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Abstract
In this paper, we investigate the analysis of the proportional Caputo derivative that
recently has been constructed. We create some useful relations between this new
derivative and beta function. We discretize the new derivative. We investigate the
stability and obtain a stability condition for the new derivative.

1 Introduction
Fractional calculus is an emerging field of mathematics [1] having important contributions
in modeling the dynamics of complex systems [2, 3] from various fields of science and en-
gineering [4, 5]. Nowadays a huge debate was opened by asking the simple” question: can
we classify the fractional operators?” Curiously the answer of this question is not simple
and, so far, several answers seemed to be possible [6–11]. A new non-singular fractional
operator was proposed by Caputo and Fabrizio [12] and their result was generalized by
Atangana and Baleanu [13] and applied successfully to a lot of complex phenomena in-
cluding biological ones.

Khalid et al. [14] have studied the computational research of the Caputo time fractional
Allen–Cahn equation. Owolabi [15] has studied by analysis and numerical simulation a
multicomponent system with the Atangana–Baleanu fractional derivative. Akgül [16] has
presented a novel method for a fractional derivative with non-local and non-singular ker-
nel. Akgül [17] has investigated the solutions of differential equations with the general-
ized fractional derivatives. Atangana et al. [18] have investigated the analysis of the fractal
fractional derivatives in detail. Fernandez et al. [19] investigated the series representations
for fractional-calculus operators involving generalized Mittag-Leffler functions. Wu et al.
[20] have investigated the fractional impulsive differential equations including the exact
solutions, integral equations and short memory case. Some inequalities were investigated
within the proportional fractional operators [21, 22] and in [23] was investigated the pro-
portional derivatives of a function with respect to another function. Very recently, a new
fractional operator has been constructed in [24]:
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0 Dα

t f (t) =
1

�(1 – α)

∫ t

0

(
k1(α, τ )f (τ ) + k0(α, τ )

df (τ )
dτ

)
(t – τ )–α dτ . (1.1)

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-021-03304-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-021-03304-0&domain=pdf
http://orcid.org/0000-0001-9832-1424
mailto:aliakgul00727@gmail.com


Akgül and Baleanu Advances in Difference Equations        (2021) 2021:136 Page 2 of 12

In this paper, we aim to analyze the above derivative in detail for k0(α, t) = (αt1–α)c2α and
k1(α, t) = (1 – α)tα . Here c is as a constant of the time dimension t for the two terms in-
volved in the new derivative (1.1).

The new fractional operator in the Caputo sense is a generalization of the classical pro-
portional derivative introduced by [24] which has deep applications in control theory. The
new fractional operator will provide better applications in control theory. Due to the phys-
ical meaning of the initial conditions we concentrate here on the Caputo fractional gener-
alization. For more details see [25–28].

We construct the paper as follows. We give some scientific theorems for the new deriva-
tive in Sect. 2. We present the discretization and the applications of the proportional Ca-
puto derivative in Sect. 3. We show the stability analysis in Sect. 4. We demonstrate the
numerical results in Sect. 5. We discuss the conclusion in the last section.

2 Analysis of the proportional Caputo derivative
We present the following scientific results for the new derivative.

Lemma 2.1 We have the following relation for the new derivative given by (1.1):

∣∣PC
0 Dα

t f (t)
∣∣ <

t(1 – α)
�(1 – α)

∥∥f (τ )
∥∥∞B(α + 1, 1 – α)

+
αc2α

�(1 – α)
t2–2α

∥∥∥∥df (τ )
dτ

∥∥∥∥∞
B(2 – α, 1 – α).

