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Abstract
In this paper, we introduce the functional equations

f (2x – y) + f (x + 2y) = 5
[
f (x) + f (y)

]
,

f (2x – y) + f (x + 2y) = 5f (x) + 4f (y) + f (–y),

f (2x – y) + f (x + 2y) = 5f (x) + f (2y) + f (–y),

f (2x – y) + f (x + 2y) = 4
[
f (x) + f (y)

]
+

[
f (–x) + f (–y)

]
.

We show that these functional equations are quadratic and apply them to
characterization of inner product spaces. We also investigate the stability problem on
restricted domains. These results are applied to study the asymptotic behaviors of
these quadratic functions in complete β-normed spaces.

MSC: 39B82; 39B52; 39B62

Keywords: Stability; Quadratic functional equation; Quadratic function; Asymptotic
behavior

1 Introduction
A function f : V → W between linear vector spaces V and W is called a quadratic function
if

f (x + y) + f (x – y) = 2f (x) + 2f (y), x, y ∈ V . (1.1)

It is clear that f : R → R defined by f (x) = ax2 is a quadratic function, where a is an ar-
bitrary constant. Indeed, a continuous quadratic function f : R → R is of this form. It is
well known that a function f : V → W between real vector spaces V and W is quadratic if
and only if there exists a unique symmetric biadditive function B : V × V → W such that
f (x) = B(x, x) for all x ∈ V (see [1–3]). The functional equation (1.1) plays an important
role in the characterization of inner product spaces [4]. In this paper, we deal with the
functional equation

f (2x – y) + f (x + 2y) = 5
[
f (x) + f (y)

]
. (1.2)
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We also consider some functional equations with slight changes in the functional equation
(1.2):

f (2x – y) + f (x + 2y) = 5f (x) + 4f (y) + f (–y),

f (2x – y) + f (x + 2y) = 5f (x) + f (2y) + f (–y),

f (2x – y) + f (x + 2y) = 4
[
f (x) + f (y)

]
+

[
f (–x) + f (–y)

]
.

The stability of the quadratic functional equation (1.1) was first investigated by Skof [5].
Czerwik [6] studied the stability of the quadratic functional equation (1.1) in a general case
and generalized Skof ’s result. For more detailed information on the stability results of the
functional equation (1.1) and other quadratic functional equations, we refer the readers
to [7–17]. We also refer the readers to the books [1, 2, 18–20].

2 Solutions of Eq. (1.2)
In this section, we show that the functional equation (1.2) is equivalent to the quadratic
equation (1.1). That is, every solution of Eq. (1.2) is a quadratic function.

Theorem 2.1 Let X and Y be real vector spaces. A function f : X → Y satisfies (1.2) if and
only if f satisfies (1.1).

Proof Let f satisfy (1.2). Replacing x = y = 0 in (1.2), we obtain f (0) = 0. Letting y = 0 in
(1.2), we get f (2x) = 4f (x) for all x ∈ X. Then if we put x = 0 in (1.2), we infer that f is even.
Replacing x in (1.2) by x – y yields

f (2x – 3y) + f (x + y) = 5
[
f (x – y) + f (y)

]
, x, y ∈ X. (2.1)

Replacing y in (1.2) by 2y – x yields

f (3x – 2y) + f (4y – x) = 5
[
f (x) + f (2y – x)

]
, x, y ∈ X.

Interchanging the role of x and y, we obtain

f (3y – 2x) + f (4x – y) = 5
[
f (y) + f (2x – y)

]
, x, y ∈ X. (2.2)

Subtracting (2.1) from (2.2) and using the evenness of f , we get

f (4x – y) – f (x + y) = 5
[
f (2x – y) – f (x – y)

]
, x, y ∈ X. (2.3)

Replacing x by 2x in (1.2) and using f (2x) = 4f (x), we obtain

f (4x – y) + 4f (x + y) = 5
[
4f (x) + f (y)

]
, x, y ∈ X. (2.4)

Subtracting (2.4) from (2.2), we get

f (3y – 2x) – 4f (x + y) = 5
[
f (2x – y) – 4f (x)

]
, x, y ∈ X. (2.5)
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Subtracting (2.5) from (2.1) and using the evenness of f , we get

f (x + y) = f (x – y) + f (y) – f (2x – y) + 4f (x), x, y ∈ X. (2.6)

Replacing y by 2y in (2.6) and using f (2x) = 4f (x), we obtain

f (x + 2y) = f (x – 2y) + 4f (y) – 4f (x – y) + 4f (x), x, y ∈ X. (2.7)

If we replace y in (2.7) with –y and add the resultant equation to (2.7), then we obtain

f (x + y) + f (x – y) = 2f (x) + 2f (y), x, y ∈ X.

