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Abstract
We study the unilateral global bifurcation result for the one-dimensional discrete
p-Laplacian problem{

–�[ϕp(�u(t – 1))] = λa(t)ϕp(u(t)) + g(t,u(t),λ), t ∈ [1, T + 1]Z ,

�u(0) = u(T + 2) = 0,

where �u(t) = u(t + 1) – u(t) is a forward difference operator, ϕp(s) = |s|p–2s
(1 < p < +∞) is a one-dimensional p-Laplacian operator. λ is a positive real parameter,
a : [1, T + 1]Z → [0, +∞) and a(t0) > 0 for some t0 ∈ [1, T + 1]Z , g : [1, T + 1]Z ×R

2 → R

satisfies the Carathéodory condition in the first two variables. We show that (λ1, 0) is a
bifurcation point of the above problem, and there are two distinct unbounded
continua C + and C –, consisting of the bifurcation branch C from (λ1, 0), where λ1 is
the principal eigenvalue of the eigenvalue problem corresponding to the above
problem. Let T > 1 be an integer, Z denote the integer set form,n ∈ Z withm < n,
[m,n]Z := {m,m + 1, . . . ,n}.
As the applications of the above result, we prove more details about the existence

of constant sign solutions for the following problem:{
–�[ϕp(�u(t – 1))] = λa(t)f (u(t)), t ∈ [1, T + 1]Z ,

�u(0) = u(T + 2) = 0,

where f ∈ C(R,R) with sf (s) > 0 for s �= 0.

MSC: 39A10; 39A12; 34C23
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1 Introduction
In this paper, we establish a Dancer-type unilateral global bifurcation result for one-
dimensional discrete p-Laplacian problem⎧⎨

⎩–�[ϕp(�u(t – 1))] = λa(t)ϕp(u(t)) + g(t, u(t),λ), t ∈ [1, T + 1]Z ,

�u(0) = u(T + 2) = 0,
(1.1)
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where a : [1, T +1]Z → [0, +∞) and a(t0) > 0 for some t0 ∈ [1, T +1]Z , g : [1, T +1]Z ×R
2 →

R satisfies the Carathéodory condition in the first two variables and

lim|s|→0

g(t, s,λ)
|s|p–1 = 0

uniformly for a.e. t ∈ [1, T + 1]Z and λ on bounded sets. Under these assumptions, we
shall show that (λ1, 0) is a bifurcation point of (1.1) and there are two distinct unbounded
continua C + and C –, consisting of the bifurcation branch C from (λ1, 0), where λ1 is the
principal eigenvalue of the eigenvalue problem corresponding to (1.1).

When p = 2, Ma and Ma [17] considered the optimal intervals of r, for which they gave
a complete description of the global behavior of solutions set for the problem

⎧⎨
⎩–�2u(t – 1) = rg(t)f (u(t)), t ∈ [1, T]Z ,

u(0) = u(T), �u(0) = �u(T)
(1.2)

under some suitable assumptions on f and g . Using the bifurcation theory of Rabinowitz
[5, 18], they proved that if λ1

f∞ < r < λ1
f0

or λ1
f0

< r < λ1
f∞ , (1.2) has two solutions u+ and u–

such that u+ is positive in [0, T]Z and u– is negative in [0, T]Z , where f0 = lims→0+
f (s)

s ,
f∞ = lims→+∞ f (s)

s , λ1 is the first eigenvalue of the following linear eigenvalue problem:

⎧⎨
⎩–�2u(t – 1) = rg(t)u(t), t ∈ [1, T]Z ,

u(0) = u(T), �u(0) = �u(T).

The idea of using bifurcation methods to study the solvability of nonlinear boundary value
problems has been applied to study some Dirichlet, Sturm–Liouville, and periodic bound-
ary value problems, for instance, [10, 17, 21, 24].

When p �= 2, many authors discussed the existence and multiplicity of solutions for the
one-dimensional discrete p-Laplacian problem by exploiting various methods, including
the method of upper and lower solutions, Leray–Schauder degree, fixed point theory, crit-
ical theory, and variational methods, which can be seen in D’Aguì [6], Bereanu [3], Wang
et al. [23], and [8, 11–13, 22] and the references therein. In particular, He [11] established
the existence of one or two positive solutions for the equation

⎧⎨
⎩�[ϕp(�u(t – 1))] + a(t)f (u(t)) = 0, t ∈ [1, T + 1]Z ,

�u(0) = u(T + 2) = 0.

In the paper, he assumed that the nonlinear term f is positive and f is superlinear at 0, sub-
linear at infinity. In 2015, Bai and Chen [2] discussed the discrete p-Laplacian boundary
value problem

⎧⎨
⎩–�[ϕp(�u(t – 1))] = λp(t)g(u(t)), t ∈ [1, T]Z ,

u(0) = u(T + 1) = 0,
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where lims→∞ g(s)
ϕp(s) = 0 and g(s)

ϕp(s) is strictly decreasing on (0,∞). They obtained an un-
bounded continuum C of positive solutions emanating from (λ, u) = (0, 0); while the exis-
tence of global continuum of solutions comes from [19].

There is no report on the global structure of solution sets by the bifurcation theory
for discrete p-Laplacian problem (1.1). Although there are a great amount of papers re-
searching the bifurcation phenomenon of p-Laplacian problem, but those results are not
unilateral, and their conclusions are all obtained in the differential case. As we know, the
proofs are based on the local properties of solutions of (1.1) bifurcating from (λ1, 0) (see
Lemma 3.4). Although the proof of the above result follows the same steps as for the semi-
linear case from [7], his methods cannot be applied directly to the quasilinear discrete
problem. In addition, the main reason is that the spectrum of the discrete p-Laplacian
eigenvalue problem is unknown.

In 2002, Anane [1] discussed the spectra of the following differential p-Laplacian prob-
lem:

⎧⎨
⎩–(ϕp(u′))′ = λm(t)ϕp(u), t ∈ (a, b),

u(a) = u(b) = 0,
(1.3)

where m ∈ M(I) := {m ∈ L∞ | meas{t ∈ I, m(t) > 0} �= 0, I = [a, b]},λ is the spectral parame-
ter. They obtained the following result.

Theorem A Assume that m ∈ M(I) such that m �≡ 1, p �= 2, we have:
(i) Every eigenfunction corresponding to the kth eigenvalues λk(m, I) has exactly k – 1

zeros.
(ii) For every k, λk(m, I) is simple and verifies the strict monotonicity property with

respect to the weight m and the domain I .
(iii) (1.3) has infinite real eigenvalues, the eigenvalues are ordered as

0 < λ1(m, I) < λ2(m, I) < · · · < λk(m, I) < · · · → +∞ as k → +∞.

The first eigenvalue λ1 is of special importance. However, the method in [1] has no effect
on the spectral study of the discrete p-Laplacian problem, whether the first eigenvalue of
the discrete p-Laplacian problem is simple or not, and the properties of the corresponding
eigenfunction are both unknown.

