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Abstract
In this research work, a class of multi-term fractional pantograph differential
equations (FODEs) subject to antiperiodic boundary conditions (APBCs) is considered.
The ensuing problem involves proportional type delay terms and constitutes a
subclass of delay differential equations known as pantograph. On using fixed point
theorems due to Banach and Schaefer, some sufficient conditions are developed for
the existence and uniqueness of the solution to the problem under investigation.
Furthermore, due to the significance of stability analysis from a numerical and
optimization point of view Ulam type stability and its various forms are studied. Here
we mention different forms of stability: Hyers–Ulam (HU), generalized Hyers–Ulam
(GHU), Hyers–Ulam Rassias (HUR) and generalized Hyers–Ulam–Rassias (GHUR). After
the demonstration of our results, some pertinent examples are given.

MSC: Primary 26A33; secondary 34A08; 35R11
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1 Introduction
FODEs have many applications in modeling various real world processes and phenomena.
Therefore in previous several decades it has been given much attention. In fact, FODEs
are definite integrals which include classical differential and integral equations as a special
case. In recent time this has become a most intensely studied area for research in math-
ematics and in other applied sciences like physics, dynamics, electrodynamics and fluid
mechanics. The mentioned area has a large number of applications also in mathematical
modeling of biological models (for details see [1–4]).

In the past the areas of nonlinear integrals and DEs were given great importance as they
have numerous uses in modeling different problems in several fields of technologies and
engineering. This is so because using the usual derivative for modeling various real world
processes, hereditary and memory descriptions cannot be expressed properly in many
situations. So researchers have proved that on using fractional differential operators to
describe memory and hereditary processes in many situations has produced very good
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results as compared to integer order derivatives. This fact motivated researchers to study
FODEs from different directions. The said area has been investigated from different as-
pects including qualitative and stability theory, optimization and approximation results.
Hence plenty of work can be traced in the literature about existence theory of solutions,
we refer to [5–10].

On the other hand, very well performed research has been conducted on the numer-
ical side of FODEs. In this regard plenty of research articles addressing numerical and
qualitative analysis have been presented in the past few years (for instance see [11–16]
and the references therein). Here we remark that stability analysis is also an important as-
pect of qualitative analysis. This is so because stability results are the important require-
ments for numerical and optimization purposes during the investigation of solutions to
applied problems. Different kinds of stability results, like exponential, Mittag-Leffler and
Lyapunov type, have been studied for classical differential and integral equations. In the
previous few years the mentioned theory was greatly updated for FODEs (see for details
[17–19]). Establishing these stabilities for nonlinear systems have merits and de-merits in
constructions. Some of them need a “pre-defined Lyapunov function” and such a function
usually is very hard to construct. Also we have the “exponential and Mittag-Leffler sta-
bility [20] involving exponential functions” which often create difficulties when one is to
find numerical solutions to certain problems. In this regard another kind of stability has
been given much attention by researchers, known as HU stability. This kind of stability
was first pointed by Ulam in 1940 during a talk. After that in 1940 Hyers very nicely gave
explanations for functional equations (for details we refer to [21–23]). Interesting results
have been developed in the last few years (refer to ([24–27] and the references therein).

Study of real world problems with respect to delay problems constitutes a huge class
of applied analysis. In this regard, proportional type delay problems constitute a subclass
known as pantograph differential equations (PDEs). The aforesaid area is increasingly used
to model numerous process. The mentioned type of problems arise in large numbers of
applications in electro-dynamics [28]. Therefore, keeping in mind the applications of the
said area, many researchers have studied the PDEs from many aspects like existence theory
and numerical analysis (see for details [29, 30]). The authors of [31] in 2004 investigated
the given delay problem with t ∈ [0,�] = J as

w′(t) = H
(
t, w(t), w(δ1t), w(δ2t), . . . , w(δmt)

)
,

w(0) = w0, w0 ∈ R,

where 0 < ε ≤ 1, 0 < δj < 1, j = 1, 2, . . . , n and H : J × Rm+1 → R. By fixed point theory, they
investigated the results. The generalized form of the aforementioned problem was inves-
tigated in 2013 in [32]. The concerned fractional order PDEs have been studied recently
for existence theory in [33, 34]. Also continuous type delay problems of FODEs have been
studied recently for theoretical analysis, we refer the reader to [35–37]. Furthermore, in
[38], the authors have investigated the following problem under APBCs with 0 < δ < 1:

⎧
⎨

⎩

CDσ
+0w(t) = H(t, w(t), w(δt), CDσ

+0w(t)), t ∈ J, 2 < σ ≤ 3,

w(0) = –w(�), CDr
+0w(0) = –CDr

+0w(�), CDs
+0w(0) = –CDs

+0w(�).
(1)
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They have established qualitative results of stability and existence theory as regards the
given problem in (1).

