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Abstract
The Hirota bilinear method is employed for searching the localized waves,
lump–solitons, and solutions between lumps and rogue waves for the fractional
generalized Calogero–Bogoyavlensky–Schiff–Bogoyavlensky–Konopelchenko
(CBS-BK) equation. We probe three cases including lump (combination of two
positive functions as polynomial), lump–kink (combination of two positive functions
as polynomial and exponential function) called the interaction between a lump and
one line soliton, and lump–soliton (combination of two positive functions as
polynomial and hyperbolic cos function) called the interaction between a lump and
two-line solitons. At the critical point, the second-order derivative and the Hessian
matrix for only one point will be investigated and the lump solution has one
maximum value. The moving path of the lump solution and also the moving velocity
and the maximum amplitude will be obtained. The graphs for various fractional
orders α are plotted to obtain 3D plot, contour plot, density plot, and 2D plot. The
physical phenomena of this obtained lump and its interaction soliton solutions are
analyzed and presented in figures by selecting the suitable values. That will be
extensively used to report many attractive physical phenomena in the fields of fluid
dynamics, classical mechanics, physics, and so on.

Keywords: Hirota bilinear method; Lump–solitons; Fractional generalized
Calogero–Bogoyavlensky–Schiff–Bogoyavlensky–Konopelchenko equation; Hessian
matrix

1 Introduction
The nonlinear partial differential equation is a physical and natural model which can be
used for model constructs by scientists and researchers. Different types of differential
equations of both ODEs and PDEs in various fields of science, like fluid flow, mechan-
ics, and biology, are expressed in the special forms [1, 2]. There is no particular method
for accessing the exact type solutions of nonlinear PDEs but some approximate and an-
alytical solutions have been determined [3, 4]. As is well known, the model of many nat-
ural phenomena and the differential equations in the sciences and engineering are non-
linear and it is very important to obtain analytically or numerically accurate solutions. In
order to achieve this goal, various methods have been developed for linear and nonlin-
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ear equations, such as the Exp-function method [5], the homotopy analysis method [6],
the homotopy perturbation method [7], the (G’/G)-expansion method [8], the improved
tan(φ/2)-expansion method [9, 10], the Hirota bilinear method [11, 12, 59–67], the He
variational principle [13, 14], the binary Darboux transformation [15], the Lie group anal-
ysis [16, 17], the Bäcklund transformation method [18], and the multiple Exp-function
method [19, 20]. Moreover, many powerful methods have been used to investigate the
new properties of mathematical models which are symbolizing serious real world prob-
lems [21, 22, 68, 69]. The utilized methods which employed by powerful researchers are
such methods as the Exp-function method, the multiple Exp-function method, (G’-G)-
expansion method—but we should not forget to mention that these methods continue
to attract a wave of criticism. This criticism is focused on two aspects of these methods.
First of all, it has been demonstrated that the mentioned methods can produce wrong so-
lutions. Secondly, these methods cannot produce necessary and sufficient conditions for
the existence of analytic solutions, neither in the system parameter space nor in the space
of initial conditions. These aspects can be useful for investigating in future research and
combining these methods in work which will have a link with special transformations.

The main idea of the following equations is finding the exact solution of any models
which can be expressed by a Hirota bilinear method. Big varieties of mathematical and
physical phenomena are governed by NLPDEs which play a crucial role in the nonlinear
sciences. It provides much physical information and more insight into the physical as-
pects of the problem and thus leads to further applications. Bogoyavlensky introduced
a model equation describing the nonisospectral scattering problems [23], namely, the
(2 + 1)-dimensional Bogoyavlenski equation

4�t + �xxy – 4�2�y – 4�x� = 0, (1.1)

��y = �x.

Kudryashov and Pickering [24] proposed the above equation as a member of a (2 + 1)
Schwarzian breaking soliton hierarchy. Clarkson and co-authors [25] investigated Eq. (1.1)
as one of the equations associated to nonisospectral scattering problems. Estevez and
Prada [26] presented a generalization of the sine-Gordon equation that possesses the
Painlevé feature. Zhran and Khater [27] probed the Bogoyavlensky equation by utilizing
the modified extended tanh-function method. The authors of [28] showed that the above
equation is a modified version of the following nonlinear equation:

4�xt + 8�x�xy + 4�y�xx + �xxxy = 0, (1.2)

which is called the breaking soliton equation. Also, Eq. (1.2) is a particular version of the
Bogoyavlensky–Konopelchenko (BK) equation given as

a�xt + b�xxxx + c�xxy + d�x�xx + e�x�xy + k�xx�y = 0. (1.3)

Equation BK explains the (2 + 1)-dimensional interaction of a Riemann wave propagation
along the y-axis with a long wave along the x-axis, and it also is a two-dimensional gen-
eralization of the well-known Korteweg–de Vries equation [29, 30]. This study is aimed
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at investigating the following generalized Bogoyavlensky–Konopelchenko (BK) equation
[31]:

�t + α(6��x + �xxx) + β(�xxy + 3��y + 3�x�y) + γ1�x + γ2�y + γ3�yy = 0, (1.4)

in which �x = � , and α,β ,γ1,γ2, and γ3 are determined values. Equation (1.4) can be
written as

�xt + α(6�x�xx + �xxxx) + β(�xxxy + 3�x�xy + 3�xx�xy)

+ γ1�xx + γ2�xy + γ3�yy = 0, (1.5)

and by applying the bilinear transformation � = 2(ln f )xx and � = 2(ln f )x Eq. (1.5) is trans-
formed to the bilinear form

(
αD4

x + βD3
xDy + DtDx + γ1D2

x + γ2DxDy + γ3D2
y
)
f .f = 0, (1.6)

D4
xf .f = 2

(
ffxxxx – 4fxfxxx + 3f 2

xx
)
, D3

xDyf .f = 2(ffxxxy – fyfxxx – 3fxfxxy + 3fxxfxy),

D2
xf .f = 2

(
ffxx – f 2

x
)
, DxDtf .f = 2(ffxt – fxft), DxDyf .f = 2(ffxy – fxfy),

D2
y f .f = 2

(
ffyy – f 2

y
)
.