Proof We have

∣∣PC
0 Dα

t f (t)
∣∣ =

1
�(1 – α)

∣∣∣∣
∫ t

0

(
(1 – α)ταf (τ ) + c2αατ 1–α df (τ )

dτ

)
(t – τ )–α dτ

∣∣∣∣

≤ 1
�(1 – α)

∣∣∣∣
∫ t

0

(
(1 – α)ταf (τ )

)
(t – τ )–α dτ

∣∣∣∣

+
c2α

�(1 – α)

∣∣∣∣
∫ t

0

(
ατ 1–α df (τ )

dτ

)
(t – τ )–α dτ

∣∣∣∣

<
1

�(1 – α)

∫ t

0

∣∣f (τ )
∣∣(1 – α)τα(t – τ )–α dτ

+
c2α

�(1 – α)

∫ t

0

∣∣∣∣df (τ )
dτ

∣∣∣∣ατ 1–α(t – τ )–α dτ

<
1

�(1 – α)

∫ t

0
sup

τ∈[0,t]

∣∣f (τ )
∣∣(1 – α)τα(t – τ )–α dτ

+
c2α

�(1 – α)

∫ t

0
sup

τ∈[0,t]

∣∣∣∣df (τ )
dτ

∣∣∣∣ατ 1–α(t – τ )–α dτ .

Then we obtain

∣∣PC
0 Dα

t f (t)
∣∣ <

(1 – α)
�(1 – α)

∥∥f (τ )
∥∥∞

∫ t

0
τα(t – τ )–α dτ

+
αc2α

�(1 – α)

∥∥∥∥df (τ )
dτ

∥∥∥∥∞

∫ t

0
τ 1–α(t – τ )–α dτ .
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Let τ = th. Then we obtain

∣∣PC
0 Dα

t f (t)
∣∣ <

(1 – α)
�(1 – α)

∥∥f (τ )
∥∥∞

∫ 1

0
(th)α(t – th)–αt dh

+
αc2α

�(1 – α)

∥∥∥∥df (τ )
dτ

∥∥∥∥∞

∫ 1

0
(th)1–α(t – th)–αt dh

<
t(1 – α)
�(1 – α)

∥∥f (τ )
∥∥∞

∫ 1

0
hα(1 – h)–α dh

+
αc2α

�(1 – α)
t2–2α

∥∥∥∥df (τ )
dτ

∥∥∥∥∞

∫ 1

0
h1–α(1 – h)–α dh.

Then we get the desired result:

∣∣PC
0 Dα

t f (t)
∣∣ <

t(1 – α)
�(1 – α)

∥∥f (τ )
∥∥∞B(α + 1, 1 – α)

+
αc2α

�(1 – α)
t2–2α

∥∥∥∥df (τ )
dτ

∥∥∥∥∞
B(2 – α, 1 – α).

This completes the proof. �

Remark 2.2 We consider

PC
0 Dγ

x
(
u(x)v(x)

)

=
1

�(1 – γ )

∫ x

0

(
(1 – γ )tγ u(t)v(t) + γ c2γ t1–γ du(t)v(t)

dt

)
(x – t)–γ dt. (2.1)

If u and v are continuous and bounded, then we get

PC
0 Dα

x
(
u(x)v(x)

)
=

1
�(1 – γ )

∫ x

0

(
(1 – γ )tγ u(t)v(t)

)
(x – t)–γ dt

+
1

�(1 – γ )

∫ x

0
γ c2γ t1–γ

(
du(t)

dt
v(t) +

dv(t)
dt

u(t)
)

(x – t)–γ dt.

Lemma 2.3 Assume that f and g are differentiable and bounded. Then we obtain

∣∣PC
0 Dα

t
(
f (t)g(t)

)∣∣ <
t(1 – α)
�(1 – α)

∥∥f (t)
∥∥∞

∥∥g(t)
∥∥∞B(α + 1, 1 – α)

+
αt2–2α

�(1 – α)

∥∥∥∥df (t)
dt

∥∥∥∥∞

∥∥g(t)
∥∥∞B(2 – α, 1 – α)

+
αt2–2α

�(1 – α)

∥∥∥∥dg(t)
dt

∥∥∥∥∞

∥∥f (t)
∥∥∞B(2 – α, 1 – α).
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Proof We have

∣∣PC
0 Dα

t
(
f (t)g(t)

)∣∣ <
t(1 – α)
�(1 – α)

∥∥f (t)
∥∥∞

∥∥g(t)
∥∥∞B(α + 1, 1 – α)

+
αt2–2α

�(1 – α)

∥∥∥∥df (t)
dt

∥∥∥∥∞

∥∥g(t)
∥∥∞B(2 – α, 1 – α)

+
αt2–2α

�(1 – α)

∥∥∥∥dg(t)
dt

∥∥∥∥∞

∥∥f (t)
∥∥∞B(2 – α, 1 – α).