Of course, the next natural question is: does the unilateral bifurcation version exist for
quasilinear difference problem (1.1)? Furthermore, what is the existence of a positive solu-
tion or a negative one for a nonlinear p-Laplacian difference problem (1.1)? In this paper,
we give a positive answer for those questions.

This paper is organized as follows. In Sect. 2, we show the existence of the principal
eigenvalue and the sign of the corresponding eigenfunctions for the one-dimensional dis-
crete p-Laplacian eigenvalue problem, which will be of interest for us. In Sect. 3, we es-
tablish the unilateral global bifurcation theory for (1.1). In Sect. 4, as an application, we
prove that there exist constant sign solutions for problem (4.1) (see Sect. 4) according to
the different behavior of nonlinear term f at 0 and ∞.
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2 The existence of the principal eigenvalue
In this section, we consider the existence of the principal eigenvalue and the sign of the
corresponding eigenfunction for the discrete p-Laplacian eigenvalue problem

⎧⎨
⎩–�[ϕp(�u(t – 1))] = λa(t)ϕp(u(t)), t ∈ [1, T + 1]Z ,

�u(0) = u(T + 2) = 0.
(2.1)

Let E be defined by

E =
{

u | u : [1, T + 1]Z →R and �u(0) = u(T + 2) = 0
}

equipped with the norm ‖u‖ = maxt∈[0,T+2]Z |u(t)|, then (E,‖ · ‖) is a Banach space.

Lemma 2.1 Let u ∈ E. Then

–
T+1∑
t=1

�
[
ϕp

(
�u(t – 1)

)] · u(t) =
T+1∑
t=1

∣∣�u(t)
∣∣p.

Proof We have

T+1∑
t=1

�
[
ϕp

(
�u(t – 1)

)] · u(t)

=
T+1∑
t=1

�
(∣∣�u(t – 1)

∣∣p–2
�u(t – 1)

) · u(t)

=
T∑

j=0

u(j + 1)�
(∣∣�u(j)

∣∣p–2
�u(j)

)
(j = t – 1)

=
T∑

j=0

u(j + 1)
(∣∣�u(j + 1)

∣∣p–2
�u(j + 1) –

∣∣�u(j)
∣∣p–2

�u(j)
)

=
T∑

j=0

u(j + 1)
∣∣�u(j + 1)

∣∣p–2
�u(j + 1) –

T∑
j=0

u(j + 1)
∣∣�u(j)

∣∣p–2
�u(j)

=
T+1∑
k=1

u(k)
∣∣�u(k)

∣∣p–2
�u(k) –

T∑
j=0

u(j + 1)
∣∣�u(j)

∣∣p–2
�u(j) (k = j + 1)

=
T+1∑
k=1

u(k)
∣∣�u(k)

∣∣p–2
�u(k) –

T∑
j=1

u(j + 1)
∣∣�u(j)

∣∣p–2
�u(j) – u(1)

∣∣�u(0)
∣∣p–2

�u(0)

=
T∑

k=1

u(k)
∣∣�u(k)

∣∣p–2
�u(k) –

T∑
k=1

u(k + 1)
∣∣�u(k)

∣∣p–2
�u(k)

+ u(T + 1)
∣∣�u(T + 1)

∣∣p–2
�u(T + 1) – u(1)

∣∣�u(0)
∣∣p–2

�u(0)

= –
T∑

k=1

∣∣�u(k)
∣∣p + u(T + 1)

∣∣�u(T + 1)
∣∣p–2

�u(T + 1) – u(1)
∣∣�u(0)

∣∣p–2
�u(0)
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= –
T∑

k=1

∣∣�u(k)
∣∣p –

∣∣�u(T + 1)
∣∣p –

∣∣�u(0)
∣∣p (

�u(0) = u(T + 2) = 0
)

= –
T+1∑
k=1

∣∣�u(k)
∣∣p. �

Lemma 2.2 λ1(a) is the first eigenvalue of (2.1), then the first eigenvalue λ1(a) is the mini-
mum of the Rayleigh quotient, that is,

λ1(a) = inf

{ ∑T+1
t=1 |�u(t)|p∑T+1

t=1 a(t)|u(t)|p : u ∈ E
}

.

Furthermore, λ1(a) < λ(a), where λ(a) is some other eigenvalue of (2.1).

Proof Combining the equation of (2.1) with Lemma 2.1, the conclusion is clearly estab-
lished. �

Applying a similar method to prove [4, Proposition 1.10] with obvious changes, we can
obtain the following theorem.

Lemma 2.3 The first eigenvalue λ1(a) is simple. Let φ1 be the eigenfunction corresponding
to λ1(a), then φ1 does not change sign in [0, T + 2]Z . Moreover, φ1 does not vanish in [0,
T + 2]Z .

3 Unilateral global bifurcation results for (1.1)
In this section, we establish the unilateral global bifurcation theory for (1.1).

We consider the following auxiliary problem:

⎧⎨
⎩�[ϕp(�u(t – 1))] = h(t), t ∈ [1, T + 1]Z ,

�u(0) = u(T + 2) = 0,
(3.1)

where h : [1, T + 1]Z → R. It can be easily seen that problem (3.1) is equivalently written
as

u(t) = Gp(h)(t) := u(1) +
t–1∑
s=1

ϕ–1
p

[ s∑
τ=1

h(τ )

]
, t ∈ [1, T + 2]Z ,

where Gp : R→ E maps bounded sets of R into relative compacts of E.
We define the operator Tp

λ : E → E by

Tp
λ (u)(t) = u(1) +

t–1∑
s=1

ϕ–1
p

[
–

s∑
τ=1

λaϕp(u)(τ )

]

= Gp
(
–λaϕp(u)

)
(t),

then Tp
λ : E → E is completely continuous and (2.1) is equivalent to

u = Tp
λ (u).
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Next, we use Brouwer degree theory to calculate its topological degree. Let deg(I –
Tp

λ , Br , 0) be the Leray–Schauder degree for I – Tp
λ on Br , where Br = {u ∈ E : ‖u‖ < r}.

Lemma 3.1 Let λ be a constant, then for arbitrary r > 0,

deg
(
I – Tp

λ , Br , 0
)

=

⎧⎨
⎩1, 0 < λ < λ1(a),

–1, λ ∈ (λ1(a),λ2(a)),

where λ2(a) is the second eigenvalue of problem (2.1).

Proof Using the similar method of [15, Lemma 2.8], we can get the conclusion of this
theorem. �

Define Nemytskii operators H : R× E →R by

H(λ, u)(t) = –λa(t)ϕp
(
u(t)

)
– g

(
t, u(t),λ

)
.

Then it is clear that H is a continuous operator which maps bounded sets of R × E into
the bounded sets of R. Obviously, (1.1) can be equivalently written as

u = Gp ◦ H(λ, u) = F(λ, u).

It is easy to see that F : R× E → E is completely continuous and F(λ, 0) = 0, ∀λ ∈R.
For convenience, we abbreviate λ1(a) as λ1. Our first main result for (1.1) is the following

theorem.

