ρ
c Dν

ac = 0 where c is a constant,

• ρ
c Dν

a
(
xρ – aρ

)δ =
ρν�(δ + 1)
�(δ – ν + 1)

(
xρ – aρ

)δ–ν , ν > 0, δ > –1, δ �= 0, 1, . . . , n – 1,

• ρ
c Dν

a
ρIα

a f (x) = ρIα–ν
a f (x), α ≥ ν,

• ρIν
a

ρ
c Dν

af (x) = f (x) –
n–1∑

r=0

cr
(
xρ – aρ

)r where cr , r = 0, 1, . . . , n – 1 are constants.

From here onward, we replace ρIλ
0 and ρ

c Dλ
0 by ρIλ and ρ

c Dλ, respectively.

Lemma 2.2 Suppose that the function h : [0, 1] → R is a continuous function, ρ ∈ (0, 1],
λ ∈ (1, 2], and μ ∈ (0, 1]. Then, the linear boundary value problem

ρ
c Dλ

(
ρ
c Dμ + ξ

)
u(t) = h(t), t ∈ [0, 1], ξ ∈ R, (2.5)

subject to the conditions

u(0) = 0, ρ
c Dμu(0) = 0, u(1) = au(η), a ∈R, 0 < η < 1, (2.6)

has the unique solution

u(t) =
∫ 1

0
F (t, s,λ, 0)h(s) ds – ξ

∫ 1

0
F (t, s, 0, 0)u(s) ds, (2.7)

where

F (t, s,λ,ν) =
ρ1+ν–λ–μsρ–1

�(λ + μ – ν)

⎧
⎨

⎩
F1(t, s,λ,ν), 0 ≤ t ≤ η < 1,

F2(t, s,λ,ν), 0 < η ≤ t ≤ 1,
(2.8)

and Fk(t, s,λ,ν), k = 1, 2 are given by

F1(t, s,λ,ν) =

⎧
⎪⎪⎨

⎪⎪⎩

(tρ – sρ)λ+μ–ν–1 + tρ(μ–ν+1)

�
[a(ηρ – sρ)λ+μ–1 – (1 – sρ)λ+μ–1], 0 ≤ s ≤ t,

tρ(μ–ν+1)

�
[a(ηρ – sρ)λ+μ–1 – (1 – sρ)λ+μ–1], t ≤ s ≤ η,

– tρ(μ–ν+1)

�
(1 – sρ)λ+μ–1, η ≤ s ≤ 1,
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F2(t, s,λ,ν) =

⎧
⎪⎪⎨

⎪⎪⎩

(tρ – sρ)λ+μ–ν–1 + tρ(μ–ν+1)

�
[a(ηρ – sρ)λ+μ–1 – (1 – sρ)λ+μ–1], 0 ≤ s ≤ η,

(tρ – sρ)λ+μ–ν–1 – tρ(μ–ν+1)

�
(1 – sρ)λ+μ–1, η ≤ s ≤ t,

– tρ(μ–ν+1)

�
(1 – sρ)λ+μ–1, t ≤ s ≤ 1,

where

� =
�(λ + μ – ν)�(μ + 2)
�(μ – ν + 2)�(λ + μ)

(
1 – aηρ(μ+1)) �= 0.

Proof Apply ρIλ on both sides of (2.5) twice in succession using the semigroup property
(2.2) and the relation (2.3) to obtain

ρ
c Dμu(t) + ξu(t) = ρIλh(t) + c0 + c1tρ , (2.9)

u(t) = ρIλ+μh(t) – ξρIμu(t) + c0
tρμ

ρμ�(μ + 1)
+ c1

tρ(μ+1)

ρμ�(μ + 2)
+ c2. (2.10)

Inserting the first and second conditions into (2.9) and (2.10) gives c0 = c2 = 0. By applying
the last condition, we find that

c1�

ρμ�(μ + 2)
= a ρIλ+μh(η) – ρIλ+μh(1) – aξ ρIμu(η) + ξ ρIμu(1).

Substituting into (2.10) gives

u(t) =
ρ1–λ–μ

�(λ + μ)

∫ t

0

sρ–1h(s)
(tρ – sρ)1–λ–μ

ds –
ξρ1–μ

�(μ)

∫ t

0

sρ–1u(s)
(tρ – sρ)1–μ

ds

+
tρ(μ+1)ρ1–μ

�

(
aρ–λ

�(λ + μ)

∫ η

0

sρ–1h(s)
(ηρ – sρ)1–λ–μ

ds –
aξ

�(μ)

∫ η

0

sρ–1u(s)
(ηρ – sρ)1–μ

ds

–
ρ–λ

�(λ + μ)

∫ 1

0

sρ–1h(s)
(1 – sρ)1–λ–μ

ds +
ξ

�(μ)

∫ 1

0

sρ–1u(s)
(1 – sρ)1–μ

ds
)

,

which gives the kernels in (2.7) and (2.8). Conversely, inserting (2.7) into the left-hand side
of (2.5) and using the first three relations of Lemma 2.1, we obtain the right-hand side of
(2.5). Also, it is not difficult to see that the solution (2.7) satisfies all conditions of (2.6).
The proof is complete. �

2.2 Hausdorff measure of noncompactness
There are many measures of noncompactness. The three main and most frequently used
measures are Kuratowski, Istratescu, and Hausdorff measures of noncompactness [1].
Here, we deal with Hausdorff measure of noncompactness that needs the following no-
tions and definitions.

Definition 2.1 Consider the Banach space (E,‖ ·‖E) and a nonempty and bounded subset
NE of E. Then the mapping β : NE → [0,∞) is called the Hausdorff measure of noncom-
pactness of a set N ⊂ NE and is defined as

β(N ) = inf{ε > 0|N has a finite ε-net in E}.



Salem et al. Advances in Difference Equations        (2021) 2021:132 Page 6 of 21

In order to render some essential identities of the Hausdorff measure of noncompact-
ness, let us consider subsets N ,Nn ⊂ NE, n ∈N. Then we have:

(a) β(N ) = 0 for a relatively compact subset of E,
(b) β(N ) = β(N ) where N is the closure set of N ,
(c) β(N1 + N2) ≤ β(N1) + β(N2),
(d) N1 ⊂ N2 implies β(N1) ≤ β(N2),
(e) If {Nn}n∈N is a sequence of closed sets from NEp such that Nn+1 ⊂ Nn and

limn→∞ β(Nn) = 0, then the N∞ =
⋂∞

n=1 Nn �= φ.