Inspired by the aforementioned work, in this research article, we study the given multi-
term problem of FODEs involving delay terms

⎧
⎨

⎩

CDσ
+0w(t) = H(t, w(t), w(δt), w(δ2t), . . . , w(δmt)), t ∈ J, 2 < σ ≤ 3,

w(0) = –w(�), CDr
+0w(0) = –CDr

+0w(�), CDs
+0w(0) = –CDs

+0w(�),
(2)

where 0 < δj < 1, 0 < r < 1, 1 < s < 2, j = 1, 2, . . . , m and the nonlinear function H : J ×
Rm+1 → R is continuous, CD+0 is the Caputo fractional derivative. In the present paper,
we develop the aforementioned results for (2). In developing the existence criteria of so-
lution we apply the Schauder and Banach theorems. In the end some pertinent problems
are given to illustrate the results.

2 Preliminaries
In this section, we give some related definitions and results from the given literature. The
notation X = C(J) is used for a Banach space under the norm

‖w‖X = max
t∈J

{∣∣w(t)
∣∣ : t ∈ J

}
. (3)

Definition 1 The integral of fractional order for the function h ∈ L1(J, R+) of order σ ∈ R+

is recalled as

Iσ+0h(t) =
∫ t

0

(t – �)σ–1

�(σ )
h(�) d�, (4)

with the integral on the right being point wise on R+.

Definition 2 The Caputo derivative of the function h over J is recalled to be

CDσ
+0h(t) =

1
�(n – σ )

∫ t

0
(t – �)n–σ–1h(n)(�) d�, (5)

with n = [σ ] + 1.

Lemma 1 If σ > 0, then

Iσ+0
(CDσ

+0h(t)
)

= h(t) –
n–1∑

j=0

kjtj, where n = [σ ] + 1

holds.

Definition 3 The delay FODEs (2) is HU stable if there exists CH > 0 such that, for all
ε̄ > 0 and for any solution w̄ ∈ X of the inequality

∣∣CDσ
+0w̄(t) – H

(
t, w̄(t), w̄(δ1t), w̄(δ2t), . . . , w̄(δmt)

)∣∣ ≤ ε̄, for all t ∈ J, (6)
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there exists at most one solution w ∈ X to problem (2) with

∣
∣w̄(t) – w(t)

∣
∣ ≤ CHε̄, ∀t ∈ J.

Definition 4 The problem of delay FODEs (2) is GHU stable if there exists β ∈ C(R+, R+),
β(0) = 0, and also regarding any solution w̄ ∈ X of the inequality (6), there is at most one
solution w ∈ X of (2) with

∣∣w̄(t) – w(t)
∣∣ ≤ β(ε̄), for all t ∈ J.

Definition 5 The delay FODEs (2) is HUR stable w.r.t. ξ ∈ C(J, R+), if there exists a real
number CH > 0, and ε̄ > 0, and also, for any solution w̄ ∈ X of the inequality

∣∣CDσ
+0w̄(t) – H

(
t, w̄(t), w̄(δ1t), w̄(δ2t), . . . , w̄(δnt)

)∣∣ ≤ ξ (t)ε̄, ∀t ∈ J, (7)

there exists at most one solution w ∈ X of problem (2), such that

∣
∣w̄(t) – w(t)

∣
∣ ≤ CHε̄ξ (t), for all t ∈ J. (8)

Definition 6 The delay AODE (2) will be GHUR stable w.r.t. ξ ∈ X , if for CH > 0 and any
solution w̄ ∈ X of the inequality (7) there exists at most one solution w ∈ X of problem
(2),

∣∣w̄(t) – w(t)
∣∣ ≤ CHξ (t), for all t ∈ J. (9)

Remark 1 Let w̄ ∈ X be the result of (6); there exists ψ(t) ∈ X with
(i) |ψ(t)| ≤ ε̄ , for all t ∈ J.