Theorem 3.1 For p > 1, λ1 is a bifurcation point of (1.1) and the associated bifurcation
branch C in R× E whose closure contains (λ1, 0), then either

(i) C is unbounded in R× E, or
(ii) C contains a pair (λ, 0), where λ is an eigenvalue of (2.1) and λ �= λ1.

Proof Suppose on the contrary that (λ1, 0) is not a bifurcation point of (1.1). Then there
exist ε > 0, ρ0 > 0 such that, for |λ – λ1| ≤ ε and 0 < ρ < ρ0, there is no nontrivial solution
of the equation

u – F(λ, u) = 0

with ‖u‖ = ρ . By the invariance of the degree under a compact homotopy, we obtain

deg
(
I – F(λ, u), Bρ , 0

) ≡ constant (3.2)

for λ ∈ [λ1 – ε,λ1 + ε].
Take ε small enough such that there is no eigenvalue of (2.1) in (λ1,λ1 + ε]. Fix λ ∈

(λ1,λ1 + ε], we claim that the equation

u – Gp
(
–λa(t)ϕp

(
u(t)

)
– αg

(
t, u(t),λ

))
= 0 (3.3)
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has no solution u such that ‖u‖ = ρ for every α ∈ [0, 1], where ρ is sufficiently small. Sup-
pose that {un} is the solution of (3.3) with ‖un‖ → 0 as n → ∞.

Let vn = un
‖un‖ , then vn satisfies

vn = Gp

(
–λa(t)ϕp

(
vn(t)

)
– α

g(t, un(t),λ)
‖un‖p–1

)

= u(1) +
t–1∑
s=1

ϕ–1
p

[ s∑
τ=1

hn(τ )

]
,

where hn(t) = –λa(t)ϕp(vn(t)) – α
g(t,un(t),λ)
‖un‖p–1 . Let

g̃(t, u,λ) = max
0≤|s|≤u

∣∣g(t, s,λ)
∣∣,

then g̃ is nondecreasing with respect to u and

lim|u|→0

g̃(t, u,λ)
|u|p–1 = 0. (3.4)

Furthermore, (3.4) implies

g(t, u,λ)
‖u‖p–1 ≤ g̃(t, |u|,λ)

‖u‖p–1 ≤ g̃(t,‖u‖,λ)
‖u‖p–1 → 0, ‖u‖ → 0, (3.5)

uniformly for a.e. t ∈ [1, T + 1]Z and λ on bounded sets.
It is easy to see that {hn} is a bounded sequence in R, thus we can assume that

vn → v0 and ‖v0‖ = 1 as n → ∞,

v0 satisfies

–�
[
ϕp

(
�v0(t – 1)

)]
= λa(t)ϕp

(
v0(t)

)
.

This implies that λ is an eigenvalue of (2.1), this is a contradiction. From the homotopic in-
variance of the degree (refer to the proof method of Theorem 2.10 in [15]) and Lemma 3.1,
we conclude that

deg
(
I – F(λ, ·), Br, 0

)
= deg

(
I – Tp

λ , Br , 0
)

= –1. (3.6)

Similarly, for λ ∈ [λ1 – ε,λ1), it follows that

deg
(
I – F(λ, ·), Br, 0

)
= 1. (3.7)

It is easy to see that (3.6) and (3.7) contradict (3.2). Thus (λ1, 0) is a bifurcation point of
(1.1). By the global bifurcation theory [18], we can get the existence of a global branch of
solutions of (1.1) emanating from (λ1, 0). �

Let S+ = {u ∈ E | u(t) > 0, t ∈ [1, T + 1]Z}, and set S– = –S+, S = S+ ∪ S–. It is clear that
S+ and S– are disjoint and open in E. Let 
± = R× S± and 
 = R× S under the product
topology.
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Lemma 3.2 If C ⊂ (
 ∪ {(λ1, 0)}), the second alternative of Theorem 3.1 is impossible.

Proof Suppose on the contrary that there exists {(λm, um)} ⊂ C such that um �≡ 0,
(λm, um) → (λk , 0), k �= 1. With the help of the definition of λ1, we see that λk > λ1. Accord-
ing to the Sturm comparison theorem, if λ > λ1, then the eigenfunction u corresponding
to λ must change sign in [0, T + 2]Z . Let vm = um

‖um‖ , then vm satisfies

vm = Gp

(
–λma(t)ϕp

(
vm(t)

)
–

g(t, um(t),λm)
‖um‖p–1

)
. (3.8)

From (3.5), (3.8), and the compactness of Gp, we can get

vm → v0 and ‖v0‖ = 1.

In addition, v0 satisfies

–�
[
ϕp

(
�v0(t – 1)

)]
= λka(t)ϕp

(
v0(t)

)
.

Hence, v0 ∈ Sk , where Sk denotes the set of functions in E which must change sign in
[0, T + 2]Z . Therefore, when m is sufficiently large, vm ∈ Sk , combining the definition of Sk

with Lemma 2.3, it can be seen that this is a contradiction. �

Lemma 3.3 Let (λ, u) be a solution of (1.1). If there exists t0 ∈ [0, T + 1]Z such that one of
the following cases holds:

(i) u(t0) = 0, �u(t0) = 0;
(ii) u(t0) = 0, u(t0 – 1)u(t0 + 1) ≥ 0.

Then u ≡ 0 in [0, T + 2]Z .

Proof (i) By virtue of the equation of (1.1), we have

ϕp
(
�u(t0 – 1)

)
– ϕp

(
�u(t0)

)
= λa(t0)ϕp

(
u(t0)

)
+ g

(
t, u(t0),λ

)
.

Combining u(t0) = 0 with the assumption of g , we obtain

ϕp
(
�u(t0 – 1)

)
– ϕp

(
�u(t0)

)
= 0,

ϕp
(
u(t0) – u(t0 – 1)

)
– ϕp

(
u(t0 + 1) – u(t0)

)
= 0.

Thus, u(t0 – 1) = 0. Similarly, in view of

ϕp
(
�u(t0)

)
– ϕp

(
�u(t0 + 1)

)
= 0,

we can get u(t0 + 2) = 0. Further,

�u(t0 – 1) = �u(t0 + 1) = 0,

step by step, it follows that u ≡ 0.
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(ii) Using the same method, we conclude that

∣∣u(t0 – 1)
∣∣p–2u(t0 – 1) =

∣∣u(t0 + 1)
∣∣p–2u(t0 + 1),

since u(t0 – 1)u(t0 + 1) ≥ 0, we can only get

u(t0 – 1) = u(t0 + 1) = 0.

Hence, u ≡ 0. �

Theorem 3.2 (λ1, 0) bifurcates an unbounded continuum C of solutions to problem (1.1),
with the solutions on C not changing sign.

Proof In view of the conclusion of Theorem 3.1 and Lemma 3.2, we only need to prove
that C ⊂ (
 ∪ {(λ1, 0)}).

Suppose on the contrary that C �⊂ (
∪{(λ1, 0)}). Then there exists (λ, u) ∈ C ∩ (R× ∂S)
such that

(λ, u) �= (λ1, 0), u /∈ S,

and (λn, un) ∈ C ∩ (R× ∂S) with

(λn, un) → (λ, u).