The aim of this study is to construct the invariant solutions of the (2 + 1)-dimensional
fractional generalized CBS-BK equation in the following form:

Dα
t � + �xxy + 3�x�y + δ1�y + δ2�yy + δ3�x (1.7)

+ δ4
(
3�2

x + �xxx
)

+ δ5
(
3�2

yy + �yyyy
)

+ δ6(3�y�yy + �yyy) = 0, �x = �, 0 < α ≤ 1,

in which δi, i = 1, . . . , 6, are the determined values. By employing the following fractional
transformation [32]:

τ =
tα


(α + 1)
, (1.8)

Equation (1.7) changes to the nonlinear fractional generalized CBS-BK equation as fol-
lows:

�τ + �xxy + 3�x�y + δ1�y + δ2�yy + δ3�x + δ4
(
3�2

x + �xxx
)

+ δ5
(
3�2

yy + �yyyy
)

(1.9)

+ δ6(3�y�yy + �yyy) = 0, �x = �, 0 < α ≤ 1.

The propagation and the dynamical behavior of these solutions can be analyzed for the
different choices of α, the fractional order. When α = 1, N = 1 in an N-soliton, it is verified
that the velocity of the soliton cannot be influenced by the variable coefficients. Further-
more, the shape and the amplitude of the soliton cannot be affected. For α = 1, when the
arbitrary constants are supposed δ3 = δ4 = δ5 = δ6 = 0, Eq. (1.9) changes as a generalized
Calogero–Bogoyavlensky–Schiff (CBS) equation where has been cited in Refs. [33, 34].
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While the arbitrary constants supposed δ5 = δ6 = 0, then Eq. (1.9) becomes a generalized
Bogoyavlensky–Konopelchenko (BK) equation as cited in Refs. [34–36].

We address solving the fractional generalized CBS-BK equation in the sense of the modi-
fied Riemann–Liouville derivative which has been derived by [37]. These equations can be
reduced to the nonlinear ordinary differential equations via integer orders utilizing some
fractional complex transformations. Jumarie’s modified Riemann–Liouville derivative of
order α is given by

Dα
t u(t) =

⎧
⎨

⎩

1

(1–α)

∫ t
0 (t – τ )–α(u(τ ) – u(0)) dτ if 0 < α ≤ 1,

[u(n)(t)](α–n) if n ≤ α < n + 1, n ≥ 1.
(1.10)

We list some valuable properties of the Riemann–Liouville fractional derivative [38–40]
as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
J (f (x)g(x)) =

∑+∞
j=0

( α

j
)
f (j)(x)g(α–j)

R–L (x) – f (0)g(0)
xα
(1–α) ,

Dα
J (f (g(x))) =

∑+∞
j=0

( α

j
) xj–α j!


(j–α+1)
∑j

m=1 f (m)(g)
∑∏j

k=1
1

Pk ! (
g(k)

k! )Pk

+ f (g(x))–f (g(0))
xα
(1–α) ,

Dα
t tγ = 
(γ +1)


(1+α–γ ) tγ –α ,γ > 0,

(1.11)

where 
 denotes the Gamma function.
In this paper, we will study the multiple rogue waves for determining the multiple soli-

ton solutions. The multiple rogue waves method used by some of powerful authors for
the various nonlinear equations, including constructing rogue waves with a controllable
center in the nonlinear systems [41], a (3 + 1)-dimensional Hirota bilinear equation [42],
the generalized (3 + 1)-dimensional KP equation [43], and the Boussinesq equation [44].
There are many new papers about this fields, such as lump solutions (constructing the
lump–soliton and mixed lump strip solutions of (3 + 1)-dimensional soliton equation [45];
utilizing the linear superposition principle to discuss the (3 + 1)-dimensional Boiti–Leon–
Manna–Pempinelli equation [46]; obtaining periodic solutions for many non-linear evo-
lution equations in the integrable systems theory [47]), rogue wave solutions (utilizing the
Hirota bilinear form of the extended (3 + 1)-dimensional JM equation to find 30 classes of
rogue wave type solutions [48]; resonant multiple wave solutions to some integrable soli-
ton equations [49]). Some important work related with recent development in fractional
calculus and its applications can be pointed out referring to the valuable papers contain-
ing studies of general fractional derivatives: theory, methods and applications by Yang [50];
anomalous diffusion equations with the decay exponential kernel by the Laplace transform
[51]; new fractal nonlinear Burgers’ equation arising in the acoustic signals propagation
by Yang and Machado [52]; time fractional nonlinear diffusion equation from diffusion
process by fractional Lie group approach [53]; the generalized time fractional diffusion
equation by symmetry analysis [54]; investigating a time fractional nonlinear heat conduc-
tion equation with applications in mathematics physics, integrable system, fluid mechan-
ics and nonlinear areas, by means of applying the fractional symmetry group method [55];
and determining the time fractional extended (2 + 1)-dimensional Zakharov–Kuznetsov
equation in quantum magneto-plasmas by using a group analysis approach [56]. In [57],
an operator-based framework for the construction of analytical soliton solutions to frac-
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tional differential equations was showed to fractional differential equations were mapped
from Caputo algebra to Riemann–Liouville algebra.