Let τ = th. Then we obtain

∣∣PC
0 Dα

t
(
f (t)g(t)

)∣∣ <
t(1 – α)
�(1 – α)

∥∥f (t)
∥∥∞

∥∥g(t)
∥∥∞B(α + 1, 1 – α)

+
αt2–2α

�(1 – α)

∥∥∥∥df (t)
dt

∥∥∥∥∞

∥∥g(t)
∥∥∞B(2 – α, 1 – α)

+
αt2–2α

�(1 – α)

∥∥∥∥dg(t)
dt

∥∥∥∥∞

∥∥f (t)
∥∥∞B(2 – α, 1 – α).

This completes the proof. �

Lemma 2.4 If f and g are differentiable and satisfy the following condition:
∥∥∥∥df

dt
–

dg
dt

∥∥∥∥∞
< K‖f – g‖∞, (2.2)

then we have

∥∥PC
0 Dα

t f (t) – PC
0 Dα

t g(t)
∥∥∞ < K‖f – g‖∞. (2.3)

Proof We have

∥∥PC
0 Dα

t f (t) – PC
0 Dα

t g(t)
∥∥∞ <

(1 – α)
�(1 – α)

∥∥f (t) – g(t)
∥∥∞

∫ t

0
τα(t – τ )–α dτ

+
αc2α

�(1 – α)

∥∥∥∥df (t)
dt

–
dg(t)

dt

∥∥∥∥∞

∫ t

0
τ 1–α(t – τ )–α dτ .

Let τ = th. Then we obtain

∥∥PC
0 Dα

t f (t) – PC
0 Dα

t g(t)
∥∥∞ < K

∥∥f (t) – g(t)
∥∥∞.

This completes the proof. �

Lemma 2.5 Let f be analytic around 0, then we obtain

PC
0 Dα

t f (t) = t(1 – α)
∞∑
j=0

ajtj �(j + α + 1)
�(j + 2)

(2.4)

+ t1–2ααc2α

∞∑
j=0

jajtj �(j – α + 1)
�(j – 2α + 2)

. (2.5)
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Proof We have

PC
0 Dα

t f (t) =
1

�(1 – α)

∫ t

0

(
(1 – α)ταf (τ ) + αc2ατ 1+α df (τ )

dτ

)
(t – τ )–α dτ

=
(1 – α)

�(1 – α)

∞∑
j=0

aj

∫ t

0
τα+j(t – τ )–α dτ

+
αc2α

�(1 – α)

∞∑
j=0

jaj

∫ t

0
τ j+α(t – τ )–α dτ .

We let τ = ht. Then we obtain

PC
0 Dα

t f (t) = t(1 – α)
∞∑
j=0

ajtj �(j + α + 1)
�(j + 2)

+ t1–2ααc2α

∞∑
j=0

jajtj �(j – α + 1)
�(j – 2α + 2)

.

This completes the proof. �

3 Discretization and applications of the proportional Caputo derivative
We consider the new derivative [24]:

PC
0 Dα

t f (t) =
1

�(1 – α)

∫ t

0

(
(1 – α)ταf (τ ) + αc2ατ 1–α df (τ )

dτ

)
(t – τ )–α dτ . (3.1)

We put tn = n�t, then at tn+1, we have

PC
0 Dα

t f (tn+1) =
1

�(1 – α)

∫ tn+1

0

(
(1 – α)ταf (τ ) + αc2ατ 1–α df (τ )

dτ

)
(tn+1 – τ )–α dτ

=
1

�(1 – α)

n∑
j=0

∫ tj+1

tj

(
(1 – α)tα

j f j+1 + αc2αt1–α
j

f j+1 – f j

�t

)
(tn+1 – τ )–α dτ

=
1

�(1 – α)

n∑
j=0

(
(1 – α)tα

j f j+1 + αc2αt1–α
j

f j+1 – f j

�t

)

×
∫ tj+1

tj

(tn+1 – τ )–α dτ

=
1

�(1 – α)

n∑
j=0

(
(1 – α)tα

j f j+1 + αc2αt1–α
j

f j+1 – f j

�t

)

× [
(n – j + 1)1–α – (n – j)1–α

]
.