Since u ∈ ∂S, by Lemma 3.3, we obtain u ≡ 0. Let ωn = un
‖un‖ , then ωn satisfies

ωn = Gp

(
–λna(t)ϕp

(
ωn(t)

)
–

g(t, un(t),λn)
‖un‖p–1

)
. (3.9)

Combining (3.5), (3.9) with the compactness of Gp, we obtain ωn → ω0 and ‖ω0‖ = 1.
Obviously, there is

–�
[
ϕp

(
�ω0(t – 1)

)]
= λa(t)ϕp

(
ω0(t)

)
.

Hence there exists λ = λk (k �= 1). Furthermore,

(λn, un) → (λk , 0).

This contradicts Lemma 3.2. �

Now, we will show more details about the bifurcation from Theorem 3.2. Let E = R× E,

(λ, u) = u – F(λ, u) and S := {(λ, u) ∈ E : 
(λ, u) = 0, u �= 0}E. For convenience, let us intro-
duce a few notations. Given any λ ∈R and 0 < s < +∞, we consider an open neighborhood
of (λ1, 0) in E defined by

Bs(λ1, 0) :=
{

(λ, u) ∈ E | ‖u‖ + |λ – λ1| < s
}

.
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And Bs(0) denotes {u ∈ E | ‖u‖ < s}. Let E0 be a closed subspace of E such that

E = span{φ1} ⊕ E0.

By the Hahn–Banach theorem [26], there exists a linear functional l ∈ E∗, where E∗ de-
notes the dual space of E such that

l(φ1) = 1 and E0 =
{

u ∈ E | l(u) = 0
}

.

Finally, for any 0 < η < 1, we define

Kη =
{

(λ, u) ∈ E | ∣∣l(u)
∣∣ > η‖u‖}.

Since u �→ |l(u)| – ‖u‖ is continuous, Kη is an open subset of E consisting of two disjoint
components K+

η and K–
η , where

K+
η =

{
(λ, u) ∈ E | l(u) > η‖u‖}, K–

η =
{

(λ, u) ∈ E | l(u) < –η‖u‖}.

In particular, both K+
η and K–

η are convex cones, K+
η = –K–

η .
Before proving our main result, we need the following lemma, which localizes the pos-

sible solutions of (1.1) bifurcating from (λ1, 0).

Lemma 3.4 For every η ∈ (0, 1), there is δ0 > 0 such that, for each 0 < δ < δ0,

((
S \ {

(λ1, 0)
}) ∩Bδ(λ1, 0)

) ⊂ Kη.

Moreover, for each

(λ, u) ∈ (
S \ {

(λ1, 0)
}) ∩ (

Bδ(λ1, 0)
)
,

there are s ∈R and y ∈ E0 (unique) such that

u = sφ1 + y and |s| > η‖u‖.

Furthermore, for these solutions (λ, u),

λ = λ1 + o(1) and y = o(s)

as s → 0.

Proof This conclusion can be obtained by using the similar method in López-Gómez [16,
Lemma 6.4.1]. �

Remark 3.1 From the proof of Lemma 6.4.1 of [14], we can see that if g(t, u,λ) is replaced
by gn(t, u,λ), which satisfies

lim‖u‖→0

gn(t, u,λ)
‖u‖p–1 = 0

uniformly for all n ∈N, then δ0 can be chosen uniformly with respect to n.
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Let δ > 0 be the constant from Lemma 3.4. For 0 < ε ≤ δ, we define D v
λ1,ε to be the com-

ponent of {(λ1, 0)}∪ (S∩Bε ∩Kv
η ) containing (λ1, 0), C v

λ1,ε to be the component of C \ D–v
λ1,ε

containing (λ1, 0), and C v to be the closure of
⋃

0<ε≤δ C v
λ1,ε . Obviously, C v is connected.

By Lemma 3.4, the definition of C v is independent of the choice of η and C = C + ∪ C –.
Similar to Dancer’s result [9, Theorem 2], we can obtain the following unilateral global

bifurcation result.

Theorem 3.3 Either C + and C – are both unbounded, or else C + ∩ C – �= {(λ1, 0)}.

Remark 3.2 Although the proof of the above result is similar to that of the semilinear case
in [9], the method cannot be used directly in this paper. In fact, the proof of Lemma 3 in
[9] strictly depends on the linear characteristics of L. Therefore, we use Lemma 3.4 and
functional analysis to prove the above result.

To show Theorem 3.3, we need the following three lemmas.

Lemma 3.5 Suppose δ1, δ2 > 0 such that 0 < δ1 + δ2 < δ and 
(λ, u) �= 0 if ‖u‖ = δ1 and
|λ – λ1| ≤ δ2. If 0 < σ < δ2 and β(σ ) is sufficiently small and positive, then

deg
(

(λ1 + σ , ·), W v, 0

)
– deg

(

(λ1 – σ , ·), W v, 0

)
= 1,

where W v = {u ∈ E | (λ, u) ∈ Kv
η ,β(σ ) < ‖u‖ < δ1}.

Proof Recall that u = l(u)ϕ1 + y. We define

ĝ(t, u,λ) =

⎧⎪⎪⎨
⎪⎪⎩

g(t, u,λ), l(u) ≤ –η‖u‖,
–l(u)
η‖u‖ g(t, –η‖u‖φ1 + y,λ), –η‖u‖ < l(u) ≤ 0,

–g(t, –u,λ), l(u) > 0.

It is easy to verify that ĝ is odd with respect to u. Let


̂(λ, u) = u – Gp
(
–λa(t)ϕp

(
u(t)

)
– ĝ

(
t, u(t),λ

))
,

then the mapping 
̂(λ, u) is odd with respect to u.
By Lemma 3.4 and our assumptions, the equation 
(λ1 + σ , u) = 0 has no solution in

Bδ1 \ (W + ∪ W – ∪ Bβ ). By Lemma 3.4, 
̂(λ1 + σ , u) = 
(λ1 + σ , u) on ∂Bδ1 ∪ ∂Bβ . It follows
that

deg
(

̂(λ1 + σ , ·), Bδ1 , 0

)
– deg

(

̂(λ1 + σ , ·), Bβ , 0

)
= deg

(

̂(λ1 + σ , ·), W +, 0

)
+ deg

(

̂(λ1 + σ , ·), W –, 0

)
.

The oddness of 
̂(λ1 + σ , ·) and the definition of the degree in Schwartz [20] ensure that

deg
(

̂(λ1 + σ , ·), W +, 0

)
= deg

(

̂(λ1 + σ , ·), W –, 0

)
.
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Then the definition of 
̂ implies

deg
(

(λ1 + σ , ·), W v, 0

)
= deg

(

̂(λ1 + σ , ·), W v, 0

)
.