Theorem 2.1 (Darbo’s theorem [33]) Let N be a nonempty, bounded, closed, and convex
subset of a Banach space E. Suppose that T : N → N is a continuous map such that there
exists a constant � ∈ [0, 1) with the property β(TN ) ≤ �β(N ), then T has a fixed point
in N .

2.3 Sequence spaces
Let ω be the set of all real sequences u = {ui}∞i=0. A subspace X of ω is said to be a BK
space if it is a Banach space with continuous coordinates. That is, each map qi : X → C

defined by qi(u) = ui is continuous for each u ∈ X and for every i ∈ N. A sequence {ei}∞i=0

in a Banach space X is said to be a Schauder basis for X if for every u ∈ X there is a unique
sequence {vi}∞i=0 of scalars such that u =

∑∞
i=0 viei. The projection mapping Pn : X → X of

a Banach space X with a Schauder basis {ei}∞i=0 is given by Pn(u) =
∑n

i=0 viei, u ∈ X.
A BK space is said to have AK property if each u ∈ X has the unique representation

u =
∑∞

i=0 uiei. If ‖ · ‖X is a norm of a sequence space (X,‖ · ‖X), then the norm ‖ · ‖X is
monotone if |un| ≤ |vn| for all n ∈N ⇒ ‖u‖X ≤ ‖v‖X where u, v ∈ X.

Theorem 2.2 ([1, Theorem 5.15]) Let Nω be a nonempty bounded subset of a BK space
ω with Schauder basis (en). Let N ⊂ Nω and Pn : ω → ω, n ∈ N be a projector onto the
linear span of {e1, e2, . . . , en} and I be the identity operator on ω. Then

1
a

lim
n→∞

(
sup

u∈N

∥
∥(I – Pn)(u)

∥
∥

ω

)
≤ β(N ) ≤ lim

n→∞

(
sup

u∈N

∥
∥(I – Pn)(u)

∥
∥

ω

)
,

where a = limn→∞ sup‖I – Pn‖ω .

Remark 2.1 According to the proof of Theorem 5.16 in [1], if the space ω is a BK space
with AK property and monotone norm ‖ · ‖ω , then a = limn→∞ sup‖I – Pn‖ω = 1.

Remark 2.2 The space of all absolutely p-summable sequences �p, 1 ≤ p < ∞ is a Banach
space equipped with the norm

‖u‖�p =

( ∞∑

n=0

|ui|p
) 1

p

, 1 ≤ p < ∞,

and it is a BK space with AK property and monotone norm ‖ · ‖�p . Therefore, a nonempty
bounded subset N ∈ �p satisfies the inequality in Theorem 2.2 with a = limn→∞ sup‖I –
Pn‖�p = 1.
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3 Basic constructions
Consider 1 ≤ p < ∞ and let C([0, 1],�p) be the space of all continuous sequence functions
defined on the unit interval [0, 1] and belonging to the space �p, that is, u(t) ∈ C([0, 1],�p)
implies that u(t) = {ui(t)}∞n=1 ∈ �p and ui : [0, 1] → R is a continuous function for all i ∈ N.
Define the space

Ep =
{

u(t)|u ∈ C
(
[0, 1],�p

)
and φ

(
ρ
c Dνu(t)

) ∈ C
(
[0, 1],�p

)
, 1 ≤ p < ∞}

equipped with the norm ‖u‖ = ‖u‖�p + ‖φ(ρc Dνu)‖�p where φ ∈ C([0, 1],�p).

Theorem 3.1 The space (Ep,‖ · ‖) is a Banach space.

Proof Let {uj} be a Cauchy sequence in the space (Ep,‖·‖). It is obvious that the sequences
{uj} and ρ

c Dν{uj} are Cauchy sequences in the space C([0, 1],�p). Thus, the two sequences
{uj} and ρ

c Dν{uj} are convergent and converge to x and y, respectively, on [0, 1] uniformly,
and x, y ∈ C([0, 1],�p). It suffices to prove that y(t) = ρ

c Dνx(t). To do this, by using (2.3), we
have

∣∣ρIνρ
c Dνuj(t) – ρIνy(t)

∣∣ ≤ ρ1–ν

�(ν)

∫ t

0

sρ–1

(tρ – sρ)1–ν

∣∣ρ
c Dνuj(s) – y(s)

∣∣ds

≤ 1
ρ�(ν + 1)

max
t∈[0,1]

∣∣ρ
c Dνuj(t) – y(t)

∣∣.

Since ρ
c Dνuj(t) → y(t) as j → ∞ uniformly on [0, 1], we find that ρIν ρ

c Dνuj(t) → ρIνy(t)
as j → ∞ uniformly on [0, 1]. Hence, by using the last relation in Lemma 2.1, we find
that uj(t) – uj(0) → ρIνy(t) as j → ∞, which leads to x(t) – c = ρIνy(t) where c is a constant.
Applying ρ

c Dν on both sides and using the first and third relations in Lemma 2.1, we obtain
ρ
c Dνx(t) = y(t). Hence, φ(ρc Dνx(t)) = φ(y(t)). �

Theorem 3.2 Let NEp be a nonempty bounded subset of Ep, 1 ≤ p < ∞. Let N ⊂ NEp ,
Pn : Ep → Ep, n ∈N be a projector and I be the identity operator on Ep. Then, the Hausdorff
measure of noncompactness satisfies the equality

β(N ) = lim
n→∞

(
sup

u∈N

∥
∥(I – Pn)(u)

∥
∥
)

.

Proof Let u ∈ Ep, then u ∈ �p. In view of Theorem 3.1 and the fact that �p, 1 ≤ p < ∞ is a
BK space with Schauder basis, the space Ep is a BK space with the same Schauder basis.
Then, according to Theorem 2.2, we get

1
a

lim
n→∞

(
sup

u∈N

∥∥(I – Pn)(u)
∥∥
)

≤ β(N ) ≤ lim
n→∞

(
sup

u∈N

∥∥(I – Pn)(u)
∥∥
)

,

where a = limn→∞ sup‖I – Pn‖. The left- and right-hand sides of the inequality above show
that a ≥ 1. So, it is suffices to prove that a ≤ 1. Since ‖ · ‖�p , 1 ≤ p < ∞ is monotone,
‖(I – Pn)(u)‖�p ≤ ‖u‖�p for all u ∈ �p and all n ∈ N (see the proof of Theorem 5.16 [1]).
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Hence, for all n ∈N, it is easy to see that

‖I – Pn‖ = sup
u∈N

‖(I – Pn)u‖
‖u‖

= sup
u∈N

‖(I – Pn)u‖�p + ‖(I – Pn)φ(ρc Dνu)‖�p

‖u‖

≤ sup
u∈N

‖u‖�p + ‖φ(ρc Dνu)‖�p

‖u‖ = sup
u∈N

‖u‖
‖u‖ = 1.