(ii) CDσ
+0w̄(t) = H(t, w̄(t), w̄(δ1t), w̄(δ2t), . . . , w̄(δmt)) + ψ(t), for all t ∈ J.

Remark 2 Let w̄ ∈ X be the result of (7); there exists ψ(t) ∈ C(J, R) with
(i) |ψ(t)| ≤ ε̄ξ (t) for all t ∈ J;

(ii) CDσ
+0w̄(t) = H(t, w̄(t), w̄(δ1t), w̄(δ2t), . . . , w̄(δmt)) + ψ(t), for all t ∈ J.

3 Criteria for existence of solution
Theorem 1 Let g ∈ C(J), then the solution

⎧
⎨

⎩

CDσ
+0w(t) = g(t), for t ∈ J, 2 < σ ≤ 3,

w(0) = –w(�), CDr
+0w(0) = –CDr

+0w(�), CDs
+0w(0) = –CDs

+0w(�),
(10)

is given by

w(t) =
∫ �

0
K (t,�)y(�) d�, (11)
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while Green’s function K (t,�) may be provided as

K (t,�) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(t–�)σ–1– 1
2 (�–�)σ–1

�(σ ) + �(2–r)(�–2t)(�–�)σ–r–1

2�(σ–r)�1–r

– [r�2–4�t+2(2–r)t2�(3–s)(�–�)σ–s–1]
4(2–r)�(σ–r)�2–s , 0 ≤ � ≤ t ≤ �,

(�–�)σ–1

2�(σ ) + �(2–r)(�–2t)(�–�)σ–r–1

2�(σ–r)�1–r

– [r�2–4�t+2(2–r)t2�(3–s)(�–�)σ–s–1]
4(2–r)�(σ–r)�2–s , 0 ≤ t ≤ � ≤ �.

(12)

Proof 1 The proof of this theorem may be similarly obtained to [38, Theorem 1].

Corollary 1 By Theorem 1, the proposed problem (2) is equivalent to the following integral
equation:

w(t) =
∫ �

0
K (t,�)H

(
�, w(�), w(δ1�), w(δ2�), . . . , w(δn�)

)
d�.

Lemma 2 The function K (t,�), given in (12) has the given characteristics:
(P1) K (t,�) is continuous over J2 and K (t,�) ≥ 0, for all t,� ∈ J;
(P2) the following inequality holds:

max
t∈J

∫ �

0
K (t,�) d� ≤

[
1

�(σ + 1)
+

�(2 – r)
2�(σ – r + 1)

+
(r + 2)(�(3 – s)

2(2 – r)�(σ – s + 1)

]
�σ

= �. (13)

Proof 2 The proof of (P1) is obvious; to derive (P2), one has

max
t∈J

∫ �

0
K (t,�) d�

= max
t∈J

(
1

�(σ )

∫ t

0
(t – �)σ–1 d� –

1
2�(σ )

∫ �

0
(� – �)σ–1 d�

+
�(2 – r)(� – 2t)
2�(σ – r)�1–r

∫ �

0
(� – �)σ–r–1 d�

–
[r�2 – 4�t + 2(2 – r)t2]�(3 – s)

4(2 – r)�(σ – s)�2–s

∫ �

0
(� – �)σ–s–1 d�

)

≤ max
t∈J

( �σ

�(σ + 1)
+

�(2 – r)�σ–r+1

2�(σ – r + 1)�1–r –
[r�2 – 4�t + 2(2 – r)t2]�(3 – s)�σ–s

4(2 – r)�(σ – s + 1)�2–s

)

≤ �σ

�(σ + 1)
+

�(2 – r)�σ

2�(σ – r + 1)
+

(r + 2)(�(3 – s)�σ

2(2 – r)�(σ – s + 1)
.