Thus

2 deg
(

(λ1 + σ , ·), W v, 0

)
= deg

(

̂(λ1 + σ , ·), Bδ1 , 0

)
– deg

(

̂(λ1 + σ , ·), Bβ , 0

)
. (3.10)

A similar result holds with λ1 + σ replaced by λ1 – σ ,

2 deg
(

(λ1 – σ , ·), W v, 0

)
= deg

(

̂(λ1 – σ , ·), Bδ1 , 0

)
– deg

(

̂(λ1 – σ , ·), Bβ , 0

)
. (3.11)

Connecting Lemma 3.4 with the definition of 
̂, we obtain

deg
(

̂(λ1 + σ , ·), Bβ , 0

)
= deg

(

(λ1 + σ , ·), Bβ , 0

)

and

deg
(

̂(λ1 – σ , ·), Bβ , 0

)
= deg

(

(λ1 – σ , ·), Bβ , 0

)
.

From the proof of Theorem 3.1, it is obvious that

deg
(

(λ1 – σ , ·), Bβ , 0

)
= 1 and deg

(

(λ1 + σ , ·), Bβ , 0

)
= –1. (3.12)

By Lemma 3.4 and the definition of 
̂, it follows that

deg
(

̂(λ1 + σ , ·), Bδ1 , 0

)
= deg

(

(λ1 + σ , ·), Bδ1 , 0

)

and

deg
(

̂(λ1 – σ , ·), Bδ1 , 0

)
= deg

(

(λ1 – σ , ·), Bδ1 , 0

)
.

By our hypothesis, for λ ∈ [λ1 – σ ,λ1 + σ ], the homotopy 
(λ, ·) is admissible on Bδ1 . The
homotopy invariance of the degree ensures that

deg
(

(λ1 + σ , ·), Bδ1 , 0

)
= deg

(

(λ1 – σ , ·), Bδ1 , 0

)
.

Subtracting (3.10) from (3.11) and using (3.12), we have

deg
(

(λ1 + σ , ·), W v, 0

)
– deg

(

(λ1 – σ , ·), W v, 0

)
= 1.

The proof of this lemma is complete. �

Define T–
λ1,ε to be the component of C \ (Bε(λ1, 0) ∩ K+

η ) containing (λ1, 0).
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Lemma 3.6 If 0 < ε < δ, zero is an isolated solution of 
(λ1, u) = 0 and T–
λ1,ε is bounded in

E, then

∂Bε(λ1, 0) ∩ K+
η ∩ T–

λ1,ε �= ∅.

Proof The proof of Lemma 2 in Dancer [9] is also valid for the quasilinear case, so we omit
the proof. �

Lemma 3.7 Lemma 3.6 holds without the assumption that zero is an isolated solution of

(λ1, u) = 0.

Proof Because when ‖u‖ → 0, there is

g(t, u,λ1)
‖u‖p–1 → 0

uniformly for a.e. t ∈ [1, T + 1]Z . So we can choose a continuous function ρ : [0, +∞) →R

such that ρ(0) = 0, and for any 0 < ι < δ,

ρ(ι)‖φ1‖ > sup

{‖g(t, u,λ1)‖
‖u‖p–1 : ‖u‖ = ι

}
.

For every integer n, we can choose continuous functions fn : [0, +∞) → [0, 1] such that

fn(s) =

⎧⎨
⎩ϕp(s), 0 ≤ |s| ≤ 1

2n ,

0, |s| ≥ 1
n .

Define


n(λ, u) := u – Gp
(
–λa(t)ϕp

(
u(t)

)
– g

(
t, u(t),λ

)
– fn

(‖u‖)ρ(‖u‖)φ1
)
.

Since lim‖u‖→0
g(t,u,λ)
‖u‖p–1 = 0, we can see that

lim‖u‖→0

g(t, u,λ) + fn(‖u‖)ρ(‖u‖)φ1

‖u‖p–1 = 0, n ∈N (3.13)

uniformly for a.e. t ∈ [1, T + 1]Z and λ on bounded sets. Let

Sn :=
{

(λ, u) ∈ E : 
n(λ, u) = 0, u �= 0
}E

,

using Remark 3.1 and (3.13), Sn can be chosen such that

((
Sn \ {

(λ1, 0)
}) ∩Bδ(λ1, 0)

) ⊂ Kη.

We claim that zero is an isolated solution of 
n(λ1, u) = 0 for each n ∈N
+.

Suppose on the contrary that u is a nontrivial solution of 
n(λ1, u) = 0 such that

0 < ‖u‖ := ι < δ.

We divide the proof into two cases.
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Case 1. u ∈ span {φ1}.

n(λ1, u) = 0 implies

u = Gp
(
–λ1a(t)ϕp

(
u(t)

)
– g

(
t, u(t),λ1

)
– fn

(‖u‖)ρ(‖u‖)φ1
)
,

i.e.,

–�
[
ϕp

(
�u(t – 1)

)]
= λ1a(t)ϕp

(
u(t)

)
+ g

(
t, u(t),λ1

)
+ fn

(‖u‖)ρ(‖u‖)φ1.

Obviously, there is

g(t, u,λ1) + fn
(‖u‖)ρ(‖u‖)φ1 = 0. (3.14)

However,

∥∥g(t, u,λ1) + fn
(‖u‖)ρ(‖u‖)φ1

∥∥ ≥ ∥∥fn
(‖u‖)ρ(‖u‖)φ1

∥∥ –
∥∥g(t, u,λ1)

∥∥
≥ ιp–1ρ(ι)‖φ1‖ –

∥∥g(t, u,λ1)
∥∥

> 0.

This contradicts (3.14).
Case 2. u /∈ span {φ1}.
By 
n(λ1, u) = 0 and Lemma 2.1, we have

T+1∑
t=1

∣∣�u(t)
∣∣p = λ1

T+1∑
t=1

a(t)|u|p +
T+1∑
t=1

g(t, u,λ1)u + fn
(‖u‖)ρ(‖u‖) T+1∑

t=1

φ1u.

Let

f (u) =
T+1∑
t=1

∣∣�u(t)
∣∣p – λ1

T+1∑
t=1

a(t)|u|p –
T+1∑
t=1

g(t, u,λ1)u – fn
(‖u‖)ρ(‖u‖) T+1∑

t=1

φ1u,

then f (u) = 0. u /∈ span {φ1} implies that there is γ > 0 such that

∣∣∣∣∣
T+1∑
t=1

∣∣�u(t)
∣∣p – λ1

T+1∑
t=1

a(t)|u|p
∣∣∣∣∣ ≥ γ ‖u‖p–1.

From (3.13), we know that

lim‖u‖→0

g(t, u,λ1)u + fn(‖u‖)ρ(‖u‖)φ1u
‖u‖p–1 = 0, n ∈N (3.15)

uniformly for a.e. t ∈ [1, T + 1]Z . By (3.15), it can be easily seen that when ι is sufficiently
small,

∣∣∣∣∣
T+1∑
t=1

g(t, u,λ1)u + fn
(‖u‖)ρ(‖u‖) T+1∑

t=1

φ1u

∣∣∣∣∣ < γ ‖u‖p–1.

Thus |f (u)| > 0. This contradicts f (u) = 0.
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For any 0 < ε < δ, we assume that T–
λ1,ε is bounded in E. Define Tn to be the component

of Sn \ (Bε(λ1, 0) ∩ K+
η ) containing (λ1, 0). It is easy to see that the limit of Tn is T–

λ1,ε , so Tn

is bounded in E. Suppose that Lemma 3.7 is false, then

∂Bε(λ1, 0) ∩ K+
η ∩ T–

λ1,ε = ∅.