This means that a = limn→∞ sup‖I – Pn‖ ≤ 1, which is the desired result. �

Lemma 3.1 Let 0 ≤ a < b ≤ c ≤ 1, 0 < ρ ≤ 1, α > 0 and p, q ≥ 1. Then,

∫ b

a
sq(ρ–1)(cρ – sρ

)p(α–1) ds =
1
ρ

cq(ρ–1)+ρp(α–1)+1
[

B b
c

(
q(ρ – 1) + 1

ρ
, p(α – 1) + 1

)

– B a
c

(
q(ρ – 1) + 1

ρ
, p(α – 1) + 1

)]
,

provided that 1–1/q < ρ ≤ 1 and α > 1–1/p, where Bx(m, n) is the incomplete beta function
defined by

Bx(m, n) =
∫ x

0
sm–1(1 – s)n–1 ds, m, n > 0, 0 < x ≤ 1.

Proof Using the transform sρ = cρu, we obtain the desired result. �

Remark 3.1 Let 0 < x ≤ 1 and m, n > 0. Then, 0 < Bx(m, n) ≤ B(m, n) where B(m, n) is the
beta function defined by B(m, n) = B1(m, n).

Lemma 3.2 Let 0 < ρ ≤ 1, 0 < ν < μ ≤ 1, 1 < λ ≤ 2, and q ≥ 1. Then, the integral
∫ 1

0 |F (t, s,λ,ν)|q ds is uniformly continuous for all t ∈ [0, 1] if ρ > 1 – 1/q and the integral
∫ 1

0 |F (t, s, 0,ν)|q ds is uniformly continuous for all t ∈ [0, 1] if ρ(μ – ν) > 1 – 1/q, where F is
given in (2.8).

Proof Let αν = λ + μ – ν , β = μ – ν + 1, and 0 ≤ t1 < t2 ≤ 1. In order to prove our desired
results, we notice that there are three cases: 0 ≤ t1 < t2 ≤ η < 1, 0 ≤ t1 ≤ η < t2 ≤ 1, and
0 < η ≤ t1 < t2 ≤ 1.

Case I. If 0 ≤ t1 < t2 ≤ η < 1, then we find that

�q(αν)
ρq(1–αν )

∫ 1

0

∣∣F (t2, s,λ,ν) – F (t1, s,λ,ν)
∣∣q ds

=
∫ t1

0
sq(ρ–1)

∣∣
∣∣
(
tρ
2 – sρ

)αν–1 –
(
tρ
1 – sρ

)αν–1

+
tρβ
2 – tρβ

1
�

[
a
(
ηρ – sρ

)α0–1 –
(
1 – sρ

)α0–1]
∣
∣∣
∣

q

ds

+
∫ t2

t1

sq(ρ–1)
∣
∣∣∣
(
tρ
2 – sρ

)αν–1 +
tρβ
2 – tρβ

1
�

[
a
(
ηρ – sρ

)α0–1 –
(
1 – sρ

)α0–1]
∣
∣∣∣

q

ds
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+
tqρβ

2 – tqρβ

1
|�|q

(∫ η

t2

sq(ρ–1)∣∣a
(
ηρ – sρ

)α0–1 –
(
1 – sρ

)α0–1∣∣q ds

+
∫ 1

η

sq(ρ–1)(1 – sρ
)q(α0–1) ds

)

≤ 2q–1
(∫ t1

0
sq(ρ–1)∣∣(tρ

2 – sρ
)αν–1 –

(
tρ
1 – sρ

)αν–1∣∣q ds +
∫ t2

t1

sq(ρ–1)(tρ
2 – sρ

)q(αν–1) ds
)

+
22(q–1)(tρβ

2 – tρβ
1 )q

|�|q
(∫ t1

0
I(s) ds +

∫ t2

t1

I(s) ds
)

+
tqρβ

2 – tqρβ

1
|�|q

(
2q–1

∫ η

t2

I(s) ds +
∫ 1

η

sq(ρ–1)(1 – sρ
)q(α0–1) ds

)

= 2q–1I1 +
22(q–1)

|�|q I2 +
1

|�|q I3,

where I(s) = sq(ρ–1)[|a|q(ηρ – sρ)q(α0–1) + (1 – sρ)q(α0–1)]. By using the well-known fact that
(x – y)q ≤ xq – yq for all x ≥ y > 0 and q ≥ 1, we can deduce by Lemma 3.1, when 1 < λ ≤ 2
(αν > 1), that

I1 =
∫ t1

0
sq(ρ–1)∣∣(tρ

2 – sρ
)αν–1 –

(
tρ
1 – sρ

)αν–1∣∣q ds +
∫ t2

t1

sq(ρ–1)(tρ
2 – sρ

)q(αν–1) ds

≤
∫ t2

0
sq(ρ–1)(tρ

2 – sρ
)q(αν–1) ds –

∫ t1

0
sq(ρ–1)(tρ

1 – sρ
)q(αν–1) ds

=
(
tq(ρ–1)+qρ(αν–1)+1
2 – tq(ρ–1)+qρ(αν–1)+1

1
)
B
(

q(ρ – 1) + 1
ρ

, q(αν – 1) + 1
)

,

and, when λ = 0 (αν < 1), we find that

I1 ≤
∫ t1

0
sq(ρ–1)(tρ

1 – sρ
)q(αν–1) ds –

∫ t1

0
sq(ρ–1)(tρ

2 – sρ
)q(αν–1) ds

+
∫ t2

t1

sq(ρ–1)(tρ
2 – sρ

)q(αν–1) ds

=
(
tq(ρ–1)+qρ(αν–1)+1
2 + tq(ρ–1)+qρ(αν–1)+1

1
)
B
(

q(ρ – 1) + 1
ρ

, q(αν – 1) + 1
)

– 2tq(ρ–1)+qρ(αν–1)+1
2 B( t1

t2
)ρ

(
q(ρ – 1) + 1

ρ
, q(αν – 1) + 1

)

≤ 2tq(ρ–1)+qρ(αν–1)+1
2

[
B
(

q(ρ – 1) + 1
ρ

, q(αν – 1) + 1
)

– B( t1
t2

)ρ

(
q(ρ – 1) + 1

ρ
, q(αν – 1) + 1

)]
.