Hence f is quadratic. Conversely, if f is quadratic, then there exists a symmetric biadditive
function B : X2 → X such that f (x) = B(x, x) for all x ∈ X [21, Theorem 9.5]. Hence it is easy
to see that f satisfies (1.2). �

Corollary 2.2 Let f : X → Y . The following are equivalent:
(i) f (2x – y) + f (x + 2y) = 5f (x) + 4f (y) + f (–y), x, y ∈ X ;

(ii) f (2x – y) + f (x + 2y) = 4[f (x) + f (y)] + [f (–x) + f (–y)], x, y ∈ X ;
(iii) f (2x – y) + f (x + 2y) = 5f (x) + f (2y) + f (–y), x, y ∈ X ;
(iv) f (2x – y) + f (x + 2y) = 5[f (x) + f (y)], x, y ∈ X ;
(v) f is quadratic.

Proof (i) ⇒ (iv). Letting x = y = 0 in (i), we get f (0) = 0. Putting y = 0 into (i), we obtain
f (2x) = 4f (x) for all x ∈ X. First put y = x into (i) and then y = –x into (i) to get f (3x) =
8f (x) + f (–x) and f (3x) = 6f (x) + 3f (–x). So, we infer that f is even. Consequently, f satisfies
(iv). To prove (ii) ⇒ (iv), letting x = 0 in (ii) and using f (0) = 0, we get f (2y) = 4f (y). Letting
y = 0 in (ii), we get that f is even, and consequently f satisfies (iv). To prove (iii) ⇒ (i),
letting y = 0 in (iii) and using f (0) = 0, we get f (2x) = 4f (x) for all x ∈ X. Then f satisfies
(i). The equivalence of conditions (iv) and (v) follows from Theorem 2.1. The implications
(iv) ⇒ (i), (ii), (iii) are straightforward because (iv) implies that f is even and f (2x) = 4f (x)
for all x ∈ X. Hence the proof is completed. �

Proposition 2.3 Let X be a normed linear space with norm ‖ · ‖. Then X is an inner
product space with respect to ‖ · ‖ if and only if

‖2x – y‖2 + ‖x + 2y‖2 = 5
(‖x‖2 + ‖y‖2), x, y ∈X . (2.8)

Proof Let f : X → R be a function defined by f (x) = ‖x‖2. If X is an inner product space,
then clearly (2.8) holds for all x, y ∈ X . Conversely, if (2.8) holds, then the function f sat-
isfies (1.2). By Theorem 2.1 the function f satisfies (1.1). This means that

‖x + y‖2 + ‖x – y‖2 = 2‖x‖2 + 2‖y‖2, x, y ∈X .

Therefore X is an inner product space (see [4]). �
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Proposition 2.4 Let Y be a real vector space, and let ϕ : Y → [0, +∞) be a function satis-
fying

(i) ϕ(x) = 0 iff x = 0;
(ii)

√
ϕ(tx) = |t|√ϕ(x), t ∈ R, x ∈ Y ;

(iii) ϕ(2x – y) + ϕ(x + 2y) = 5[ϕ(x) + ϕ(y)], x, y ∈ Y .
Then Y is an inner product space.

Proof The proof of Theorem 2.1 shows that ϕ satisfies (1.1). Then Y is an inner product
space by [22, Theorem 3.1]. �

Proposition 2.5 Let p, q, r, s ∈ (0, +∞), and let X be a normed linear space with norm ‖ ·‖.
Suppose that

‖2x – y‖p + ‖x + 2y‖q = 5
(‖x‖r + ‖y‖s), x, y ∈X . (2.9)

Then p = q = r = s = 2.