The definition of T–
λ1,ε implies

Bε(λ1, 0) ∩ K+
η ∩ T–

λ1,ε = ∅.

Since T–
λ1,ε is bounded, we can find a constant R > 0 such that T–

λ1,ε ⊂ BR(λ1, 0).
By these facts and the classical topological result from Whyburn [21], we obtain that

K :=
(
S ∩BR(λ1, 0)

) \ (
Bε(λ1, 0) ∩ K+

η

)
= k1 ∪ k2,

where k1, k2 are disjoint compact subsets of K and T–
λ1,ε ⊂ k1,

(
S ∩ ∂BR(λ1, 0)

) ∪ (
S ∩ ∂Bε(λ1, 0) ∩ K+

η

) ⊂ k2.

Therefore, there exists a bounded open set U in E such that k1 ⊂ U , k2 ∩U = ∅, (λ1, 0) ∈ U ,
(∂U ∩ S) ⊂ (Bε(λ1, 0) ∩ K+

η ) and ∂Bε(λ1, 0) ∩ K+
η ∩ U = ∅.

Applying Lemma 3.6 to 
n, we can see that

∂Bε(λ1, 0) ∩ K+
η ∩ Tn �= ∅, n ∈N.

By the connectedness of Tn, there exists (λn, un) ∈ ∂U ∩ Tn. We assume that there are
un ⇀ u∗ in E and λn → λ∗ in R. Letting n → +∞ on the both of 
n(λn, un) = 0 and using
the compact and continuous properties of Gp, we can show that 
n(λ∗, u∗) = 0. It is easy
to see that

(
λ∗, u∗) ∈ (S ∩ ∂U) \ (

Bε(λ1, 0) ∩ K+
η

)
,

this contradicts the definition of U . We have completed the proof. �

Proof of Theorem 3.3 Define T–
λ1

to be the closure of
⋃

0<ε≤δ T–
λ1,ε , then T–

λ1
⊆ C –. Suppose

that C – is bounded. Then, by Lemma 3.7, for any 0 < ε ≤ δ, we obtain

∂Bε(λ1, 0) ∩ K+
η ∩ T–

λ1 �= ∅.

It follows that

(
T–

λ1 \ (
Bδ(λ1, 0) ∩ K–

η

)) ∩ ∂Bε(λ1, 0) �= ∅. (3.16)

Furthermore, for every open set U inE, which satisfies (λ1, 0) ∈ U and U ⊆ Bδ(λ1, 0), (3.16)
implies

(
T–

λ1 \ (
Bδ(λ1, 0) ∩ K–

η

)) ∩ ∂U �= ∅. (3.17)
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Let E = T–
λ1

\ (Bδ(λ1, 0) ∩ K–
η ), T be the component of T–

λ1
\ (Bδ(λ1, 0) ∩ K–

η ) containing
(λ1, 0). It is easy to know that E is a compact metric space under the induced topology of
E and T is a closed subset of E .

We claim that T ∩ ∂Bδ(λ1, 0) �= ∅.
Suppose on the contrary that T ∩ ∂Bδ(λ1, 0) = ∅. From [25], we know that K = K1 ∪ K2,

where K1, K2 are disjoint compact subsets of K containing T and ∂Bδ(λ1, 0) ∩ K , respec-
tively. There exists a bounded open neighborhood O in E of K1 such that O ⊆ Bδ(λ1, 0)
and ∂O ∩ K2 = ∅. This contradicts (3.17).

Combining the definition of C + with T ∩ ∂Bδ(λ1, 0) �= ∅, we obtain T \ {(λ1, 0)} �= ∅ and

C +
λ1 ⊇ C +

λ1,δ ⊇ T .

Therefore, C + ∩ C – �= {(λ1, 0)}. Since a similar argument could be used for C –, this com-
pletes the proof of Theorem 3.3. �

Combining Theorem 3.2 and Theorem 3.3, we can obtain the following unilateral global
bifurcation result.

Theorem 3.4 Let v ∈ {+, –}, then C v is unbounded in R× E and

C v ⊂ {
(λ1, 0)

} ∪ (
R× Sv). (3.18)

Proof We can find a bounded neighborhood O of (λ1, 0) such that

(
O∩ C v) ⊂ {

(λ1, 0)
} ∪ (

R× Sv) or
(
O∩ C v) ⊂ {

(λ1, 0)
} ∪ (

R× S–v).

Without loss of generality, we may suppose that

(
O∩ C v) ⊂ {

(λ1, 0)
} ∪ (

R× Sv).

By Theorem 3.2, C v \O in R× Sv, so (3.18) holds. Next, we only need to prove that both
C + and C – are unbounded. Suppose on the contrary that C + is bounded, the case for C –

is similar. By Theorem 3.3, we know that

(
C + ∩ C –) \ {

(λ1, 0)
} �= ∅,

in view of (3.18), there exists (λ∗, u∗) ∈ C + ∩ C – such that

(λ∗, u∗) �= (λ1, 0) and u∗ ∈ S+ ∩ S–.

This contradicts the definitions of S+ and S–. �

4 Constant sign solutions for nonlinear discrete p-Laplacian problem
In this section, we use Theorem 3.4 to prove the existence of constant sign solutions for
the discrete p-Laplacian problem

⎧⎨
⎩–�[ϕp(�u(t – 1))] = λa(t)f (u(t)), t ∈ [1, T + 1]Z ,

�u(0) = u(T + 2) = 0,
(4.1)
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where a : [1, T + 1]Z → [0, +∞) and a(t0) > 0 for some t0 ∈ [1, T + 1]Z , f ∈ C(R,R) with
sf (s) > 0 for s �= 0. We will discuss the existence of constant sign solutions according to the
different behavior of nonlinear term f at 0 and ∞. Denote

f0 = lim
s→0

f (s)
ϕp(s)

, f∞ = lim
s→∞

f (s)
ϕp(s)

.

Definition 4.1 (see [17]) Let X be a Banach space, {Cn | n = 1, 2, 3, . . .} be a family of sub-
sets of X. Then the superior D of Cn is defined by

D := lim sup
n→∞

Cn = {x ∈ X | ∃ni ⊂ N and xni ∈ Cni such that xni → x}.

Definition 4.2 (see [20]) The component of M is the largest connected subset in M.

Lemma 4.1 (see [20]) Suppose that X is a compact metric space, A and B are non-
intersecting closed subsets of X, and no component of X intersects both A and B. Then there
exist two disjoint compact subsets XA and XB, such that X = XA

⋃
XB, A ⊂ XA, B ⊂ XB.