The rest of this paper is structured as follows. The Hirota bilinear scheme has been
summarized in Sect. 2. In Sects. 3–5, the lump solution, lump–kink, and lump–soliton
solution to the fractional generalized CBS-BK equation, respectively, have been given. In
Sect. 6, the conclusions have been given.

2 Hirota bilinear method
Take the fractional generalized CBS-BK of the form

PgCBS-BK(ϒ) := �τ + �xxy + 3�x�y + δ1�y + δ2�xyy + δ3�x + δ4
(
3�2

x + �xxx
)

(2.1)

+ δ5
(
3�2

xyy + �yyyy
)

+ δ6(3�y�xyy + �yyy) = 0.

Assume the Hirota derivatives according to the functions φ(x), ϕ(x) can be presented as

3∏

i=1

Dπi
λi

φ.ϕ =
3∏

i=1

(
∂

∂λi
–

∂

∂μi

)oi

φ(λ)ϕ(μ)
∣∣
∣∣
μ=λ

, (2.2)

where the vectors λ = (λ1,λ2,λ3), μ = (μ1,μ2,μ3) and o1, o2, o3 are optional nonnegative
integers. It is clear that the fractional generalized CBS-BK equation above possesses the
following Hirota bilinear:

BgCBS-BK(f ) (2.3)

:=
(
δ4D4

x + D3
xDy + δ3D2

x + DxDτ + δ2D2
y + δ1DxDy + δ5D4

y + δ6D3
yDx

)
f .f

= 2
[
δ4

(
ffxxxx – 4fxfxxx + 3f 2

xx
)

+ (ffxxxy – fyfxxx – 3fxfxxy + 3fxxfxy)

+ δ3
(
ffxx – f 2

x
)

+ (ffxτ – fxfτ )

+ δ2
(
ffyy – f 2

y
)

+ δ1(ffxy – fxfy) + δ5
(
ffyyyy – 4fyfyyy + 3f 2

yy
)

+ δ6(ffyyyx – fxfyyy – 3fyfyyx + 3fyyfyx)
]
.

We utilize the following relationship between the functions f (x, y, τ ) and �(x, y, τ ):

�(x, y, τ ) = �0 + 2
(
ln f (x, y, τ )

)
x, �(x, y, τ ) = 2

(
ln f (x, y, τ )

)
xx. (2.4)

According to the Bell polynomial theories of soliton equations [58], we can obtain the
following relationship:

PgCBS-BK(�) =
[
BgCBS-BK(f )

f

]

x
. (2.5)

Theorem 2.1 f solves (2.4) if and only if � = 2(ln f )x is demonstrated to be a solution to
Eq. (2.1),

(
δ4D4

x + D3
xDy + δ3D2

x + DxDτ + δ2D2
y + δ1DxDy + δ5D4

y + δ6D3
yDx

)
f .f (2.6)
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= 2
[
δ4

(
ffxxxx – 4fxfxxx + 3f 2

xx
)

+ (ffxxxy – fyfxxx – 3fxfxxy + 3fxxfxy)

+ δ3
(
ffxx – f 2

x
)

+ (ffxτ – fxfτ )

+ δ2
(
ffyy – f 2

y
)

+ δ1(ffxy – fxfy) + δ5
(
ffyyyy – 4fyfyyy + 3f 2

yy
)

+ δ6(ffyyyx – fxfyyy – 3fyfyyx + 3fyyfyx)
]
.

Proof By supposing θ = ∂x(ln f ), from Eq. (2.4), we get

� = 2θ ⇐⇒ f = exp

(
1
2

∫
� dx

)
, (2.7)

then, by considering f = exp(∂–1
x θ ) and f > 0, the expressions fx, fy, fτ , fxx, fyy, fxy, fxτ , fxxy,

fxyy, fxxx, fxxyy, and fxxxx, respectively, can be written as

fx = θ exp
(
∂–1

x θ
)
, (2.8)

fy = ∂–1
x θy exp

(
∂–1

x θ
)
, (2.9)

fτ = ∂–1
x θτ exp

(
∂–1

x θ
)
, (2.10)

fxx =
(
θ2 + θx

)
exp

(
∂–1

x θ
)
, (2.11)

fyy =
((

∂–1
x θy

)2 + ∂–1
x θyy

)
exp

(
∂–1

x θ
)
, (2.12)

fxy =
(
θ∂–1

x θy + θy
)

exp
(
∂–1

x θ
)
, (2.13)

fxτ =
(
θ∂–1

x θt + θt
)

exp
(
∂–1

x θ
)
, (2.14)

fxxx =
(
θ3 + 3θθx + θxx

)
exp

(
∂–1

x θ
)
, (2.15)

fxxy =
[(

θ2 + θx
)
∂–1

x θy + 2θθy + θxy
]

exp
(
∂–1

x θ
)
, (2.16)

fxyy =
[
θ
(
∂–1

x θy
)2 + θ∂–1

x θyy + 2θy∂
–1
x θy + θyy

]
exp

(
∂–1

x θ
)
, (2.17)

fxxxx =
[
θ4 + 6θ2θx + 4θθxx + 3(θx)2 + θxxx

]
exp

(
∂–1

x θ
)
, (2.18)

fxxyy =
[(

θ2 + θx
)((

∂–1
x θy

)2 + ∂–1
x θyy

)
+ 4θθy∂

–1
x θy + 2θxy∂

–1
x θy (2.19)

+ 2θθyy + 2(θy)2 + θxyy
]

exp
(
∂–1

x θ
)
.