By applying the result of Lemma 3.1, we can deduce that

I2 =
(
tρβ
2 – tρβ

1
)q

(
|a|q

∫ t2

0
sq(ρ–1)(ηρ – sρ

)q(α0–1) ds +
∫ t2

0
sq(ρ–1)(1 – sρ

)q(α0–1) ds
)

≤ (
tρβ
2 – tρβ

1
)q

(
|a|q

∫ η

0
sq(ρ–1)(ηρ – sρ

)q(α0–1) ds +
∫ 1

0
sq(ρ–1)(1 – sρ

)q(α0–1) ds
)
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=
(
tρβ
2 – tρβ

1
)q(|a|qηq(ρ–1)+qρ(α0–1)+1 + 1

)
B
(

q(ρ – 1) + 1
ρ

, q(α0 – 1) + 1
)

.

Similarly, the upper bound of the integral I3 can be evaluated as

I3 ≤ (
tqρβ

2 – tqρβ

1
)[

2q–1(|a|qηq(ρ–1)+qρ(α0–1)+1 + 1
)

+ 1
]
B
(

q(ρ – 1) + 1
ρ

, q(α0 – 1) + 1
)

.

It is obvious that the integrals I1, I2, and I3 approach uniformly zero as t1 → t2, which
implies the desired results.

Case II. If 0 ≤ t1 < η < t2 ≤ 1, then we find that

�q(αν)
ρq(1–αν )

∫ 1

0

∣∣F (t2, s,λ,ν) – F (t1, s,λ,ν)
∣∣q ds

=
∫ t1

0
sq(ρ–1)

∣∣
∣∣
(
tρ
2 – sρ

)αν–1 –
(
tρ
1 – sρ

)αν–1

+
tρβ
2 – tρβ

1
�

[
a
(
ηρ – sρ

)α0–1 –
(
1 – sρ

)α0–1]
∣∣∣
∣

q

ds

+
∫ η

t1

sq(ρ–1)
∣
∣∣
∣
(
tρ
2 – sρ

)αν–1 +
tρβ
2 – tρβ

1
�

[
a
(
ηρ – sρ

)α0–1 –
(
1 – sρ

)α0–1]
∣
∣∣
∣

q

ds

+
∫ t2

η

sq(ρ–1)
∣∣∣
∣
(
tρ
2 – sρ

)αν–1 –
tρβ
2 – tρβ

1
�

(
1 – sρ

)α0–1
∣∣∣
∣

q

ds

+
tqρβ

2 – tqρβ

1
|�|q

∫ 1

t2

sq(ρ–1)(1 – sρ
)q(α0–1) ds.

Case III. If 0 < η ≤ t1 < t2 ≤ 1, then we find that

�q(αν)
ρq(1–αν )

∫ 1

0

∣
∣F (t2, s,λ,ν) – F (t1, s,λ,ν)

∣
∣q ds

=
∫ η

0
sq(ρ–1)

∣∣
∣∣
(
tρ
2 – sρ

)αν–1 –
(
tρ
1 – sρ

)αν–1

+
tρβ
2 – tρβ

1
�

[
a
(
ηρ – sρ

)α0–1 –
(
1 – sρ

)α0–1]
∣
∣∣
∣

q

ds

+
∫ t1

η

sq(ρ–1)
∣
∣∣
∣
(
tρ
2 – sρ

)αν–1 –
(
tρ
1 – sρ

)αν–1 –
tρβ
2 – tρβ

1
�

(
1 – sρ

)α0–1
∣
∣∣
∣

q

ds

+
∫ t2

t1

sq(ρ–1)
∣∣
∣∣
(
tρ
2 – sρ

)αν–1 –
tρβ
2 – tρβ

1
�

(
1 – sρ

)α0–1
∣∣
∣∣

q

ds

+
tqρβ

2 – tqρβ

1
|�|q

∫ 1

t2

sq(ρ–1)(1 – sρ
)q(α0–1) ds.

As in the first case, the integrals
∫ 1

0 |F (t, s,λ,ν)|q ds and
∫ 1

0 |F (t, s, 0,ν)|q ds approach uni-
formly zero as t1 → t2 in both cases II and III. �
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Lemma 3.3 Let αν = λ + μ – ν and β = μ – ν + 1 where 0 < ρ ≤ 1, 1 < λ ≤ 2, and 0 < ν <
μ ≤ 1. Then, for all q ≥ 1, we have

sup
t∈[0,1]

∫ 1

0

∣∣F (t, s,λ,ν)
∣∣q ds

=
ρ1–αν

�(αν)
min

{
sup

t∈[0,1]

∫ 1

0
sq(ρ–1)∣∣F1(t, s,λ,ν)

∣∣q ds, sup
t∈[0,1]

∫ 1

0
sq(ρ–1)∣∣F2(t, s,λ,ν)

∣∣q ds
}

,

where F1, F2, and F are given in (2.8) such that

sup
t∈[0,1]

∫ 1

0
sq(ρ–1)∣∣F1(t, s,λ,ν)

∣∣q ds

= 2q–1B
(

q(ρ – 1) + 1
ρ

, q(αν – 1) + 1
)

+
2q–1(2q–1 + 1)(1 + |a|qηq(ρ–1)+qρ(α0–1)+1) + 1

|�|q B
(

q(ρ – 1) + 1
ρ

, q(α0 – 1) + 1
)

and

sup
t∈[0,1]

∫ 1

0
sq(ρ–1)∣∣F2(t, s,λ,ν)

∣∣q ds

= 2qB
(

q(ρ – 1) + 1
ρ

, q(αν – 1) + 1
)

+
22(q–1)(1 + |a|qηq(ρ–1)+qρ(α0–1)+1) + 2q–1 + 1

|�|q B
(

q(ρ – 1) + 1
ρ

, q(α0 – 1) + 1
)

,

provided that ρ > 1 – 1/q. In the case λ = 0, we have to take ρ(μ – ν) > 1 – 1/q.