Proof Setting y = 0 in (2.9), we get

2p‖x‖p + ‖x‖q = 5‖x‖r , x ∈X . (2.10)

If we take x ∈X with ‖x‖ = 1 in (2.10), then we get p = 2. Letting y = x in (2.9), we get

‖x‖p + 3q‖x‖q = 5
(‖x‖r + ‖x‖s), x ∈X . (2.11)

Setting ‖x‖ = 1 in (2.11), we get q = 2. If we put y = 2x with ‖x‖ = 1 in (2.9) and use p = q = 2,
then we obtain s = 2. Finally, letting x = 2y with ‖y‖ = 1 in (2.9) and using p = q = s = 2, we
obtain r = 2. This completes the proof. �

Corollary 2.6 Let X be a normed linear space with norm ‖ · ‖. Then X is an inner product
space if and only if there exist p, q, r, s ∈ (0, +∞) such that

‖2x – y‖p + ‖x + 2y‖q = 5
(‖x‖r + ‖y‖s), x, y ∈X .

3 Stability of Eq. (1.2): fixed point method
Let X be a nonempty set. A function d : X ×X → [0, +∞] is called a generalized metric
on X if it satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈X ;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈X .

It is clear that the only difference between the generalized metric and the metric is that the
generalized metric accepts the infinity. We will use the following fundamental theorem in
fixed point theory.

Theorem 3.1 ([23]) Let (X , d) be a generalized complete metric space, and let � : X →X
be a strictly contractive function with Lipschitz constant 0 < L < 1. Suppose that for an
element a ∈X , there exists a nonnegative integer k such that d(�k+1a,�ka) < ∞. Then
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(i) the sequence {�na}∞n=1 converges to a fixed point b ∈X of �;
(ii) b is the unique fixed point of � in the set Y = {y ∈X : d(�ka, y) < ∞};

(iii) d(y, b) ≤ 1
1–L d(y,�y) for all y ∈ Y .

In this section, 0 < β ≤ 1 is a fixed real number. Suppose E is a real vector space. A func-
tion ‖ · ‖β : E → [0, +∞) is called a β-norm if it satisfies

(B1) ‖x‖β = 0 if and only if x = 0;
(B2) ‖λx‖β = |λ|β‖x‖β for all λ ∈R and x ∈ E;
(B3) ‖x + y‖β ≤ ‖x‖β + ‖y‖β for all x, y ∈ E.
(E,‖ · ‖β ) is called a complete β-normed space if every Cauchy sequence {xn}∞n=1 ⊆ E

(with respect to ‖ · ‖β ) converges to an element x ∈ E. Using the idea of Cădariu and Radu
[24], we apply the fixed point method to study the stability of quadratic functional equation
(1.2).

Theorem 3.2 Let X be a linear space, and let E be a complete β-normed space. Suppose
ϕ : X2 → [0, +∞) is a given function and there exists a constant 0 < L < 1 such that

lim
n→∞

ϕ(3nx, 3ny)
9nβ

= 0, ϕ(3x, 3x) ≤ 9βLϕ(x, x), x, y ∈ X. (3.1)

Furthermore, let f : X → E be a function that satisfies

∥
∥f (2x – y) + f (x + 2y) – 5f (x) – 5f (y)

∥
∥

β
≤ ϕ(x, y), x, y ∈ X. (3.2)

Then there exists a unique quadratic function Q : X → E such that

∥
∥f (x) – Q(x)

∥
∥

β
≤ 1

9β (1 – L)
ϕ(x, x), x ∈ X. (3.3)

Proof Let � = {g : X → E}. Define d : �2 → [0, +∞] by

d(g, h) = inf
{

C ∈ [0, +∞] :
∥∥g(x) – h(x)

∥∥
β

≤ Cϕ(x, x), x ∈ X
}

.

We easily to see that d is a generalized metric on � and (�, d) is complete. We define the
function T : � → � by (Tg)(x) = 1

9 g(3x) for all x ∈ X. We show that d(Tg, Th) ≤ Ld(g, h)
for all g, h ∈ �. Let g, h ∈ � be such that d(g, h) < ∞, and take arbitrary ε > 0. Then ‖g(x) –
h(x)‖β ≤ Cϕ(x, x) for all x ∈ X, where C = d(g, h)+ε. Replacing x by 3x in the last inequality
and applying (3.1), we get

∥∥g(3x) – h(3x)
∥∥

β
≤ C9βLϕ(x, x), x ∈ X.