We need the following assumptions to hold:
(F1) Let there exist a constant AH > 0, with

∣∣H
(
t, w(t), w(δ1t), w(δ2t), . . . , w(δnt)

)
– H

(
t, w̄(t), w̄(δ1t), w̄(δ2t), . . . , w̄(δmt)

)∣∣

≤ AH

(
∣
∣w(t) – w̄(t)

∣
∣ +

m∑

j=1

∣
∣w(δjt) – w̄(δjt)

∣
∣
)

,

for w, w̄ ∈ X .
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(F2) There exist θ0, θ̄ , θj ∈ X for j = 1, 2, . . . , m with

∣∣H
(
t, w(t), w(δ1t), w(δ2t), . . . , w(δnt)

)∣∣

≤ θ0(t) + θ̄ (t)

[
∣∣w(t)

∣∣ +
m∑

j=1

θj(t)
∣∣w(δjt)

∣∣
]

, for w ∈ X ,

with θ∗
0 = supt∈J |θ0(t)|, θ̄∗ = supt∈J |θ̄ (t)|, θ∗

j = supt∈J |θj(t)|, ∀j = 1, 2, . . . , m. Further-
more,

θ∗ = max
t∈J

{
θ̄∗, θ∗

1 , θ∗
2 , . . . , θ∗

m
}

.

Here we define T : X → X as the operator

T(w)(t) =
∫ �

0
K (t,�)H

(
�, w(�), w(δ1�), w(δ2�), . . . , w(δn�)

)
d�. (14)

Theorem 2 The mapping T : X → X given in (14) is completely continuous.

Proof 3 Continuity of T is dependent on H,K (t,�). Let B ⊂ X be a bounded set. Let
w ∈ B, one has

∣∣Tw(t)
∣∣ =

∣∣∣
∣

∫ �

0
K (t,�)H

(
�, w(�), w(δ1�), w(δ2�), . . . , w(δn�)

)
d�

∣∣∣
∣

≤
∫ �

0

∣∣K (t,�)
∣∣∣∣H

(
�, w(�), w(δ1�), w(δ2�), . . . , w(δn�)

)∣∣d�. (15)

By assumption (F2), on simplifying (15), we obtain

‖Tw‖X ≤ [
θ∗

0 + (m + 1)θ∗‖w‖X

]
�.

This yields the uniformly boundedness of T. To derive discontinuity of T, let t2 > t1 ∈ J
such that

∣
∣Tw(t1) – Tw(t2)

∣
∣

≤
∫ t2

0

(t2 – �)σ–1

�(σ )
∣∣H

(
�, w(�), w(δ1�), w(δ2�), . . . , w(δn�)

)∣∣d�

+
∫ t2

0

(t1 – �)σ–1

�(σ )
∣∣H

(
�, w(�), w(δ1�), w(δ2�), . . . , w(δn�)

)∣∣d�

+
2�(2 – r)(t2 – t1)

2�1–r�(σ – r)

∫ �

0
(� – �)σ–r–1∣∣H

(
�, w(�), w(δ1�), w(δ2�), . . . , w(δn�)

)∣∣d�

+
4�(1 + 2�(2 – r))(t2 – t1)

4(2 – r)�2–s�(σ – s)

∫ �

0
(� – �)

∣∣H
(
�, w(�), w(δ1�), w(δ2�), . . . , w(δn�)

)∣∣d�

≤
∫ t2

0

(t2 – �)σ–1

�(σ )
[
θ∗

0 + (m + 1)θ∗‖w‖X

]
d�

+
∫ t2

0

(t1 – �)σ–1

�(σ )
[
θ∗

0 + (m + 1)θ∗‖w‖X

]
d�
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+
2�(2 – r)(t2 – t1)

2�1–r�(σ – r)

∫ �

0
(� – �)σ–r–1[θ∗

0 + (m + 1)θ∗‖w‖X

]
d�

+
4�(1 + 2�(2 – r))(t2 – t1)

4(2 – r)�2–s�(σ – s)

∫ �

0
(� – �)σ–s[θ∗

0 + (m + 1)θ∗‖w‖X

]
d�

≤
[

(tσ
2 – tσ

2 )
�(σ + 1)

+
2�σ–r�(2 – r)(t2 – t1)

2�1–r�(σ – r + 1)
+

4�σ–s+1(1 + 2�(2 – r))(t2 – t1)
4(2 – r)�2–s�(σ – s + 1)

]

× [
θ∗

0 + (m + 1)θ∗‖w‖X

]
. (16)

At t1 → t2, (16) tends to zero in the right hand side. Thus equicontinuity of T is obtained,
which also confirms uniform continuity. Analogously T(B) ⊂ B. Therefore the operator
T is completely continuous.