Proof If 0 ≤ t < η < 1, then we find that

∫ 1

0
sq(ρ–1)∣∣F1(t, s,λ,ν)

∣
∣q ds

=
∫ t

0
sq(ρ–1)

∣
∣∣∣
(
tρ – sρ

)αν–1 +
tρβ

�

[
a
(
ηρ – sρ

)α0–1 –
(
1 – sρ

)α0–1]
∣
∣∣∣

q

ds

+
tqρβ

|�|q
(∫ η

t
sq(ρ–1)∣∣a

(
ηρ – sρ

)α0–1 –
(
1 – sρ

)α0–1∣∣q ds

+
∫ 1

η

sq(ρ–1)(1 – sρ
)q(α0–1) ds

)

≤ 2q–1
∫ t

0
sq(ρ–1)(tρ – sρ

)q(αν–1) ds +
tqρβ

|�|q
∫ 1

0
sq(ρ–1)(1 – sρ

)q(α0–1) ds

+
2q–1(2q–1 + 1)tqρβ

|�|q
(

|a|q
∫ η

0
sq(ρ–1)(ηρ – sρ

)q(α0–1)

+
∫ 1

0
sq(ρ–1)(1 – sρ

)q(α0–1) ds
)

.
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By Lemma 3.1, we get

∫ 1

0
sq(ρ–1)∣∣F1(t, s,λ,ν)

∣∣q ds

≤ 2q–1tq(ρ–1)+qρ(αν–1)+1B
(

q(ρ – 1) + 1
ρ

, q(αν – 1) + 1
)

+
(22(q–1) + 2q–1 + 1) + 2q–1(2q–1 + 1)|a|qηq(ρ–1)+qρ(α0–1)+1

|�|q

× tqρβB
(

q(ρ – 1) + 1
ρ

, q(α0 – 1) + 1
)

.

When 1 < λ ≤ 2 with ρ > 1 – 1/q or λ = 0 with ρ(μ – ν) > 1 – 1/q, we have

∫ 1

0
sq(ρ–1)∣∣F1(t, s,λ,ν)

∣∣q ds

= 2q–1B
(

q(ρ – 1) + 1
ρ

, q(αν – 1) + 1
)

+
2q–1(2q–1 + 1)(1 + |a|qηq(ρ–1)+qρ(α0–1)+1) + 1

|�|q B
(

q(ρ – 1) + 1
ρ

, q(α0 – 1) + 1
)

.

In the same way we can evaluate the upper bound of the integral
∫ 1

0 sq(ρ–1)|F2(t, s,λ,ν)|q ds
when 0 < η ≤ t ≤ 1. The proof is finished. �

4 Main results
By using the Hausdorff measure of noncompactness and applying Theorem 3.2 together
with the Darbo’s fixed point Theorem 2.1, we obtain the existence of solution for the infi-
nite system of fractional Langevin equations (1.1) subject to the boundary conditions (1.2)
with the same constraints mentioned in the first section. It is obvious, due to Lemma 2.2,
that the solution of the infinite system (1.1)–(1.2) u(t) ∈ Ep satisfies the single integral
equation

ui(t) =
∫ 1

0
Fi(t, s,λi, 0)hi(s, u(s),φ

(
ρ
c Dνu(s)

)
ds – ξi

∫ 1

0
Fi(t, s, 0, 0)ui(s) ds.

Here, Fi, i ∈N are defined as

Fi(t, s,λi,νi) =
ρ

1+νi–λi–μi
i sρi–1

�(λi + μi – νi)

⎧
⎨

⎩
Fi1(t, s,λi,νi), 0 ≤ t ≤ ηi < 1,

Fi2(t, s,λi,νi), 0 < ηi ≤ t ≤ 1,
(4.1)

and Fi1 = F1 and Fi2 = F2 where F1 and F2 are defined in (2.8) by replacing the symbols
λ, ν , μ, ρ , a, and η by the indexed symbols λi, νi, μi, ρi, ai, and ηi, respectively. Define the
sequence operators P ,P1,P2 : Ep → Ep by

(Pui)(t) = (P1ui)(t) – (P2ui)(t), (4.2)

(P1ui)(t) =
∫ 1

0
Fi(t, s,λi, 0)hi(s, u(s),φ

(
ρ
c Dνu(s)

)
ds, (4.3)
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(P2ui)(t) = ξi

∫ 1

0
Fi(t, s, 0, 0)ui(s) ds, (4.4)

for all i ∈ N. Their fractional derivatives of order 0 < ν < μ, by using the third identity in
Lemma 2.1, can be computed as

(
ρ
c DνiP1ui

)
(t) =

∫ 1

0
Fi(t, s,λi,νi)hi(s, u(s),φ

(
ρ
c Dνu(s)

)
ds, (4.5)

(
ρ
c DνiP2ui

)
(t) = ξi

∫ 1

0
Fi(t, s, 0,νi)ui(s) ds. (4.6)

The investigation of the existence of solutions for the infinite system (1.1)–(1.2) will be
discussed under the following assumptions:

(M1) The functions hi : [0, 1] × �p × �p → �p are jointly continuous for all i ∈ N and
satisfy, with Lipschitz constant Ł, the Lipschitz condition

∣∣hi(t, u1, v1) – hi(t, u2, v2)
∣∣ ≤ Ł

(|u1 – u2| + |v1 – v2|
)
, uk , vk ∈ �p, k = 1, 2.

(M2) There exist nonnegative sequence functions xi(t) and yi(t), satisfying, for all i ∈N,
t ∈ [0, 1] and u, v ∈ C([0, 1],�p), the inequality

∣
∣hi(t, u, v)

∣
∣p ≤ xi(t) + yi(t)

(∣∣ui(t)
∣
∣p +

∣
∣vi(t)

∣
∣p).

(M3) The sequence of functions {xi(t)}∞i=1 ∈ �1 is integrable on [0, 1]. This means that
limn→∞

∑∞
i≥n xi(t) = 0, t ∈ [0, 1], and there exists a positive constant

A =
∞∑

i=1

∫ 1

0
xi(s) ds =

∫ 1

0

∞∑

i=1

xi(s) ds.

(M4) The sequence of functions {yi(t)}∞i=1 is equibounded on [0, 1]. This means that there
exists a positive constant B = supt∈[0,1] supi∈N yi(t).

(M5) There exist positive constants Mλ,ν such that

Mλ,ν = sup
t∈[0,1]

sup
i∈N

(∫ 1

0

∣∣Fi(t, s,λi,νi)
∣∣q ds

)
, q ≥ 1.

(M6) The functions φi : R → R are continuous and additive for all i ∈ N. That is, they
satisfy Cauchy’s functional equation

φi(x + y) = φi(x) + φi(y), x, y ∈R, i ∈N.