We take into consideration [18]

PC
0 Dα

t u(x, t) = f
(
x, t, u(x, t)

)
. (3.2)
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Here u(x, 0) = g(x), xm – xm–1 = �x, tn+1 – tn = �t, tn = n�t, xm = m�x. The above equation
can be approximated as

1
�(1 – α)

n∑
j=0

(
(1 – α)tα

j uj+1
m + αc2αt1–α

j
uj+1

m – uj
m

�t

)[
(n – j + 1)1–α – (n – j)1–α

]

= f
(
xm, tn+1, un+1

m
)
.

4 Stability analysis
We discretize the following problem and investigate the stability of it. We consider the
heat equation,

∂u(x, t)
∂t

= k
∂2u(x, t)

∂x2 . (4.1)

We change the left hand side of the above equation with the new derivative and we obtain

PC
0 Dα

t u(x, t) = k
∂2u(x, t)

∂x2 . (4.2)

We obtain

1
�(1 – α)

s∑
p=0

(
(1 – α)tα

p up+1
m + αc2αt1–α

p
up+1

m – up
m

�t

)[
(s – p + 1)1–α – (s – p)1–α

]

= k
us+1

m+1 – 2us+1
m + us+1

m–1
(�x)2

at (ts+1, xm). We put us
m = δs exp(ikmx). Plugging this into the above equation, we obtain

1
�(1 – α)

s∑
p=0

(
(1 – α)tα

p δp+1 exp(ikmx) + αc2αt1–α
p

δp+1 exp(ikmx) – δp exp(ikmx)
�t

)

× [
(s – p + 1)1–α – (s – p)1–α

]

= k
δs+1 exp(ikm(x + �x)) – 2δs+1 exp(ikmx) + δs+1 exp(ikm(x – �x))

(�x)2 .

After simplification we get

1
�(1 – α)

s∑
p=0

(
(1 – α)tα

p δp+1 + αc2αt1–α
p

δp+1 – δp

�t

)

× [
(s – p + 1)1–α – (s – p)1–α

]

= k
δs+1 exp(ikm(�x)) – 2δs+1 + δs+1 exp(ikm(–�x))

(�x)2 .

For simplicity, we take

Ap,α =
(1 – α)(p�t)α

�(1 – α)
, Bp,α =

αc2α(p�t)1–α

�(1 – α)�t
, a =

k
(�x)2 .
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Then we obtain

s∑
p=0

(
Ap,αδp+1 + Bp,α(δp+1 – δp)

)[
(s – p + 1)1–α – (s – p)1–α

]

= aδs+1 exp
(
ikm(�x)

)
– 2aδs+1 + aδs+1 exp

(
ikm(–�x)

)
.

Thus, we obtain

s∑
p=0

(
(Ap,α + Bp,α)δp+1 – Bp,αδp

)[
(s – p + 1)1–α – (s – p)1–α

]

= aδs+1
(
exp

(
ikm(�x)

)
– 2 + exp

(
–ikm(�x)

))
.

Using the relation between the trigonometric functions and exponential functions gives

s∑
p=0

(
(Ap,α + Bp,α)δp+1 – Bp,αδp

)[
(s – p + 1)1–α – (s – p)1–α

]
= –4aδs+1 sin2

(
km�x

2

)
.

For s = 0, we obtain

(
(A0,α + B0,α)δ1 – B0,αδ0

)
= –4aδ1 sin2

(
km�x

2

)
.

Here | δ1
δ0

| < 1 implies

∣∣∣∣ B0,α

A0,α + B0,α + 4a sin2( km�x
2 )

∣∣∣∣ < 1.

This is true for ∀m. Thus, we get

∣∣∣∣ B0,α

A0,α + B0,α + 4a

∣∣∣∣ < 1.

We assume that | δs
δ0

| < 1. We need to show that | δs+1
δ0

| < 1. We know that

s∑
p=0

(
(Ap,α + Bp,α)δp+1 – Bp,αδp

)[
(s – p + 1)1–α – (s – p)1–α

]
= –4aδs+1 sin2

(
km�x

2

)
.