Plugging (2.8)–(2.19) into (2.3) yields the bilinear form of Eq. (2.3) as

2
[
δ4

(
ffxxxx – 4fxfxxx + 3f 2

xx
)

+ (ffxxxy – fyfxxx – 3fxfxxy + 3fxxfxy) (2.20)

+ δ3
(
ffxx – f 2

x
)

+ (ffxτ – fxfτ )

+ δ2
(
ffyy – f 2

y
)

+ δ1(ffxy – fxfy) + δ5
(
ffyyyy – 4fyfyyy + 3f 2

yy
)

+ δ6(ffyyyx – fxfyyy – 3fyfyyx + 3fyyfyx)
]

= 2 exp
(
2∂–1

x θ
)[

6
(∫

∂2

∂y2 θ (x, y, τ ) dx
)2

δ5

+ 6
∫

∂2

∂y2 θ (x, y, τ ) dx
(

∂

∂y
θ (x, y, τ )

)
δ6 + 6

(
∂

∂x
θ (x, y, τ )

)2

δ4

+
(

∂3

∂x3 θ (x, y, τ )
)

δ4 +
∫

∂4

∂y4 θ (x, y, τ ) dxδ5
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+
∫

∂2

∂y2 θ (x, y, τ ) dxδ2 + 6
(

∂

∂x
θ (x, y, τ )

)
∂

∂y
θ (x, y, τ )

+
(

∂

∂x
θ (x, y, τ )

)
δ3 +

(
∂3

∂y3 θ (x, y, τ )
)

δ6 +
(

∂

∂y
θ (x, y, τ )

)
δ1

+
∂3

∂x2∂y
θ (x, y, τ ) +

∂

∂τ
θ (x, y, τ )

]

= 2f 2[6δ5
(
∂–1

x θyy
)2 + 6δ6θy

(
∂–1

x θyy
)

+ 6δ4θ
2
x + δ4θxxx + δ5∂

–1
x θyyyy + δ2∂

–1
x θyy + 6θxθy

+ δ3θx + δ6θyyy + δ1θy + θxxy + θτ

]

or it can be rewritten as

1
f 2 2

[
δ4

(
ffxxxx – 4fxfxxx + 3f 2

xx
)

+ (ffxxxy – fyfxxx – 3fxfxxy + 3fxxfxy) (2.21)

+ δ3
(
ffxx – f 2

x
)

+ (ffxτ – fxfτ )

+ δ2
(
ffyy – f 2

y
)

+ δ1(ffxy – fxfy) + δ5
(
ffyyyy – 4fyfyyy + 3f 2

yy
)

+ δ6(ffyyyx – fxfyyy – 3fyfyyx + 3fyyfyx)
]

=
(δ4D4

x + D3
xDy + δ3D2

x + DxDτ + δ2D2
y + δ1DxDy + δ5D4

y + δ6D3
yDx)f.f

2f 2 ,

in which θ = 1
2� = ∂x(ln f ) and ∂–1

x (·) =
∫

(·) dx. Therefore, Eq. (2.21) is the fractional gen-
eralized CBS-BK equation. Therefore, the theorem is complete. �

3 Rogue wave solutions of a (2 + 1)-D fractional gCBS-BK equation
For Eq. (2.1) with the obtained nonlinear PDE containing f , we get the combinations of
positive functions, called a lump solution function:

f (x, y, τ ) =

( 4∑

i=1

aixi

)2

+

( 8∑

i=5

aixi

)2

+ a9,

(x1, x2, x3, x4) = (x5, x6, x7, x8) = (x, y, τ , 1),

(3.1)

and τ = tα

(α+1) where ai, i = 1, . . . , 9 are the optional parameters which we are to find subse-

quently. Plugging (3.1) into Eq. (2.6), we get ten sets of nonlinear algebraic equations and
then collecting the coefficients including t, x, y and a constant, we obtain the following
results for determining the solution function � = �0 + 2∂x(ln f ).

Case I:

�1(x, y, t) (3.2)

= �0 +
4(�a2x + a2y – a2(�2δ3+�δ1+δ2)tα

�
(α+1) + a4)�a2 + 4(a5x + a5y
�

– a5(�2δ3+�δ1+δ2)tα
�2
(α+1) + a8)a5

(�a2x + a2y – a2(�2δ3+�δ1+δ2)tα
�
(α+1) + a4)2 + (a5x + a5y

�
– a5(�2δ3+�δ1+δ2)tα

�2
(α+1) + a8)2 + a9
,

where � solves δ4�
4 + �3 + δ6� + δ5 = 0, a9 > 0 and �1(x, y, t) is the lump solution.

Case II:

a1 = a1, a2 = a2, (3.3)
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a3 = –
(a1

2 + a5
2)(a1δ3 + a2δ1) + δ2(a1a2

2 – a1a6
2 + 2a2a5a6)

a2
1 + a2

5
, a4 = a4,

a5 = a5, a7 = a7,

a7 = –
(a1

2 + a5
2)(a5δ3 + a6δ1) + δ2(2a1a2a6 – a2

2a5 + a5a6
2)

a2
1 + a2

5
, a8 = a8,

a9 = –
(
3
((

a1
2 + a5

2)2(a1a2 + a5a6) + δ4
(
a1

2 + a5
2)3 + δ5(a2

2 + a6
2)2(a1

2 + a5
2)

+ δ6
(
a2

2 + a6
2)(a1

2 + a5
2)(a1a2 + a5a6)

))

/
(
δ2

(
a1a6 – a2a5

)2),

then the function f will be

f2(x, y, t) =
(

a1x + a2y + a3
tα


(α + 1)
+ a4

)2

+
(

a5x + a6y + a7
tα


(α + 1)
+ a8

)2

+ a9,

�2(x, y, t)