Remark 4.1 In view of Lemma 3.3 and Assumption (M5), we have

Mλ,ν = sup
i∈N

ρ
1–(λi+μi–νi)
i

�(λi + μi – νi)

[
22(q–1) + 2q–1 + 1 + 22(q–1)|ai|qηq(ρi–1)+qρi(λi+μi–1)+1

i
|�i|q

× B
(

q(ρi – 1) + 1
ρi

, q(λi + μi – 1) + 1
)
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+ 2q–1B
(

q(ρi – 1) + 1
ρi

, q(λi + μi – νi – 1) + 1
)

+ 2q–1 min

{
B
(

q(ρi – 1) + 1
ρi

, q(λi + μi – νi – 1) + 1
)

,

|ai|qηq(ρi–1)+qρi(λi+μi–1)+1
i

|�i|q B
(

q(ρi – 1) + 1
ρi

, q(λi + μi – 1) + 1
)}]

.

Remark 4.2 According to Assumption (M6), since φi, i ∈N is continuous and additive, φi is
a linear function and φi(0) = 0. Thus, there exist positive numbers δi such that |φi(x)| = δi|x|
for all i ∈N.

Theorem 4.1 Under Assumptions (M1)–(M6) and with ρi(μi – νi) > 1/p for all i ∈ N and
p > 1, the infinite system (1.1)–(1.2) has at least one solution in Ep provided that Sλ(B) +

S0(ξp) < 1 where Sλ(x) = x
1
p (M

p–1
p

λ,0 + δM
p–1

p
λ,ν ), ξ = supi∈N |ξi|, and δ = supi∈N δi.

Proof In view of the continuity of the functions hi by Assumption (M1), the operator P
defined in (4.2) is continuous. In order to prove the boundedness of the operator P , by
using Hölder’s inequality for the integral and Assumption (M5), we obtain

‖P1u‖p
�p ≤ sup

t∈[0,1]

∞∑

i=1

(∫ 1

0

∣∣Fi(t, s,λi, 0)
∣∣∣∣hi

(
s, u(s),φ

(
ρ
c Dνu(s)

))∣∣ds
)p

≤ sup
t∈[0,1]

∞∑

i=1

(∫ 1

0

∣
∣Fi(t, s,λi, 0)

∣
∣q ds

) p
q
∫ 1

0

∣
∣hi

(
s, u(s),φ

(
ρ
c Dμu(s)

))∣∣p ds

≤Mp–1
λ,0

∞∑

i=1

∫ 1

0

[
xi(s) + yi(s)

(∣∣ui(s)
∣
∣p +

∣
∣φ

(
ρi
c Dνi ui(s)

))∣∣p]ds,

where 1/p + 1/q = 1. Invoking Assumptions (M3) and (M4),

‖P1u‖�p ≤M
p–1

p
λ,0

(
A + B

(‖u‖p
�p +

∥∥φ
(
ρ
c Dνu

)∥∥p
�p

)) 1
p

≤M
p–1

p
λ,0

(
A

1
p + B

1
p
(‖u‖�p +

∥∥φ
(
ρ
c Dνu

)∥∥
�p

))

= M
p–1

p
λ,0

(
A

1
p + B

1
p ‖u‖).

Similarly, we can deduce that

‖P2u‖�p ≤ ξM
p–1

p
0,0 ‖u‖�p ≤ ξM

p–1
p

0,0 ‖u‖.

By using Remark 4.2, we can deduce, as above, that

∥∥φ
(
ρ
c DνP1u

)∥∥
�p

≤ δM
p–1

p
λ,ν

(
A

1
p + B

1
p ‖u‖),

∥
∥φ

(
ρ
c DνP2u

)∥∥
�p

≤ δξM
p–1

p
0,ν ‖u‖.
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Using Minkowski inequality ‖x + y‖�p ≤ ‖x‖�p + ‖y‖�p gives

‖Pu‖ = ‖P1u – P2u‖ = ‖P1u – P2u‖�p +
∥∥φ

(
ρ
c Dν(P1u) – φ

(
ρ
c Dν(P2u)

∥∥
�p

≤ ‖P1u‖�p + ‖P2u‖�p +
∥
∥φ

(
ρ
c Dν(P1u)

∥
∥

�p
+

∥
∥φ

(
ρ
c Dν(P2u)

∥
∥

�p

≤ Sλ(A) +
[
Sλ(B) + S0

(
ξp)]‖u‖.

Now, we consider the set N ⊂ Ep given by

N =
{

u ∈ Ep|‖u‖ ≤ r, u satisfies the boundary conditions (1.2)
}

,

which is closed, bounded, and convex, with fix r satisfying the inequality Sλ(A) + [Sλ(B) +
S0(ξp)]r ≤ r. It is clear that the operator P : N → N is bounded. To prove the conti-
nuity of P on the set N , let u, v ∈ N and assume that for all ε > 0 there exists 0 < γ <
ε/[Sλ(2p–1Łp) + S0(ξp)] such that ‖u – v‖ < γ . Then,

‖P1u – P1v‖�p

≤M
p–1

p
λ,0

( ∞∑

i=1

∫ 1

0

∣∣hi
(
s, u(s),φ

(
ρ
c Dνu(s)

))
– hi

(
s, v(s),φ

(
ρ
c Dνv(s)

))∣∣p ds

) 1
p

≤M
p–1

p
λ,0

( ∞∑

i=1

Łp
i

∫ 1

0

(∣∣u(s) – v(s)
∣∣ +

∣∣φ
(
ρ
c Dνu(s)

)
– φ

(
ρ
c Dνv(s)

)∣∣)p ds

) 1
p

≤ 2
p–1

p ŁM
p–1

p
λ,0

( ∞∑

i=1

∫ 1

0

(∣∣u(s) – v(s)
∣∣p +

∣∣φ
(
ρ
c Dνu(s)

)
– φ

(
ρ
c Dνv(s)

)∣∣p)ds

) 1
p

≤ 2
p–1

p ŁM
p–1

p
λ,0

(‖u – v‖�p +
∥
∥φ

(
ρ
c Dνu

)
– φ

(
ρ
c Dνv

)∥∥
�p

)
= 2

p–1
p ŁM

p–1
p

λ,0 ‖u – v‖.