Theorem 3 Under the complete continuity of the operator T and the Hypotheses (F1),
(F2), the problem of delay FODEs (2) possesses at least one solution.

Proof 4 Let E be the set

E =
{

w ∈ X : w = ρT(w), 0 < ρ < 1
}

.

The operator T : Ē → X as provided in (14) is completely continuous by Theorem 2.
Take w ∈ E on using (F2), one has

‖w‖X =
∥∥ρT(w)

∥∥
X

≤ max
t∈J

∫ �

0

∣∣K (t,�)
∣∣∣∣H

(
�, w(�), w(δ1�), w(δ2�), . . . , w(δn�)

)∣∣d�

≤ max
t∈J

∫ �

0

∣
∣K (t,�)

∣
∣[θ∗

0 + (m + 1)θ∗‖w‖X

]
d�.

From this we have

‖w‖X ≤ θ∗
0 �

1 – (m + 1)θ∗�)
= μ. (17)

Boundedness of E holds and so (2) has at least one solution.

Theorem 4 Under assumption (F1) and the condition [(m + 1)AH�] < 1, where � is given
in (13), the unique solution will be guaranteed for problem (2) in X .

Proof 5 On making use of the Banach principle, if w, w̄ ∈ X , with t ∈ J, one has

∣∣Tw(t) – Tw̄(t)
∣∣ =

∣
∣∣∣

∫ �

0
K (t,�)

[
H

(
�, w(�), w(δ1�), w(δ2�), . . . , w(δn�)

)

– H
(
�, w̄(�), w̄(δ1�), w̄(δ2�), . . . , w̄(δn�)

)]
d�

∣
∣∣
∣

≤
∫ �

0

∣
∣K (t,�)

∣
∣
∣
∣H

(
�, w(�), w(δ1�), w(δ2�), . . . , w(δn�)

)

– H
(
�, w̄(�), w̄(δ1�), w̄(δ2�), . . . , w̄(δn�)

)∣∣d�. (18)
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In view of property (P2), from (18), one has

‖Tw – Tw̄‖X ≤ max
t∈J

∫ �

0

∣∣K (t,�)
∣∣(m + 1)AH‖w – w̄‖X d�

≤ [
(m + 1)AH�

]‖w – w̄‖X .

Since [(m + 1)AH�] < 1, the mapping T is a contraction which confirms that (2) has at
most one solution.

4 Stability theory
Here we develop the required results for stability theory.

Lemma 3 The solution of the given equation with t ∈ J

⎧
⎨

⎩

CDσ
+0w̄(t) = H(t, w̄(t), w̄(δ1t), w̄(δ2t), . . . , w̄(δnt)) + ψ(t), 2 < σ ≤ 3,

w̄(0) = –w̄(�), CDr
+0w̄(0) = –CDr

+0w̄(�), CDs
+0w̄(0) = –CDs

+0w̄(�),
(19)

obeys the given inequality

∣∣
∣∣w̄(t) –

∫ �

0
K (t,�)H

(
�, w̄(�), w̄(δ1�), w̄(δ2�), . . . , w̄(δn�)

)
d�

∣∣
∣∣ ≤ �ε̄. (20)

Proof 6 Like Corollary 1, the solution of (19) can be provided as

w̄(t) =
∫ �

0
K (t,�)H

(
�, w̄(�), w̄(δ1�), w̄(δ2�), . . . , w̄(δn�)

)
d� +

∫ �

0
K (t,�)ψ(�) d�.

From this one has on using (i) of Remark 1 and property (P2) of K ,

∣
∣∣
∣w̄(t) –

∫ �

0
K (t,�)H

(
�, w̄(�), w̄(δ1�), w̄(δ2�), . . . , w̄(δn�)

)
d�

∣
∣∣
∣ ≤

∫ �

0

∣∣K (t,�)
∣∣∣∣ψ(�)

∣∣d�

≤ �ε̄, t ∈ J.