Lemma 4.2 (see [19]) Let X be a Banach space, Cn is a component of X, assume that:
(i) There exist zn ∈ Cn (n = 1, 2, . . .) and z∗ ∈ X such that zn → z∗;

(ii) limn→∞ rn = ∞, where rn = sup{‖x‖ : x ∈ Cn};
(iii) For every R > 0, (

⋃∞
n=1 Cn) ∩ �R is a relative compact set of X , where

�R = {x ∈ X : ‖x‖ ≤ R}.
Then D := lim supn→∞ Cn contains an unbounded component C such that z∗ ∈ C.

The main results of this section are the following.

Theorem 4.1 If f0 ∈ (0,∞) and f∞ = 0, then (4.1) has at least two solutions u+ and u– for
λ ∈ ( λ1

f0
, +∞), where u+ is positive in [0, T + 1]Z and u– is negative in [0, T + 1]Z (see Fig. 1).

Proof Let ζ ∈ C(R,R) such that f (s) = f0ϕp(s) + ζ (s), where ζ satisfies

lim
s→0

ζ (s)
ϕp(s)

= 0.

Figure 1 f0 ∈ (0,∞), f∞ = 0
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Applying Theorem 3.4 to problem (4.1), it can be seen that there exist two different un-
bounded connected components C+ and C–, which bifurcate from ( λ1

f0
, 0), and

Cv ⊂
({(

λ1

f0
, 0

)}
∪ (

R× Sv)),

where v = + or –. Obviously, Cv ∩ ({0} × E) = ∅.
Next, we prove that Cv is unbounded in the direction of the λ axis. Assume on the con-

trary that

sup
{
λ : (λ, y) ∈ Cv} < ∞.

Then there exists a sequence {(μk , yk)} ⊂ Cv such that

lim
k→∞

‖yk‖ = ∞, |μk| ≤ C0

for some positive constant C0 independent of k. This implies that

lim
k→∞

yk(t) = ∞ uniformly on t ∈ [0, T + 2]Z . (4.2)

Since {(μk , yk)} ⊂ Cv, we have that

⎧⎨
⎩�[ϕp(�yk(t – 1))] + μka(t)f (yk(t)) = 0, t ∈ [1, T + 1]Z ,

�yk(0) = yk(T + 2) = 0.
(4.3)

Set vk(t) = yk (t)
‖yk‖ , then

‖vk‖ = 1.

Choosing a subsequence and relabeling if necessary, it follows that there exists (μ∗, v∗) ∈
(0, C0] × E with

‖v∗‖ = 1 (4.4)

such that

lim
k→∞

(μk , vk) = (μ∗, v∗) in R× E.

Moreover, from (4.2), (4.3), and f∞ = 0, it follows that

⎧⎨
⎩�[ϕp(�v∗(t – 1))] + μ∗a(t) · 0 = 0, t ∈ [1, T + 1]Z ,

�v∗(0) = v∗(T + 2) = 0.

Hence, v∗(t) ≡ 0 for t ∈ [0, T + 2]Z . This contradicts (4.4). Therefore,

sup
{
λ : (λ, y) ∈ Cv} = ∞. �
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Figure 2 f0 ∈ (0,∞), f∞ = +∞

Theorem 4.2 If f0 ∈ (0,∞) and f∞ = +∞, then (4.1) has at least two solutions u+ and u–

for λ ∈ (0, λ1
f0

), where u+ is positive in [0, T + 1]Z and u– is negative in [0, T + 1]Z (see Fig. 2).

Proof In this case, we show that Cv joins ( λ1
f0

, 0) with (0,∞).
Similar to Theorem 4.1, we know that there exist two different unbounded connected

components C+ and C–, which bifurcate from ( λ1
f0

, 0).
Let {(μk , yk)} ⊂ Cv be such that

|μk| + ‖yk‖ → ∞, k → ∞.

Then⎧⎨
⎩�[ϕp(�yk(t – 1))] + μka(t)f (yk(t)) = 0, t ∈ [1, T + 1]Z ,

�yk(0) = yk(T + 2) = 0.

If {‖yk‖} is bounded, i.e., there exists a constant M1 depending not on k such that ‖yk‖ ≤
M1, then we may assume that

lim
k→∞

μk = ∞.

Combining this with the fact

f (yk(t))
ϕp(yk(t))

≥ inf

{
f (s)
ϕp(s)

∣∣∣ 0 ≤ s ≤ M1

}
> 0,

we obtain

lim
k→∞

μk
f (yk(t))
ϕp(yk(t))

= ∞, ∀t ∈ [0, T + 2]Z ,

using the relation

�
[
ϕp

(
�yk(t – 1)

)]
+ μka(t)

f (yk(t))
ϕp(yk(t))

ϕp
(
yk(t)

)
= 0, t ∈ [1, T + 1]Z . (4.5)

We deduce that yk must change its sign on [0, T + 2]Z if k is large enough, and this contra-
dicts the fact that yk does not change sign. Hence,

‖yk‖ → ∞, k → ∞.
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Now, taking {(μk , yk)} ⊂ Cv such that

‖yk‖ → ∞, k → ∞,

we show that limk→∞ μk = 0.
Suppose on the contrary that choosing a subsequence and relabeling if necessary, μk ≥

M2 for some constant M2 > 0. By (4.2), we obtain

lim
k→∞

yk(t) = ∞, uniformly on t ∈ [0, T + 2]Z .

Consequently, we have

lim
k→∞

μk
f (yk(t))
ϕp(yk(t))

= ∞, ∀t ∈ [0, T + 2]Z .

Hence, we have from (4.5) that yk must change its sign on [0, T + 2]Z for k large enough.
However, this is impossible. Thus, limk→∞ μk = 0.

So, we prove that Cv joins ( λ1
f0

, 0) with (0,∞). �

Theorem 4.3 If f0 = 0 and f∞ ∈ (0, +∞), then (4.1) has at least two solutions u+ and u– for
λ ∈ ( λ1

f∞ , +∞), where u+ is positive in [0, T + 1]Z and u– is negative in [0, T + 1]Z (see Fig. 3).

Proof If (λ, u) is a solution of (4.1) and ‖u‖ �= 0, dividing (4.1) by ‖u‖2(p–1) and setting
ω = u

‖u‖2 , we obtain

⎧⎨
⎩–�[ϕp(�ω(t – 1))] = λa(t) f (u(t))

‖u‖2(p–1) , t ∈ [1, T + 1]Z ,

�ω(0) = ω(T + 2) = 0.
(4.6)

Define

f̃ (ω) =

⎧⎨
⎩‖ω‖2(p–1)f ( ω

‖ω‖2 ), ω �= 0,

0, ω = 0.

Figure 3 f0 = 0, f∞ ∈ (0, +∞)



Ye Advances in Difference Equations        (2021) 2021:229 Page 21 of 25

Clearly, (4.6) is equivalent to

⎧⎨
⎩–�[ϕp(�ω(t – 1))] = λa(t)̃f (ω(t)), t ∈ [1, T + 1]Z ,

�ω(0) = ω(T + 2) = 0.
(4.7)

It is obvious that (λ, 0) is always a solution of (4.7).
By simple calculation, we know f̃0 = f∞, f̃∞ = f0. By applying Theorem 4.1, we can get the

conclusions of this theorem under the inversion ω → ω

‖ω‖2 = u. �

Theorem 4.4 If f0 = +∞ and f∞ ∈ (0, +∞), then (4.1) has at least two solutions u+ and u–

for λ ∈ (0, λ1
f∞ ), where u+ is positive in [0, T + 1]Z and u– is negative in [0, T + 1]Z (see Fig. 4).