This means that d(Tg, Th) ≤ LC = L(d(g, h) + ε), and since ε > 0 is arbitrary, we infer that
d(Tg, Th) ≤ Ld(g, h). So T is strictly contractive on � with the Lipschitz constant L. On
the other hand, replacing y = x in (3.2) and dividing both sides by 9β , we obtain

∥∥Tf (x) – f (x)
∥∥

β
≤ ϕ(x, x)

9β
, x ∈ X.
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Hence d(Tf , f ) ≤ 9–β < ∞. By (i) of Theorem 3.1 we conclude that the sequence {Tnf }∞n=1

converges to a fixed point Q ∈ � of T . Hence

Q : X → E, Q(x) = lim
n→∞

f (3nx)
9n , x ∈ X. (3.4)

Moreover, by (ii) and (iii) of Theorem 3.1 Q is the unique fixed point of � := {g ∈ � :
d(g, f ) < ∞}, and

d(f , Q) ≤ 1
1 – L

d(Tf , f ) ≤ 1
9β (1 – L)

.

Therefore inequality (3.3) holds. Using (3.1), (3.2), and (3.4), we get

∥
∥Q(2x – y) + Q(x + 2y) – 5Q(x) – 5Q(y)

∥
∥

β

= lim
n→∞

∥
∥∥
∥

f (3n(2x – y))
9n +

f (3n(x + 2y))
9n – 5

f (3nx)
9n – 5

f (3ny)
9n

∥
∥∥
∥

β

≤ lim
n→∞

ϕ(3nx, 3ny)
9nβ

= 0, x, y ∈ X.

So Q satisfies (1.2), and, consequently, Q is quadratic by Theorem 2.1. The uniqueness of
Q is a well-known and simple consequence of (3.3). �

Similarly, we have the following result.

Theorem 3.3 Let X be a linear space, and let E be a complete β-normed space. Suppose
ϕ : X2 → [0, +∞) is a given function and there exists a constant 0 < L < 1 such that

lim
n→∞ 9nβϕ

(
x
3n ,

y
3n

)
= 0, 9βϕ(x, x) ≤ Lϕ(3x, 3x), x, y ∈ X.

Furthermore, let f : X → E be a function that satisfies

∥∥f (2x – y) + f (x + 2y) – 5f (x) – 5f (y)
∥∥

β
≤ ϕ(x, y), x, y ∈ X.

Then there exists a unique quadratic function Q : X → E such that

∥
∥f (x) – Q(x)

∥
∥

β
≤ L

9β (1 – L)
ϕ(x, x), x ∈ X.

Corollary 3.4 Let X be a normed space, and let E be a complete β-normed space. Suppose
δ, ε ≥ 0, p, q ∈R, and f : X → E is a given function such that

∥∥f (2x – y) + f (x + 2y) – 5f (x) – 5f (y)
∥∥

β
≤

⎧
⎨

⎩
δ + ε(‖x‖p + ‖y‖q), p, q < 2β ,

ε(‖x‖p + ‖y‖q), p, q > 2β ,
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for all x, y ∈ X (resp., for all x, y ∈ X \ {0} when at least p < 0 or q < 0). Then there exists a
unique quadratic function Q : X → E such that

∥∥f (x) – Q(x)
∥∥

β
≤

⎧
⎨

⎩

δ+ε(‖x‖p+‖x‖q)
9β –3r , p, q < 2β ,

3sε
3s–9β (‖x‖p + ‖x‖q), p, q > 2β ,

for all x ∈ X (resp., for all x ∈ X \ {0} when at least p < 0 or q < 0), where r = max{|p|, |q|}
and s = min{p, q}.

Theorem 3.5 Let X be a linear space, and let E be a complete β-normed space. Suppose
functions f : X → E and ϕ : X2 → [0, +∞) are such that

∥
∥f (2x – y) + f (x + 2y) – 5f (x) – 5f (y)

∥
∥

β
≤ ϕ(x, y), x, y ∈ X. (3.5)

Then f is quadratic if we have one of the following possibilities:
(i) limn→∞ ϕ(2nx,2ny)

4nβ = 0, ϕ(x, 0) = 0, x, y ∈ X ;
(ii) limn→∞ 4nβϕ( x

2n , y
2n ) = 0, ϕ(x, 0) = 0, x, y ∈ X .

Proof Letting y = 0 in (3.5), we get f (2x) – 4f (x) = 5f (0) for all x ∈ X. Then f (0) = 0, and

f (2nx)
4n = f (x), 4nf

(
x
2n

)
= f (x), x ∈ X, n ∈ N. (3.6)

In case (i), replacing x, y by 2nx, 2ny in (3.5), respectively, and using (3.6), we obtain

∥
∥f (2x – y) + f (x + 2y) – 5f (x) – 5f (y)

∥
∥

β
≤ ϕ(2nx, 2ny)

4nβ
, x, y ∈ X. (3.7)

Taking the limit in (3.7) as n → ∞ yields f (2x – y) + f (x + 2y) = 5f (x) + 5f (y) for all x, y ∈ X.
Consequently, f is quadratic by Theorem 2.1.