Theorem 5 If the conditions (m+1)AH� < 1 hold, then the solution of (2) is HU and GUH
stable.

Proof 7 If w ∈ X is at most one result of (2) and w̄ ∈ X is any solution of the said
problem, then we may consider with t ∈ J

‖w̄ – w‖X = max
t∈J

∣∣
∣∣w̄ –

∫ �

0
K (t,�)H

(
�, w(�), w(δ�), w(δ2�), . . . , w(δm�)

)
d�

∣∣
∣∣

≤ max
t∈J

∣
∣∣
∣w̄ –

∫ �

0
K (t,�)H

(
�, w̄(�), w̄(δ1�), w̄(δ2�), . . . , w̄(δm�)

)
d�

∣
∣∣
∣

+ max
t∈J

∣
∣∣∣

∫ �

0
K (t,�)H

(
�, w̄(�), w̄(δ1�), w̄(δ2�), . . . , w̄(δm�)

)
d�

–
∫ �

0
K (t,�)H

(
�, w(�), w(δ�), w(δ2�), . . . , w(δm�)

)
d�

∣∣
∣∣.
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By the application of assumption (F1) and Lemma 3, we get

‖w̄ – w‖X ≤ �ε̄ +
[
(m + 1)AH�

]‖w̄ – w‖X . (21)

Upon simplification (21) yields

‖w̄ – w‖ ≤ CHε̄, CH =
�

1 – [(m + 1)AH�]
. (22)

Hence the problem (2) is HU stable. Let a nondecreasing function β : (0, 1) → (0,∞) be
such that β(ε̄) = ε̄ with β(0) = 0, then from (21), we can write

‖w̄ – w‖ ≤ CHβ(ε̄). (23)

Thus problem (2) is GHU stable.

Lemma 4 For the given problem (19), the following inequality holds:

∣∣∣
∣w̄(t) –

∫ �

0
K (t,�)H

(
�, w̄(�), w̄(δ1�), w̄(δ2�), . . . , w̄(δm�)

)
d�

∣∣∣
∣ ≤ �ξ (t)ε̄, t ∈ J. (24)

Proof 8 Keeping in mind Corollary 1 the solution of (19) is given by

w̄(t) =
∫ �

0
K (t,�)H

(
�, w̄(�), w̄(δ1�), w̄(δ2�), . . . , w̄(δm�)

)
d� +

∫ �

0
K (t,�)ψ(�) d�.

On applying Remark 2(i) and (P2), one has

∣∣
∣∣w̄(t) –

∫ �

0
K (t,�)H

(
�, w̄(�), w̄(δ1�), w̄(δ2�), . . . , w̄(δm�)

)
d�

∣∣
∣∣ ≤

∫ �

0

∣
∣K (t,�)

∣
∣
∣
∣ψ(�)

∣
∣d�

≤ �ξ (t)ε̄, t ∈ J.

Theorem 6 Under assumption (F1) and the condition (m + 1)AH� < 1, the considered
problem (2) is HUR stable.

Proof 9 Let w̄ be any result of problem (2) with w ∈ X at most one solution of inequality
(2), then we have

‖w̄ – w‖X = max
t∈J

∣∣
∣∣w̄ –

∫ �

0
K (t,�)H

(
�, w(�), w(δ1�), w(δ2�), . . . , w(δm�)

)
d�

∣∣
∣∣

≤ max
t∈J

∣
∣∣
∣w̄ –

∫ �

0
K (t,�)H

(
�, w̄(�), w̄(δ1�), w̄(δ2�), . . . , w̄(δm�)

)
d�

∣
∣∣
∣

+ max
t∈J

∣
∣∣∣

∫ �

0
K (t,�)H

(
�, w̄(�), w̄(δ1�), w̄(δ2�), . . . , w̄(δm�)

)
d�

–
∫ �

0
K (t,�)H

(
�, w(�), w(δ1�), w(δ2�), . . . , w(δm�)

)
d�

∣∣
∣∣.
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On using assumption (F1) and Lemma 4, we get

‖w̄ – w‖X ≤ �ξ (t)ε̄ +
[
(m + 1)AH�

]‖w̄ – w‖X . (25)

Upon simplification (25) gives

‖w̄ – w‖X ≤ CHξ (t)ε̄, CH =
�

1 – [(m + 1)AH�]
. (26)

Thus the solution of (2) is HUR stable.