= �0 +
4a1(a1x + a2y + a3

tα

(α+1) + a4) + 4a5(a5x + a6y + a7

tα

(α+1) + a8)

f2(x, y, t)
. (3.4)

Also, indeed we need to be ensured of the well-posedness, the positivity of f2(x, y, t) and
rational analysis and localization of the function �2, respectively, which can be stated as

� =

∣∣
∣∣
∣
a1 –a5

a5 a1

∣∣
∣∣
∣
�= 0, (3.5)

δ2
(
�2(a1a2 + a5a6) + δ4�

3 + δ5�
(
a2

2 + a6
2)2 + δ6�

(
a2

2 + a6
2)(a1a2 + a5a6)

)
< 0,

and

a1a6 – a2a5 �= 0.

Moreover, by selecting the suitable values of parameters, the analytical treatment of pe-
riodic wave solution is presented in Figs. 1–3 including 3D plot, contour plot, density
plot, and 2D plot when three spaces arise at spaces y = –5, y = 0, and y = 5. By tak-
ing the new value parameters such as a1 = 1, a2 = 2, a4 = 2, a5 = 3, a6 = 1.2, a8 = 1, δ1 =
1, δ2 = –5, δ3 = 1.5, δ4 = 1.2, δ5 = 1.4, δ6 = 1.5,�0 = 0, t = 2, the corresponding the mov-
ing velocity and moving pass of the obtained lump in Case II are v = 29.05009176 and
y = –1.030640668x + 1.086367345x. Also, a 2D plot of the lump–soliton by selecting the
values of the different fractional order α is depicted in Fig. 4.

Remark 3.1 Because of using a simple computation, the lump has two critical points, but

we investigate only one point (x1, y1) = ( 1
a1a6–a2a5

( tα (a2a7–a3a6)

(α+1) + a2a8 – a4a6) +

√
a9(a12+a52)
a12+a52 ,

– 1
a1a6–a2a5

( tα (a1a7–a3a5)

(α+1) + a1a8 – a4a5)). At the point (x1, y1), the second-order derivative
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Figure 1 The plot of rogue wave (3.5) with fractional order α = 0.5

Figure 2 The plot of rogue wave (3.5) with fractional order α = 0.8

Figure 3 The plot of rogue wave (3.5) with fractional order α = 1.0

and the Hessian matrix can be determined given by [12]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�1 = ∂2

∂x2 �(x, y)|(x1,y1) = – 2
√

a9(a12+a52)(a12+a52)
a92 ,

�1 = det

⎛

⎝
∂2

∂x2 �(x, y) ∂2

∂x ∂y�(x, y)
∂2

∂x ∂y�(x, y) ∂2

∂y2 �(x, y)

⎞

⎠

(x1,y1)

= 4(a12+a52)(a12a62–2a1a2a5a6+a22a52)
a93 .

(3.6)

If a9
3(a1

2a6
2 – 2a1a2a5a6 + a2

2a5
2) > 0, then the point (x1, y1) is an extreme value point.

Based on above analysis, the point (x1, y1) is a maximum value point at �max. By using
the different values of δi, i = 1, . . . , 5, the lump solution �(x, y) has one maximum value
containing

�max =
2
√

a9(a12 + a52)
a9

.
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Figure 4 The 2D plot of lump–soliton (3.5) with the
different fractional orders

Remark 3.2 For three cases, it can be seen from Eqs. (3.3)–(3.5) in which the lump solution
tends to 0 at any given time t when (

∑4
i=1 aixi)2 + (

∑8
i=5 aixi)2 → 0, or equivalently, x2 +

y2 → 0. By utilizing

∂�

∂x
= 0,

∂�

∂y
= 0, (3.7)

in which � = �0 + 2∂x(ln(
∑4

i=1 aixi)2 + (
∑8

i=5 aixi)2 + a9) the moving path of this lump can
be determined as

⎧
⎨

⎩
x = 1

a1a6–a2a5
( tα (a2a7–a3a6)


(α+1) + a2a8 – a4a6) +
√

a9(a12+a52)
a12+a52 ,

y = – 1
a1a6–a2a5

( tα (a1a7–a3a5)

(α+1) + a1a8 – a4a5),

(3.8)

also the moving velocity and the maximum amplitude, respectively, read

v =

√
(a2a7 – a3a6)2 + (a1a7 – a3a5)2

a1a6 – a2a5
, H = 4, (3.9)

and the moving pass will be

y =
a3a8 – a4a7

a2a7 – a3a6
+

a1a7 – a3a5
√

a9(a12 + a52)
(a12 + a52)(a2a7 – a3a6)

–
(a1a7 – a3a5)x

a2a7 – a3a6
. (3.10)

It is worth mentioning that this rogue wave has the following features:

lim
x−→±∞�(x, y) = �0, lim

y−→±∞�(x, y) = �0. (3.11)

4 Lump–kink solutions
In this section, for Eq. (2.1) with the obtained nonlinear PDE containing f , we get the
combinations of positive functions and exponential function called a lump–kink solution.
Necessary and sufficient conditions for positive quadratic functions to solve the Hirota
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bilinear equations conclude the study of lump solutions. Take the following function form:

f (x, y, τ ) =

( 4∑

i=1

aixi

)2

+

( 8∑

i=5

aixi

)2

+ exp

( 12∑

i=9

aixi

)

+ a13,

(x1,5,9, x2,6,10, x3,7,11, x4,8,12) = (x, y, τ , 1),

(4.1)

where τ = tα

(α+1) and ai, i = 1, . . . , 13, are the optional parameters which we are to find

subsequently. Putting (4.1) into Eq. (2.6), we get 20 sets of nonlinear algebraic equations
and then collecting the coefficients including e

∑12
i=9 aixi , τ , x, y and a constant, we obtain the

following results for finding the solution function � = �0 + 2∂x(ln f ).
Case I:

�1(x, y, t) (4.2)

= �0 +
4(a5x + a7tα


(α+1) + a8)a5

(a2y – a2δ1tα

(α+1) + a4)2 + (a5x + a7tα


(α+1) + a8)2 + a13 + ea10y– a10(a102δ6+δ1)tα

(α+1) +a12

.