Then we get

∣∣∣∣–4aδs+1 sin2
(

km�x
2

)∣∣∣∣ =

∣∣∣∣∣
s∑

p=0

(
(Ap,α + Bp,α)δp+1 – Bp,αδp

)[
(s – p + 1)1–α – (s – p)1–α

]∣∣∣∣∣.

Thus, we reach

δs+1

∣∣∣∣–4a sin2
(

km�x
2

)∣∣∣∣ < δ0

∣∣∣∣∣
s∑

p=0

(
(Ap,α + Bp,α) – Bp,α

)[
(s – p + 1)1–α – (s – p)1–α

]∣∣∣∣∣.
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Here | δs+1
δ0

| < 1 implies

∑s
p=0 |((Ap,α + Bp,α) – Bp,α)[(s – p + 1)1–α – (s – p)1–α]|

| – 4a sin2( km�x
2 )| < 1.

This is true for ∀m. Thus, we get

∑s
p=0 |((Ap,α + Bp,α) – Bp,α)[(s – p + 1)1–α – (s – p)1–α]|

| – 4a| < 1.

Therefore, the method is stable if

min

(∣∣∣∣ B0,α

A0,α + B0,α + 4a

∣∣∣∣,
∑s

p=0 |((Ap,α + Bp,α) – Bp,α)[(s – p + 1)1–α – (s – p)1–α]|
| – 4a|

)
< 1.

5 Numerical results
We consider the following problem:

CPC
0 Dα

x u(x) = sin(x) (5.1)

where

CPC
0 Dα

x u(x) =
1

�(1 – α)

∫ x

0

(
k1(α)u(t) + k0(α)

du(t)
dt

)
(x – t)–α dt. (5.2)

We apply the Laplace transform to Eq. (5.1):

L
(CPC

0 Dα
x u(x)

)
= L

(
sin(x)

)
. (5.3)

Then we obtain
[

K1(α)
s

+ K0(α)
]

sαL
(
u(t)

)
– K0(α)sα–1u(0) =

1
1 + s2 . (5.4)

After simplification, we get

L
(
u(x)

)
=

(1 + s2)K0(α)sα–1u(0) + 1
(1 + s2)(sα–1K1(α) + sαK0(α))

. (5.5)

If we apply the inverse Laplace transform to the above equation, we will obtain

u(x) = u(0) exp

(
–K1(α)
K0(α)

x
)

+
xαA(x,α)

(K1(α)2 + K2(α)2)�(α)
(5.6)

where

A(x,α) = K1(α) exp

(
–K1(α)
K0(α)

x
)(

–
K1(α)
K0(α)

)–α(
–�(α) + �

(
α,

–K1(α)
K1(α)

x
))

+
1
α

HypergeometricPFQ
[{

α

2

}
,
{

1
2

, 1 +
α

2

}
, –

x2

4

]
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Figure 1 Solution of the problem for α = 0.1

Figure 2 Solution of the problem for α = 0.3

× (
K1(α) cos(x) + K0(α) sin(x)

)
+

1
1 + α

x
(
–K0(α) cos(x) + K1(α) sin(x)

)

× HypergeometricPFQ
[{

1
2

+
α

2

}
,
{

3
2

,
3
2

,
α

2

}
, –

x2

4

]
.

We demonstrate the above solution by the following figures for different values of α. We
choose K1(α) = (1 – α)wα , K0(α) = αc2αw1–α , c = 1, w = 0.5 and u(0) = 1 in Figs. 1–6. In
Fig. 7, we choose c = w = α = 0.8. In these figures, we can see the effect of the fractional
order.

6 Conclusion
We presented the analysis of the proportional Caputo derivative in this paper. We pre-
sented some scientific theorems for this new derivative. We discretized the new derivative.
We presented the stability analysis and experiments. We obtained the stability condition
for a problem using the new derivative. We considered a problem with the constant pro-
portional Caputo derivative. We solved the problem by the Laplace transform. We demon-
strated the numerical simulations by some figures.
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Figure 3 Solution of the problem for α = 0.5

Figure 4 Solution of the problem for α = 0.7

Figure 5 Solution of the problem for α = 0.9
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Figure 6 Solution of the problem for α = 0.99

Figure 7 Solution of the problem for α = w = c = 0.8
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