Similarly, we get the result in case (ii). �

Corollary 3.6 Let X be a normed space, and let E be a complete β-normed space. Suppose
p, q > 0 with p + q 
= 2β and f : X → E is a function such that

∥
∥f (2x – y) + f (x + 2y) – 5f (x) – 5f (y)

∥
∥

β
≤ ‖x‖p‖y‖q, x, y ∈ X.

Then f is quadratic.

4 Stability of Eq. (1.2) on restricted domains
In this section, we investigate the stability of the functional equation (1.2) on a restricted
domain. As an application, we use the result to the study of an interesting asymptotic
behavior of that equation. It should be mentioned that Skof [5] was the first author to
treat the stability of the quadratic equation. Czerwik [6] proved a stability theorem on the
quadratic equation. As a particular case, he proved the following theorem.
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Theorem 4.1 Let X be a vector space, let Y be a Banach space, and let δ ≥ 0. If a‘function
f : X → Y satisfies the inequality

∥∥f (x + y) + f (x – y) – 2f (x) – 2f (y)
∥∥ ≤ δ

for all x, y ∈ X, then there exists a unique quadratic function Q : X → Y such that ‖f (x) –
Q(x)‖ ≤ δ

2 for all x ∈ X. Moreover, if f is measurable or if f (tx) is continuous in t for each
fixed x ∈ X, then Q(tx) = t2Q(x) for all x ∈ X and t ∈ R.

In the following results, we assume that X is a normed space and Y is a complete β-
normed space.

Theorem 4.2 Let d > 0 and δ ≥ 0. Assume that a function f : X → Y satisfies the inequality

∥∥f (2x – y) + f (x + 2y) – 5f (x) – 5f (y)
∥∥

β
≤ δ (4.1)

for all x, y ∈ X with ‖x‖+‖y‖ ≥ d. Then there exists a unique quadratic function Q : X → Y
such that

∥
∥f (x) – Q(x)

∥
∥

β
≤ 9β + 5β + 1

5β (9β – 1)
δ, x ∈ X. (4.2)

Proof Letting y = x in (4.1), we get

∥∥f (3x) – 9f (x)
∥∥

β
≤ δ, ‖x‖ ≥ d.

Replacing x by 3nx in this inequality and dividing by 9β(n+1), we get

∥∥
∥∥

f (3n+1x)
9n+1 –

f (3nx)
9n

∥∥
∥∥

β

≤ δ

9β(n+1) , ‖x‖ ≥ d.

Then

∥
∥∥∥

f (3n+1x)
9n+1 –

f (3mx)
9m

∥
∥∥∥

β

≤
n∑

k=m

δ

9β(k+1) , ‖x‖ ≥ d, n ≥ m ≥ 0. (4.3)

This shows that { f (3nx)
9n }∞n=1 is a Cauchy sequence for each x ∈ X. As Y is complete, we can

define the function Q : X → Y by

Q(x) := lim
n→∞

f (3nx)
9n , x ∈ X.

Hence (4.1) implies that

Q(2x – y) + Q(x + 2y) = 5Q(x) + 5Q(y), x, y ∈ X. (4.4)

Consequently, Q is quadratic by Theorem 2.1. Letting m = 0 and taking the limit as n → ∞
in (4.3), we obtain

∥∥Q(x) – f (x)
∥∥

β
≤ δ

9β – 1
, ‖x‖ ≥ d. (4.5)
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We now let x, y ∈ X with x 
= 0 and choose m ∈ N such that ‖3mx‖ ≥ d + 2‖y‖. Then (4.1)
and (4.5) imply

∥∥f
(
2 × 3mx – y

)
+ f

(
3mx + 2y

)
– 5f

(
3mx

)
– 5f (y)

∥∥
β

≤ δ,

∥∥Q
(
2 × 3mx – y

)
– f

(
2 × 3mx – y

)∥∥
β

≤ δ

9β – 1
,

∥∥Q
(
3mx + 2y

)
– f

(
3mx + 2y

)∥∥
β

≤ δ

9β – 1
,

∥
∥5f

(
3mx

)
– 5Q

(
3mx

)∥∥
β

≤ 5βδ

9β – 1
.