Lemma 5 The solution of the perturbed problem given in (19) produces the following rela-
tion:

∣
∣∣
∣w̄(t) –

∫ �

0
K (t,�)H

(
�, w̄(�), w̄(δ1�), w̄(δ2�), . . . , w̄(δm�)

)
d�

∣
∣∣
∣ ≤ �ξ (t), t ∈ J. (27)

Proof 10 On using Lemma 3, the proof is simple.

Theorem 7 Under the Hypothesis (F1) and the inequalities (m + 1)AH� < 1 holding, the
solution of (2) is GHUR stable.

Proof 11 Keeping in mind Theorem 6, one can write

‖w̄ – w‖X ≤ CHξ (t), CH =
�

1 – (m + 1)AH�
. (28)

Hence the solution of (2) is GHUR stable.

5 Illustrative problems
Here we address some illustrative problems.

Problem 1 Let us consider the FODEs under APBCs with proportional delay terms

⎧
⎨

⎩

CD
5
2
+0w(t) = 1

150 [t cos |w(t)| – w( 1
2 t) sin(t)] + w( 1

3 t)
100+w( 1

3 t)
, t ∈ J = [0, 1],

w(0) = –w(1), CD
1
2
+0w(0) = –CD

1
2
+0w(1), CD

3
2
+0w(0) = –CD

3
2
+0w(1).

(29)

Here one has m = 2, σ = 5
2 , r = 1

2 , s = 3
2 , δ1 = 1

2 , δ2 = 1
3 , � = 1. Continuity of the function

H
(
t, w(t), w(δ1t), w(δ2t)

)
=

1
150

[
t cos

∣
∣w(t)

∣
∣ – w

(
1
2

t
)

sin(t)
]

+
w( 1

3 t)
100 + w( 1

3 t)

is clear for w ∈ X = C[0, 1]. Again by assumption (F1), for any w, w̄ ∈ R, one has

∣∣H
(
t, w(t), w(δ1t), w(δ2t)

)
– H

(
t, w̄(t), w̄(δ1t), w̄(δ2t)

)∣∣

=
∣
∣∣
∣

1
150

[
t cos

∣∣w(t)
∣∣ – w

(
1
2

t
)

sin(t)
]

+
w( 1

3 t)
100 + w( 1

3 t)
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–
1

150

[
t cos

∣∣w̄(t)
∣∣ – w̄

(
1
2

t
)

sin(t)
]

–
w̄( 1

3 t)
100 + w̄( 1

3 t)

∣
∣∣
∣

≤ 7
300

∣∣w(t) – w̄(t)
∣∣.

Hence we have AH = 7
300 . On computation, we have � = 0.7809524. On use of Theorem 4,

one has

(m + 1)AH� = 0.018222 < 1.

Thus the given problem of FODEs (1) has at most one solution. Furthermore, using The-
orem 5, we see that

(m + 1)AH� < 1.

Thus the concerned conditions for HU and GHU stability hold. Upon using Theorem 6
and taking the nondecreasing function ξ (t) = t2 for t ∈ (0, 1), one has CH = �

1–[(m+1)AH�] =
0.7954472. Hence we see that with the results for the unique solution w̄ ∈ X and any
solution w ∈ X the relation

‖w – w̄‖X ≤ 0.7954472ε̄t2, for all t ∈ [0, 1],

holds true. Thus the solution of (1) is HUR stable. Consequently it is GHUR stable on
using Theorem 7.

Problem 2 Consider another problem of FODEs involving delay terms:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CD
5
2
+0w(t) = exp(–4π t)

50

+ exp(–10t)
100+(1–t)2 [sin(|w(t)|) + w( 1

4 t) + w( 1
5 t) + w( 1

6 t)], t ∈ [0, 1],

w(0) = –w(1), CD
1
2
+0w(0) = –CD

1
2
+0w(1), CD

3
2
+0w(0) = –CD

3
2
+0w(1).