Case II:

�2(x, y, t) (4.3)

= �0 +
2a9e–a9(a92δ4+δ3)t+a9x+a12

(–ta2(a92 + δ1) + a2y + a4)2 + ((–a6a92 – a6δ1)t + ya6 + a8)2 + a13 + e–a9(a92δ4+δ3)t+a9x+a12
.

Case III:

f3(x, y, t) =
(

a2y +
a3tα


(α + 1)
+ a4

)2

+
(

a5x +
a5a10y

a9
+

a7tα


(α + 1)
+ 4

a5

a9

)2

(4.4)

–
1
2

3a2
2a9

5 – 2a5
2a10

3δ2

a92a103δ2
+ e

a9x+a10y– 1
3

a9(2a22δ2–3a5a7)tα

a52
(α+1)
+a12 ,

�3(x, y, t) (4.5)

= �0 +
4(a5x + a5a10y

a9
+ a7tα


(α+1) + 4 a5
a9

)a5 + 2a9e
a9x+a10y– 1

3
a9(2a22δ2–3a5a7)tα

a52
(α+1)
+a12

f3(x, y, t)
.

Moreover, by selecting the suitable values of parameters, the analytical treatment of pe-
riodic wave solution is presented in Figs. 5 and 6 including 3D plot, contour plot, density
plot, and 2D plot when three spaces arise at spaces y = –5, y = 0, and y = 5. By taking the
new value parameters a2 = 1.2, a3 = 1.4, a4 = 2, a5 = 1.5, a9 = 1.7, a10 = 1.2, a12 = 1.5, δ2 =
3,�0 = 1, t = 2, the obtained lump–kink solutions in Case II are presented with two dif-
ferent fractional orders. Also, 2D plot of the lump–soliton by selecting the values of the
different fractional order α is depicted in Fig. 7.

Case IV:

f4(x, y, t) =
(

ta3 +
√

a52a102 – a62a92y
a9

+ a4

)2

+
(

a7t + xa5 + ya6 + 4
a5

a9

)2

(4.6)
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Figure 5 The plot of lump–kink (4.5) with fractional order α = 0.5

Figure 6 The plot of lump–kink (4.5) with fractional order α = 0.95

Figure 7 The 2D plot of lump–kink (4.5) with the
different fractional orders

+ a13 + e
(
√

a52a102–a62a92a7+a3a5a10–a3a6a9)a9t

a5
√

a52a102–a62a92
+a9x+a10y+a12

,

�4(x, y, t) (4.7)

= �0 +
4(a7t + xa5 + ya6 + 4 a5

a9
)a5 + 2a9e

(
√

a52a102–a62a92a7+a3a5a10–a3a6a9)a9t

a5
√

a52a102–a62a92
+a9x+a10y+a12

f4(x, y, t)
.

Case V:

�4(x, y, t) (4.8)
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= �0 +
4(–ta1δ3 + xa1 + a4)a1 + 2(–ta5δ3 + xa5 + a8)a5

(–ta1δ3 + xa1 + a4)2 + 2(–ta5δ3 + xa5 + a8)2 + a13 + e(–a103δ6–a10δ1)t+a10y+a12
.

5 Lump–soliton solutions
In this section, to obtain to lump–soliton solutions, assume f to be as follows:

f (x, y, τ ) =

( 4∑

i=1

aixi

)2

+

( 8∑

i=5

aixi

)2

+ cosh

( 12∑

i=9

aixi

)

+ a13,

(x1,5,9, x2,6,10, x3,7,11, x4,8,12) = (x, y, τ , 1),

(5.1)

where τ = tα

(α+1) and ai, i = 1, . . . , 13, are the optional parameters in which are to find sub-

sequently. Substituting (4.8) into Eq. (2.6), we get 24 sets of nonlinear algebraic equa-
tions and then collecting the coefficients including cosh(

∑12
i=9 aixi), sinh(

∑12
i=9 aixi), t, x, y

and a constant, we obtain the following results for determining the solution function
� = �0 + 2∂x(ln f ).

Case I:

f1 =
(

xa1 –
y(a1

2δ4 + a5
2δ4 + a5a6)

a1
(5.2)

+
(a1

2δ1δ4 + a5
2δ1δ4 – a1

2δ3 + a5a6δ1)tα

a1
(α + 1)
+ a4

)2

+
(

xa5 + ya6 +
(–a5δ3 – a6δ1)tα


(α + 1)
+ a8

)2

+ a13 + cosh

(
a10y –

a10δ1tα


(α + 1)
+ a12

)
,

�1 = �0 +
(

4
(

xa1 –
y(a1

2δ4 + a5
2δ4 + a5a6)

a1
(5.3)

+
(a1

2δ1δ4 + a5
2δ1δ4 – a1

2δ3 + a5a6δ1)tα

a1
(α + 1)
+ a4

)
a1

+ 4
(

xa5 + ya6 –
(a5δ3 + a6δ1)tα


(α + 1)
+ a8

)
a5

)/
f1.