Since Q satisfies (4.4), using the triangle inequality for these inequalities, we get

∥∥f (y) – Q(y)
∥∥

β
≤ 9β + 5β + 1

5β (9β – 1)
δ.

It remains to prove the uniqueness of Q. Assume that S : X → X is another quadratic
function that satisfies inequality (4.2). Then we have

∥∥Q(x) – S(x)
∥∥

β
≤ ∥∥Q(x) – f (x)

∥∥
β

+
∥∥f (x) – S(x)

∥∥
β

≤ 2(9β + 5β + 1)
5β (9β – 1)

δ, x ∈ X.

Since Q and S are quadratic, the last inequality implies that

∥
∥Q(x) – S(x)

∥
∥

β
=

1
n2β

∥
∥Q(nx) – S(nx)

∥
∥

β
≤ 2(9β + 5β + 1)

(5n2)β (9β – 1)
δ, x ∈ X, n ∈N.

Taking the limit as n → ∞, we obtain Q(x) = S(x) for all x ∈ X. This ends the proof. �

Corollary 4.3 Let d > 0 and δ ≥ 0. Assume that a function f : X → Y satisfies the inequal-
ity

∥∥f (2x – y) + f (x + 2y) – 5f (x) – 5f (y)
∥∥

β
≤ δ, max

{‖x‖,‖y‖} ≥ d.

Then there exists a unique quadratic function Q : X → Y satisfying (4.2).

Proof If ‖x‖ + ‖y‖ ≥ 2d, then max{‖x‖,‖y‖} ≥ d. Hence f satisfies (4.1) for all x, y ∈ X with
‖x‖ + ‖y‖ ≥ 2d. Therefore the result follows from Theorem 4.2. �

We apply these results to study the asymptotic behavior of quadratic functions. Jung [9]
has proved an asymptotic property of quadratic functions (see also [25]).

Corollary 4.4 Let f : X → Y . Then the following statements are equivalent:
(i) lim sup‖x‖+‖y‖→∞ ‖f (2x – y) + f (x + 2y) – 5f (x) – 5f (y)‖β = 0;

(ii) lim supmax{‖x‖,‖y‖}→∞ ‖f (2x – y) + f (x + 2y) – 5f (x) – 5f (y)‖β = 0;
(iii) f (2x – y) + f (x + 2y) = 5f (x) + 5f (y), x, y ∈ X ;
(iv) f is quadratic.
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Proof Since max{‖x‖,‖y‖} ≤ ‖x‖+‖y‖ ≤ 2 max{‖x‖,‖y‖}, conditions (i) and (ii) are equiv-
alent. The equivalence of (iii) and (iv) and (iv) ⇒ (i) follows from Theorem 2.1. To prove
(i) ⇒ (iv), by the assumption there exists an increasing sequence of positive numbers
{dn}∞n=1 such that

∥
∥f (2x – y) + f (x + 2y) – 5f (x) – 5f (y)

∥
∥

β
≤ 1

n
, ‖x‖ + ‖y‖ ≥ dn.

By Theorem 4.2 there exists a unique quadratic function Qn : X → Y such that

∥
∥f (x) – Qn(x)

∥
∥

β
≤ c

n
, x ∈ X, n ∈N, (4.6)

where c := 9β +5β +1
5β (9β –1) . Since Qn is a unique quadratic function satisfying (4.6) and

∥
∥f (x) – Qn+1(x)

∥
∥

β
≤ c

n + 1
≤ c

n
, x ∈ X, n ∈ N,

we infer that Qn+1 = Qn for all n ∈N. Therefore (4.6) implies that

∥
∥f (x) – Q1(x)

∥
∥

β
=

∥
∥f (x) – Qn(x)

∥
∥

β
≤ c

n
, x ∈ X, n ∈ N.