Proof Using the conclusion of Theorem 4.2 and the method of Theorem 4.3, we can easily
prove the conclusion of this theorem. �

Theorem 4.5 If f0 = +∞ and f∞ = +∞, then there exists λ∗ > 0 such that (4.1) has at least
two solutions u+

1 and u+
2 for λ ∈ (0,λ∗); in addition, u+

1 and u+
2 are positive in [0, T + 1]Z (see

Fig. 5(a)). Similarly, there exists λ∗ > 0 such that (4.1) has at least two solutions u–
1 and u–

2

for λ ∈ (0,λ∗); in addition, u–
1 and u–

2 are negative in [0, T + 1]Z (see Fig. 5(b)).

Figure 4 f0 = +∞, f∞ ∈ (0, +∞)

Figure 5 f0 = +∞, f∞ = +∞
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Proof Define

fn(s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

nϕp(s), s ∈ [– 1
n , 1

n ],

(f ( 2
n ) – 1

np–2 )ns + 2
np–2 – f ( 2

n ), s ∈ ( 1
n , 2

n ),

–(f (– 2
n ) + 1

np–2 )ns – 2
np–2 – f (– 2

n ), s ∈ (– 2
n , – 1

n ),

f (s), s ∈ (–∞, – 2
n ] ∪ [ 2

n , +∞).

(4.8)

Let us consider

⎧⎨
⎩�[ϕp(�u(t – 1))] + λa(t)fn(u(t)) = 0, t ∈ [1, T + 1]Z ,

�u(0) = u(T + 2) = 0.
(4.9)

There are clearly limn→+∞ fn(s) = f (s), (fn)0 = n, and (fn)∞ = f∞ = +∞. Theorem 4.2 implies
that there exists a sequence of unbounded continuum (Cv)n of solutions of problem (4.9)
emanating from ( λ1

n , 0) such that (Cv)n joins ( λ1
n , 0) to (0,∞).

Taking zn = ( λ1
n , 0) and z∗ = (0, 0), we have that zn → z∗. So condition (i) in Lemma 4.2 is

satisfied with z∗ = (0, 0).
Obviously, rn = sup{λ + ‖u‖ : (λ, u) ∈ (Cv)n} → ∞, and accordingly, (ii) in Lemma 4.2

holds. (iii) can be deduced directly from the Arzéla–Ascoli theorem and the definition of
fn. Therefore, by Lemma 4.2, lim supn→+∞(Cv)n contains unbounded connected compo-
nents Cv with

(0, 0) ∈ Cv ⊂ lim sup
n→+∞

(
Cv)

n and (0,∞) ∈ Cv ⊂ lim sup
n→+∞

(
Cv)

n.

For any λ0 > 0, it is easy to know that there is at most one n0 such that (λ0, 0) ∈ (Cv)n0 . By
the definition of upper bound set, we obtain (λ0, 0) ∈ Cv ⊂ lim supn→+∞(Cv)n. Naturally,
(λ0, 0) /∈ Cv.

Consequently, Cv ∩ (R× {0}) = {(0, 0)}. �

Theorem 4.6 If f0 = 0 and f∞ = 0, then there exists λr > 0 such that (4.1) has at least two
solutions u+

1 and u+
2 for λ ∈ (λr , +∞); in addition, u+

1 and u+
2 are positive in [0, T + 1]Z (see

Fig. 6(a)). Similarly, there exists λr > 0 such that (4.1) has at least two solutions u–
1 and u–

2

for λ ∈ (λr , +∞); in addition, u–
1 and u–

2 are negative in [0, T + 1]Z (see Fig. 6(b)).

Figure 6 f0 = 0, f∞ = 0
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Proof Define

gn(s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
nϕp(s), s ∈ [– 1

n , 1
n ],

(f ( 2
n ) – 1

np )ns + 2
np – f ( 2

n ), s ∈ ( 1
n , 2

n ),

–(f (– 2
n ) + 1

np )ns – 2
np – f (– 2

n ), s ∈ (– 2
n , – 1

n ),

f (s), s ∈ (–∞, – 2
n ] ∪ [ 2

n , +∞).

(4.10)

Let us consider
⎧⎨
⎩�[ϕp(�u(t – 1))] + λa(t)gn(u(t)) = 0, t ∈ [1, T + 1]Z ,

�u(0) = u(T + 2) = 0.

Using the conclusion of Theorem 4.5 and the method of Theorem 4.3, we can easily prove
the conclusion of this theorem. �

Theorem 4.7 If f0 = 0 and f∞ = +∞, then (4.1) has at least two solutions u+ and u– for
λ ∈ (0, +∞), where u+ is positive in [0, T + 1]Z and u– is negative in [0, T + 1]Z (see Fig. 7).

Proof Define gn as (4.10). Let us consider

⎧⎨
⎩�[ϕp(�u(t – 1))] + λa(t)gn(u(t)) = 0, t ∈ [1, T + 1]Z ,

�u(0) = u(T + 2) = 0.
(4.11)

Clearly, limn→+∞ gn(s) = f (s), (gn)0 = 1
n , and (gn)∞ = f∞ = +∞. By Theorem 4.2, there exists

a sequence of unbounded continuum (Cv)n of solutions of (4.11) emanating from (nλ1, 0)
such that (Cv)n joins (nλ1, 0) to (0,∞).

Taking zn = (nλ1, 0) and z∗ = (∞, 0), we have that zn → z∗. So condition (i) in Lemma 4.2
is satisfied with z∗ = (∞, 0).

Obviously, rn = sup{λ + ‖u‖ : (λ, u) ∈ (Cv)n} → ∞, and accordingly, (ii) in Lemma 4.2
holds.

(iii) can be deduced directly from the Arzéla–Ascoli theorem and the definition of gn.
Therefore, by Lemma 4.2, lim supn→+∞(Cv)n contains unbounded connected components
Cv with

(∞, 0) ∈ Cv ⊂ lim sup
n→+∞

(
Cv)

n and (0,∞) ∈ Cv ⊂ lim sup
n→+∞

(
Cv)

n. �

Figure 7 f0 = 0, f∞ = +∞
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Figure 8 f0 = +∞, f∞ = 0

Theorem 4.8 If f0 = +∞ and f∞ = 0, then (2) has at least two solutions u+ and u– for
λ ∈ (0, +∞) such that u+ is positive in [0, T + 1]Z and u– is negative in [0, T + 1]Z (see
Fig. 8).

Proof Define fn as (4.8). Let us consider

⎧⎨
⎩�[ϕp(�u(t – 1))] + λa(t)fn(u(t)) = 0, t ∈ [1, T + 1]Z ,

�u(0) = u(T + 2) = 0.

Using the conclusion of Theorem 4.7 and the method of Theorem 4.3, we can easily prove
the conclusion of this theorem. �
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