By the same technique, we arrive at

‖Pu – Pv‖ ≤ [
Sλ

(
2p–1Łp) + S0

(
ξp)]‖u – v‖ < ε,

which implies that the operator P is continuous on the set N . To show it is continuous
uniformly on the interval [0, 1], let t0 ∈ [0, 1]. Then, we find that

∣
∣P1u(t) – P1u(t0)

∣
∣p

=
∞∑

i=1

∣∣∣
∣

∫ 1

0

[
Fi(t, s,λi, 0) – Fi(t0, s,λi, 0)

]
hi

(
s, u(s),φ

(
ρ
c Dνu(s)

))
ds

∣∣∣
∣

p

≤
∞∑

i=1

(∫ 1

0

∣∣Fi(t, s,λi, 0) – Fi(t0, s,λi, 0)
∣∣q ds

) p
q
∫ 1

0

∣∣hi
(
s, u(s),φ

(
ρ
c Dνu(s)

))∣∣p ds,

which approaches zero uniformly as t → t0 due to Lemma 3.2. In the same way, we can
see that |(Pu)(t) – (Pu)(t0)| → 0 uniformly as t → t0, which implies that the operator P
is continuous on [0, 1].
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We just have to prove that the operator P is condensing on the space Ep with respect
to Hausdorff measure of noncompactness. Therefore, the Hausdorff measure of noncom-
pactness β(N ) can be computed, according to Theorem 3.2 and Remark 2.2, as

βEp (N P) = lim
n→∞ sup

u∈N

∥
∥(I – Pn)Pu

∥
∥

= lim
n→∞ sup

u∈N
(
∥∥(I – Pn)Pu

∥∥
�p

+
∥∥(I – Pn)φ

(
ρ
c DνPu

∥∥
�p

)

= β�p (N P) + β�p

(
N φ

(
ρ
c DνP

))

≤ β�p (N P1) + β�p (N P2) + β�p

(
N φ

(
ρ
c DνP1

))
+ β�p

(
N φ

(
ρ
c DνP2

))
.

Now, let us estimate each term separately as follows:

β�p (N P1)

= lim
n→∞ sup

u∈N
sup

t∈[0,1]

( ∞∑

i≥n

∣
∣∣
∣

∫ 1

0
Fi(t, s,λi, 0)hi

(
s, u(s),φ

(
ρ
c Dνu(s)

)
ds

∣
∣∣
∣

p
) 1

p

≤ lim
n→∞ sup

u∈N
sup

t∈[0,1]

( ∞∑

i≥n

(∫ 1

0

∣∣Fi(t, s,λi, 0)
∣∣q ds

) p
q
∫ 1

0

∣∣hi
(
s, u(s),φ

(
ρ
c Dνu(s)

)∣∣p ds

) 1
p

≤ M
p–1

p
λ,0 lim

n→∞ sup
u∈N

( ∞∑

i≥n

∫ 1

0

[
xi(s) + yi(s)

(∣∣ui(s)
∣∣p + |φ(

ρi
c Dνi ui(s)

))|p]ds

) 1
p

≤ M
p–1

p
λ,0 B

1
p lim

n→∞ sup
u∈N

{( ∞∑

i≥n

|ui|p
) 1

p

+

( ∞∑

i≥n

∣∣φ
(
ρi
c Dνi ui

)∣∣p
) 1

p
}

= M
p–1

p
λ,0 B

1
p lim

n→∞ sup
u∈N

{∥∥(I – Pn)u
∥
∥

�p
+

∥
∥(I – Pn)φ

(
ρ
c Dνu

)∥∥
�p

}

= M
p–1

p
λ,0 B

1
p lim

n→∞ sup
u∈N

∥
∥(I – Pn)u

∥
∥ = M

p–1
p

λ,0 B
1
p βEp (N u).

Continuing in the same manner, we find that

βEp (N P) ≤ [
Sλ(B) + S0

(
ξp)]βEp (N u).

In conclusion, we checked all the assumptions of Darbo’s Theorem 2.1. Therefore the in-
finite system (1.1)–(1.2) has at least one solution in Ep, p > 1. �

Theorem 4.2 Under Assumptions (M1)–(M6) and with ρi(μi – νi) > 1/p for all i ∈ N and
p > 1, the infinite system (1.1)–(1.2) has at least one solution in E1 provided that Sλ(B) +
S0(ξp) < 1.

Proof It is clear that the proof of this theorem is similar to the proof of the previous one,
thus it suffices to show just the last part. We have to prove that the operator P is condens-
ing on the space E1 with respect to Hausdorff measure of noncompactness.
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Now, let us use the Hölder integral inequality with 1/p + 1/q = 1 as follows:

β�1 (N P1)

= lim
n→∞ sup

u∈N
sup

t∈[0,1]

∞∑

i≥n

∣∣
∣∣

∫ 1

0
Fi(t, s,λi, 0)hi(s, u(s),φ

(
ρ
c Dνu(s)

)
ds

∣∣
∣∣

≤ lim
n→∞ sup

u∈N
sup

t∈[0,1]

∞∑

i≥n

(∫ 1

0

∣∣Fi(t, s,λi, 0)
∣∣q ds

) 1
q
(∫ 1

0

∣∣hi
(
s, u(s),φ

(
ρ
c Dνu(s)

)∣∣p ds
) 1

p

≤ M
1
q
λ,0 lim

n→∞ sup
u∈N

∞∑

i≥n

(∫ 1

0

[
xi(s) + yi(s)

(∣∣ui(s)
∣∣p + |φ(

ρi
c Dνi ui(s)

))|p]ds
) 1

p

≤ M
p–1

p
λ,0 B

1
p lim

n→∞ sup
u∈N

{ ∞∑

i≥n

|ui| +
∞∑

i≥n

∣∣φ
(
ρi
c Dνi ui

)∣∣
}

= M
p–1

p
λ,0 B

1
p βE1 (N u).

Continuing in this manner, we find that

βE1 (N P) ≤ [
Sλ(B) + S0

(
ξp)]βE1 (N u).

Therefore the infinite system (1.1)–(1.2) has at least one solution in E1. �

5 An application
In this section we provide an application for our main results to show how one can apply
them.

Example 5.1 We introduce an infinite system of fractional Langevin equations with three-
point condition:

9
10
c D

3
2
( 9

10
c D

3
4 + 10–i)ui(t) = hi

(
t, u(t),

1
5

9
10
c D

1
8 u(t)

)
, t ∈ [0, 1], i ∈N,

subjected to the boundary conditions

ui(0) = 0,
3
5
c D

1
2 ui(0) = 0, ui(1) = 5ui

(
2–i),

where ρ = 9
10 , λi = 3

2 , μi = 3
4 , νi = 1

8 , ξi = 10–i, ai = 1, ηi = 1
6 , and φi(x) = 1

5 x. Also, we take

hi(t, u, v) =
t2e–it sin(π t)

(t + i)4i!
+

te–it

2(5 – t)4(t + i)2

∞∑

n=1

cos(nπ t)
(n + t)9

(
un(t) + vn(t)

)
.