Taking the limit as n → ∞, we obtain f (x) = Q1(x) for all x ∈ X. Hence f is quadratic. �

Corollary 4.5 Let f : X → Y , and let z be a fixed point of Y . Then the following statements
are equivalent:

(i) lim sup‖x‖+‖y‖→∞ ‖f (2x – y) + f (x + 2y) – 5f (x) – 5f (y) – z‖β = 0;
(ii) lim supmax{‖x‖,‖y‖}→∞ ‖f (2x – y) + f (x + 2y) – 5f (x) – 5f (y) – z‖β = 0;

(iii) f (2x – y) + f (x + 2y) = 5f (x) + 5f (y) + z, x, y ∈ X ;
(iv) f + 1

8 z is quadratic, that is,

f (x + y) + f (x – y) = 2f (x) + 2f (y) +
1
4

z, x, y ∈ X.

Proof Define g : X → Y by g(x) := f (x) + 1
8 z. Clearly,

f (2x – y) + f (x + 2y) – 5f (x) – 5f (y) – z = g(2x – y) + g(x + 2y) – 5g(x) – 5g(y)

for all x, y ∈ X. Then (i)–(iv) are equivalent by Corollary 4.4. �

Corollary 4.6 Let f : X → Y , and let z be a fixed point of Y . Then the following statements
are equivalent:

(i) f (2x – y) + f (x + 2y) – 5f (x) – 5f (y) = z, ‖x‖ + ‖y‖ ≥ d for some d > 0;
(ii) f (2x – y) + f (x + 2y) = 5f (x) + 5f (y) + z, x, y ∈ X ;

(iii) f + 1
8 z is quadratic.

Corollary 4.7 Let d > 0 and δ ≥ 0. Assume that a function f : X → Y satisfies the inequal-
ity

∥∥f (2x – y) + f (x + 2y) – 5f (x) – 5f (y)
∥∥

β
≤ δ
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for all (x, y) ∈ X2 \ E, where E := {(x, y) ∈ X2 : ‖x‖ < d,‖y‖ < d}. Then there exists a unique
quadratic function Q : X → Y satisfying (4.2).

Proof It is clear that {(x, y) ∈ X2 : ‖x‖ + ‖y‖ ≥ 2d} ⊆ X2 \ E. Hence the result follows from
Theorem 4.2. �

Using the same argument as in Theorem 4.2, we obtain the following result.

Theorem 4.8 Let d > 0 and δ ≥ 0. Assume that a function f : X → Y satisfies the inequality

∥∥f (2x – y) + f (x + 2y) – 5f (x) – 5f (y)
∥∥

β
≤ δ, ‖x‖ ≥ d

(
respectively,‖y‖ ≥ d

)
.

Then there exists a unique quadratic function Q : X → Y satisfying (4.2) for all x ∈ X.

Corollary 4.9 Let f : X → Y , and let z be a fixed point of Y . Then the following statements
are equivalent:

(i) lim sup‖x‖→∞ ‖f (2x – y) + f (x + 2y) – 5f (x) – 5f (y) – z‖β = 0;
(ii) lim sup‖y‖→∞ ‖f (2x – y) + f (x + 2y) – 5f (x) – 5f (y) – z‖β = 0;

(iii) f (2x – y) + f (x + 2y) = 5f (x) + 5f (y) + z for all x, y ∈ X ;
(iv) f + 1

8 z is quadratic.

Proof Without loss of generality, we may assume that z = 0. It suffices to prove (i) ⇒ (iv)
and (ii) ⇒ (iv). We only prove (i) ⇒ (iv), and (ii) ⇒ (iv) is similarly achieved. To prove (i) ⇒
(iv), by the assumption there exists an increasing sequence of positive numbers {dn}∞n=1

such that

∥
∥f (2x – y) + f (x + 2y) – 5f (x) – 5f (y)

∥
∥

β
≤ 1

n
, ‖x‖ ≥ dn.

By Theorem 4.8 there exists a unique quadratic function Qn : X → Y such that

∥∥f (x) – Qn(x)
∥∥ ≤ c

n
, x ∈ X, n ∈N,

where c := 9β +5β +1
5β (9β –1) . The rest of the proof is quite similar to that of Corollary 4.4, and we

leave it. �

Corollary 4.10 Let f : X → Y , and let z be a fixed point of Y . Then the following statements
are equivalent:

(i) f (2x – y) + f (x + 2y) – 5f (x) – 5f (y) = z, ‖x‖ ≥ d for some d > 0;
(ii) f (2x – y) + f (x + 2y) – 5f (x) – 5f (y) = z, ‖y‖ ≥ c for some c > 0;

(iii) f (2x – y) + f (x + 2y) – 5f (x) – 5f (y) = z for all x, y ∈ X ;
(iv) f + 1

8 z is quadratic.
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