Case II:

f2 =
(

xa1 –
a5a6y

a1
–

(a1
2δ3 + a5

2δ3 + a5a7)tα

a1
(α + 1)
+ a4

)2

(5.4)

+
(

xa5 + ya6 +
a7tα


(α + 1)
+ a8

)2

+ a13

+ cosh

(
a10y +

a10(–a6a10
2δ6 + a5δ3 + a7)tα

a6
(α + 1)
+ a12

)
,

�2 = �0 (5.5)

+
4(xa1 – a5a6y

a1
– (a12δ3+a52δ3+a5a7)tα

a1
(α+1) + a4)a1 + 4(xa5 + ya6 + a7tα

(α+1) + a8)a5

f2
.
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Case III:

a1 =

√
(16δ4δ5

3 – δ6
4 – 8δ5

2δ6)(–16a52δ4δ5
3 + a52δ6

4 + 8a52δ5
2δ6 + 2

√
–16δ2

2δ4δ5
5 + δ2

2δ5
2δ6

4 + 8δ2
2δ5

4δ6)
16δ4δ5

3 – δ6
4 – 8δ5

2δ6
,

(5.6)

a2 =
1
2

a1a10
2δ6

δ2
, a3 = –

1
4

a1(a10
4δ6

2 – 2a10a11δ6 + 4δ2δ3)
δ2

, a4 = a4,

a5 = a5, a6 =
1
2

a5a10
2δ6

δ2
,

a7 = –
a5(a10

4δ6
2 – 2a10a11δ6 + 4δ2δ3)

4δ2
, a8 = a8, a9 = 0,

a10 =
√

–δ5δ2

δ5
, a11 = –

δ1
√

–δ5δ2

δ5
, a12 = a12

�3 = �0 +
4(a1x + a2y + a3tα


(α+1) + a4)a1 + 4(a5x + a6y + a7tα

(α+1) + a8)a5

(a1x + a2y + a3tα

(α+1) + a4)2 + (a5x + a6y + a7tα


(α+1) + a8)2 + ea10y+ a11tα

(α+1) +a12 + a13

. (5.7)

The existence condition of solution is of the form

(
16δ4δ5

3 – δ6
4 – 8δ5

2δ6
)(

–16a5
2δ4δ5

3 + a5
2δ6

4 + 8a5
2δ5

2δ6

+ 2
√

–16δ2
2δ4δ5

5 + δ2
2δ5

2δ6
4 + 8δ2

2δ5
4δ6

)
> 0

and

16δ4δ5
3 – δ6

4 – 8δ5
2δ6 < 0.

Case IV:

f4 =
(

–
1
4

ta1(a10
4δ6

2 + 2a10
2δ1δ6 + 4δ2δ3)

δ2
+ a1x + 1/2

ya1a10
2δ6

δ2
+ a4

)2

(5.8)

+
(

–
1
4

ta5(a10
4δ6

2 + 2a10
2δ1δ6 + 4δ2δ3)

δ2
+ a5x +

ya5a10
2δ6

2δ2
+

a4a5

a1

)2

+ a13 + cosh(–ta10δ1 + a10y + a12),

�4 = �0 +
1
f4

[
4
(

–
ta1(a10

4δ6
2 + 2a10

2δ1δ6 + 4δ2δ3)
4δ2

+ a1x +
ya1a10

2δ6

2δ2
+ a4

)
a1 (5.9)

+ 4
(

–
ta5(a10

4δ6
2 + 2a10

2δ1δ6 + 4δ2δ3)
4δ2

+ a5x +
ya5a10

2δ6

2δ2
+

a4a5

a1

)
a5

]
,

in which

a10 =
√

–δ5δ2

δ5
,

a1 =

√
(16δ4δ5

3 – δ6
4 – 8δ5

2δ6)(–a52(16δ4δ5
3 – δ6

4 – 8δ5
2δ6) + 2

√
–δ2

2δ5
2(16δ4δ5

3 – δ6
4 – 8δ5

2δ6))
16δ4δ5

3 – δ6
4 – 8δ5

2δ6
.
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Case V:

a1 = a1, a2 =
1
2

a9a10(2a1
2a13 – a9

2)
a1(–a92a13 + 2a12)

, a4 = a4, a5 = 0, (5.10)

a8 = a8, a9 = a9, a10 = a10, a12 = a12,

a3 = –
1

2a92(–a92a13 + 2a12)2a13

[
a1

2a9
3a10δ1

(
2a1

2a13 – a9
2)(–a9

2a13 + 2a1
2)

– a10
2δ2

(
–2a1

4a9
4a13

2 – 8a1
6a9

2a13 + 4a1
2a9

6a13 + 8a1
8 – a9

8)

+ 2a1
4a9

2δ3
(
–a9

2a13 + 2a1
2)2],

a6 =
1
2

a10
√

–16a16a92a13 + 4a12a96a13 + 16a18 – a98

(–a92a13 + 2a12)a9a1
,

a7 = –
1
2
(
a10

√
–16a16a92a13 + 4a12a96a13 + 16a18 – a98

(
a1

2δ1(–a9
2a13 + 2a1

2)

+ a9a10δ2
(
2a1

2a13 – a9
2)))

/
((

–a9
2a13 + 2a1

2)2a9a1
3),

a11 = –
1
3

a10
2δ2(a9

2a13a1
2 + 2a1

4 – a9
4) + 3a1

2a9(–a9
2a13 + 2a1

2)(a9δ3 + a10δ1)
a12a9(–a92a13 + 2a12)

,

f5 =
(

a1x + a2y +
a3tα


(α + 1)
+ a4

)2

+
(

a6y +
a6tα


(α + 1)
+ a8

)2

(5.11)

+ cosh

(
a9x + a10y +

a11tα


(α + 1)
+ a12

)
+ a13,

�5 = �0 +
2df5/dx

f5
.