It is obvious that

∣∣hi(t, u, v)
∣∣p

=

∣∣
∣∣
∣
t4e–it sin(π t)

(t + i)4i!
+

te–it

2(5 – t)4(t + i)2

∞∑

n=1

cos(nπ t)
(n + t)9

(
un(t) + vn(t)

)
∣∣
∣∣
∣

p

≤ 2p–1

(∣
∣∣∣
t4e–it sin(π t)

(t + i)4i!

∣
∣∣∣

p

+
(

te–it

2(5 – t)4(t + i)2

)p
∣
∣∣
∣∣

∞∑

n=1

cos(nπ t)
(n + t)9

(
un(t) + vn(t)

)
∣
∣∣
∣∣

p)

.
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By using Hölder inequality, with 1/p + 1/q = 1, p, q > 1, we obtain

∣∣
∣∣
∣

∞∑

n=1

cos(nπ t)
(n + t)9

(
un(t) + vn(t)

)
∣∣
∣∣
∣

p

≤
( ∞∑

n=1

∣
∣∣
∣
cos(nπ t)
(n + t)9

(
un(t) + vn(t)

)
∣
∣∣
∣

)p

≤
( ∞∑

n=1

∣∣
∣∣
cos(nπ t)
(n + t)9

∣∣
∣∣

q
) p

q ∞∑

n=1

∣
∣un(t) + vn(t)

∣
∣p ≤

( ∞∑

n=1

1
n9q

) p
q ∞∑

n=1

∣
∣un(t) + vn(t)

∣
∣p

≤ 2p–1ζ
p
q (9q)

∞∑

n=1

(∣∣un(t)
∣
∣p +

∣
∣vn(t)

∣
∣p) = 2p–1ζ p–1(9q)

(|u|p + |v|p),

where ζ (·) is the Riemann zeta function. When p = 1, we have

∣∣
∣∣∣

∞∑

n=1

cos(nπ t)
(n + t)9

(
un(t) + vn(t)

)
∣∣
∣∣∣
≤

∞∑

n=1

∣
∣∣
∣
cos(nπ t)
(n + t)9

(
un(t) + vn(t)

)
∣
∣∣
∣

≤
∞∑

n=1

∣∣un(t) + vn(t)
∣∣ ≤

∞∑

n=1

(∣∣un(t)
∣∣ +

∣∣vn(t)
∣∣)

= |u| + |v|.

Also, we can deduce that

∣∣
∣∣
2t4e–it sin(π t)

(t + i)4i!

∣∣
∣∣

p

≤ 2t4

(t + 1)4
e–it

i!
.

These estimates imply, for all p ≥ 1, that

∣
∣hi(t, u, v)

∣
∣p ≤ t4

(t + 1)4
e–it

i!
+

te–it

2(5 – t)4i2 22(p–1)ζ p–1(9q)
(|u|p + |v|p). (5.1)

Now, we are in a position to show that all Assumptions (M1)–(M6) are verified for this
problem:

(M1) Obviously, the functions hi(t, u, v) are continuous on [0, 1] for all i ∈N. In order to
prove that hi ∈ �p, p ≥ 1 for all i ∈ N, by (5.1), we have

‖h‖p =
∞∑

i=1

∣
∣hi(t, u, v)

∣
∣p

=
t4

(t + 1)4

∞∑

i=1

e–it

i!
+

t
2(5 – t)4 22(p–1)ζ p–1(9q)

(|u|p + |v|p)
∞∑

i=1

e–it

i2

=
t4

(t + 1)4 ee–t
+

t
2(5 – t)4 22(p–1)ζ p–1(9q)

(|u|p + |v|p)L2
(
e–t) < ∞,

where L2 is the dilogarithm function, which means that hi ∈ �p, p ≥ 1. Also, by
using (5.1), we can deduce that hi verify the Lipschitz condition with a positive
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constant

L = 22(p–1)ζ p–1(9q) sup
t∈[0,1

sup
i∈N

t
2(5 – t)4

e–it

i2 = 22p–11ζ p–1(9q)

=
43,867π18

4,989,349,821,456,000
.

(M2) We choose

xi(t) =
t4

(t + 1)4
e–it

i!
and yi(t) =

te–it

2(5 – t)4i2 22(p–1)ζ p–1(9q).

(M3) Since
∑∞

i=1 xi = t4

(t+1)4 ee–t < ∞, we get that xi ∈ �1 and

A =
∞∑

i=1

∫ 1

0
xi(s) ds ∼ 0.0305677.

(M4) It is clear that the sequence {yi(t)} is equibounded and

B = sup
t∈[0,1

sup
i∈N

yi(t) = 22p–11ζ p–1(9q) =
43,867π18

4,989,349,821,456,000
∼ 0.00781253

in the space E2, and B = 1/512 in the space E1.
(M5) From Remark 4.1, we can evaluate the values

M 3
2 ,0 ∼ 3.59127, M 3

2 , 1
8

∼ 3.65664,

M0,0 ∼ 23.1474, M0, 1
8

∼ 15.5487

in both spaces E2 and E1.
(M6) According to Remark 4.2, δi = 5–i for all i ∈N and δ = maxi∈N δi = 1

5 .
Therefore, all Assumptions (M1)–(M6) are verified,

ρi(μi – νi) =
9

10

(
3
4

–
1
8

)
=

9
16

>
1
2

=
1
p

in both spaces E2 and E1, and

Sλ(B) + S0
(
ξp) ∼ 0.761287 < 1 in E2,

Sλ(B) + S0
(
ξp) ∼ 0.660634 < 1 in E1,

which implies that our example verifies the conditions of Theorems 4.1 and 4.2. Thus, the
problem of Example 5.1 has at least one solution in the space E2 and also in E1.

6 Conclusion
In the present research, we studied an infinite system of Langevin equations of fractional
order. The fractional derivative used in our model is the so-called generalized Liouville–
Caputo derivative, which associates with many well-known fractional derivatives. By ap-
plying the measure of noncompactness technique and using the Darbo’s fixed point theo-
rem, we examined the existence of solution to this infinite system. This investigation has
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been performed in a new sequence space related to the �p, 1 ≤ p < ∞ space. A numeri-
cal example is presented to illustrate our idea by investigating a function satisfying all the
proposed assumptions.
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