Also, by selecting the suitable values of parameters, the analytical treatment of periodic
wave solution is presented in Figs. 8 and 9 including 3D plot, contour plot, density plot, and
2D plot when three spaces arise at spaces x = –1, x = –3, and x = –5. By taking the new
value parameters a1 = 1.2, a4 = 2, a5 = 1.5, a8 = 1.1, a9 = 2, a10 = 1, a12 = 1.5, a13 = 3, δ1 =
2, δ2 = –2, δ3 = 1.5, δ6 = 1.5,�0 = 1, y = 1.5, t = 2, the obtained lump–soliton solutions in
Case V are presented with two different fractional orders. Also, a 2D plot of the lump–
soliton by selecting values of the different fractional order α is depicted in Fig. 10. As
pointed out above the positive polynomial functions and hyperbolic cosine function have
the forms

�1 = �2
11 =

(
a1x + a2y +

a3tα


(α + 1)
+ a4

)2

, �2 = �2
12 =

(
a6y +

a6tα


(α + 1)
+ a8

)2

,

�3 = cosh(�13) = cosh

(
a9x + a10y +

a11tα


(α + 1)
+ a12

)
,

by investigating the asymptotic behavior of a lump and resonance soliton pairs we have
the following relations between �11 and �13:

�11 =
1
2

a9(2a1
2a13 – a9

2)
a1(–a92a13 + 2a12)

�13 +
–4a9

2a13a1
2 + 4a1

4 + a9
4

2a1(–a92a13 + 2a12)
x
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Figure 8 The plot of lump–soliton (5.11) with fractional order α = 0.5

Figure 9 The plot of lump–soliton (5.11) with fractional order α = 0.95

+
–2a1

2a9a12a13 – 2a1a4a9
2a13 + 4a1

3a4 + a9
3a12

2a1(–a92a13 + 2a12)

–
1
6
((

–4a9
2a13a1

2 + 4a1
4 + a9

4)

× (
–3a1

2a9
4a13δ3 – a1

2a9
2a10

2a13δ2 + 6a1
4a9

2δ3 – 6a1
4a10

2δ2 + 2a9
4a10

2δ2
))

/
(
a9

2(–a9
2a13 + 2a1

2)2a1
3) tα


(α + 1)
,

also the limited relations in which arise for �11 and �13 are of the form

lim
t→±∞

�11

�12

=
(
6
(α + 1)a9

2(–a9
2a13 + 2a1

2)2a1
4)

/
((

4a1
4 + a9

4 – 4a9
2a13a1

2)

× (
–3a1

2a9
4a13δ3 – a1

2a9
2a10

2a13δ2 + 6a1
4a9

2δ3 – 6a1
4a10

2δ2 + 2a9
4a10

2δ2
))

,

lim
t→±∞

�11

�3
= 0, lim

t→±∞
�12

�3
= 0,

since one can consider �11 in its relation with �13, therefore at this time, the resonance
soliton pairs occur when �11 contains �13.

Case VI:

f6 =
(

ta1a7

a5
+ xa1 + ya2 + a4

)2

+
(

ta7 + xa5 +
ya2a5

a1
+ a8

)2

+ a13 (5.12)
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Figure 10 The 2D plot of lump–soliton (5.11) with
the different fractional orders

+ cosh

(
2

(2a2
3a5δ6(a1

2 + a5
2)2 + a1

2(a1
2 + a5

2)(2a1
2a2a5 + 2a2a5

3 + 2a2a5δ1 + a1a7))t
a13a5

√
2a12 + 2a52

+ x
√

2a12 + 2a52 –
ya2

√
2a12 + 2a52

a1
+ a12

)
, �6 = �0 +

df6/dx
f6

,

δ2 = –
1
2

–a2
2(a1

2 + a5
2)(3a1δ6 – 8a2δ5) + a1

5 + a1
3a5

2

a12a2
, δ4 = –

a2
4δ5

a14 ,

δ3 =
1
2
(
–2a1

3a2a5δ1 – a2
3a5

(
a1

2 + a5
2)(3a1δ6 – 8a2δ5

)

+ a1
(
–3a2

3a5
3δ6 + a1

4a2a5 + a1
2a2a5

3 – 2a1
3a7

))

/
(
a1

4a5
)
.

Remark In system (1.7), by utilizing α = 1 we get the original system. Also, by choosing
the different α we can get attractive physical interpretations of the obtained solutions. In
Figs. 1–10 the graphical illustrations of some solutions of the considered model have been
plotted.

6 Conclusion
In this article, the localized waves, lump–solitons and solutions between lumps and rogue
waves for the fractional generalized Calogero–Bogoyavlensky–Schiff–Bogoyavlensky–
Konopelchenko (CBS-BK) equation are investigated. The Hirota bilinear method is uti-
lized which contain three cases including lump, lump–kink as the interaction between a
lump and one line soliton and lump–soliton as the interaction between a lump and two-
line solitons. The second-order derivative and the Hessian matrix for only one point in-
vestigated and the lump solution for the first-order rouge wave solution is obtained with
one maximum value. The moving path of the lump solution and also the moving velocity
and the maximum amplitude are obtained. The graphs for the various fractional order α

are plotted containing 3D plot, contour plot, density plot and 2D plot. The results are ben-
eficial to the study of the mathematics physics, fluid dynamics, and applied mechanics. All
calculations in this paper have been made quickly with the aid of the Maple.
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