(30)

Here σ = 5
2 , r = 1

2 , s = 3
2 , δ = 1

4 , � = 1, m = 3 and

H
(
t, w(t), w(δ1t), w(δ2t), w(δ3t)

)

=
exp(–4π t)

50
+

exp(–10t)
100 + (1 – t)2

[
sin

(∣∣w(t)
∣∣) + w

(
1
4

t
)

+ w
(

1
5

t
)

+ w
(

1
6

t
)]

.

Clearly H is continuous.
Now for any w, w̄ ∈ X , one has

∣
∣H

(
t, w(t), w(δ1t), w(δ2t), w(δ3t)

)
– H

(
t, w̄(t), w̄(δ1t), w̄(δ2t), w̄(δ3t)

)∣∣

≤ 1
100

[
4
∣
∣w(t) – w̄(t)

∣
∣]

=
1

25
[∣∣w(t) – w̄(t)

∣∣].
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Hence H satisfies the Hypothesis (F1) with AH = 1
25 . The function H also satisfies the Hy-

pothesis (F2) with θ0(t) = exp(–4π t)
50 , θ̄ (t) = exp(–t)

100+(1–t)2 and θ1(t) = exp(–t)
100+(1–t)2 , θ2(t) = exp(–t)

100+(1–t)2 ,
where θ∗

0 (t) = 1
50 , θ̄∗ = 1

101 , θ∗
1 = θ∗

2 = 1
101 . Furthermore, θ∗ = 1

101 . Also one has

� =
1

�( 5
2 + 1)

+
�(2 – 1

2 )
2�( 5

2 – 1
2 + 1)

+
( 1

2 + 2)(�(3 – 3
2 ))

2(2 – 1
2 )�( 5

2 – 3
2 + 1)

= 1.26098028.

By Theorem 3, one has μ = θ∗
0 �

(1–4θ∗�) = 0.2654527. Thus the given problem of FODEs (2)
has at least one solution. Furthermore, using Theorem 4, we see that

4AH� = 0.0201757 < 1.

Hence the solution is unique. Analogously by Theorem 5, we have

4AH� = 0.0201757 < 1.

Hence the solution is HU stable. Furthermore, it is also GHU stable. For HUR stability, in
view of Theorem 6 and by considering the nondecreasing function ξ (t) = t for t ∈ (0, 1),
one has CH = �

1–(4AH�) = 1.2741035. Hence, we see that with the results for any solution
w̄ ∈ X and unique solution w ∈ X the relation

‖w̄ – w‖X ≤ 1.2741035ε̄t, for all t ∈ [0, 1],

holds true. Hence the solution of (1) is HUR stable. Consequently it is obviously GHUR
stable on using Theorem 7.

Problem 3 Here we take another proportional delay problem of FODEs:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CD
7
3
+0w(t) = t

50 + t2+3
500

√|w(t)| + (t+3)2

500

√
|w( 1

2 t)|
+ (t+2)2

500

√
|w( 1

3 t)| + (t+4)2

500

√
|w( 1

4 t)|, t ∈ [0, 1],

w(0) = –w(1), CD
1
3
+0w(0) = –CD

1
3
+0w(1), CD

4
3
+0w(0) = –CD

4
3
+0w(1).

(31)

Here σ = 7
3 , r = 1

3 , s = 4
3 , � = 1 and

H
(
t, w(t), w(δ1t), w(δ2t), w(δ3t), w(δ4t)

)

=
t

50
+

(t2 + 3)
1000

√∣
∣w(t)

∣
∣ +

(t + 3)2

1000

√∣∣
∣∣w

(
1
2

t
)∣∣

∣∣

+
(t + 2)2

1000

√∣∣
∣∣w

(
1
3

t
)∣∣

∣∣ +
(t + 4)2

1000

√∣∣
∣∣w

(
1
4

t
)∣∣

∣∣.
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Now we take w, w̄ ∈ R, such that

∣
∣H

(
t, w(t), w(δ1t), w(δ2t), w(δ3t)

)
– H

(
t, w̄(t), w̄(δ1t), w̄(δ2t), w̄(δ3t)

)∣∣

≤ 36
1000

[
4
∣∣w(t) – ¯w(t)

∣∣]

=
18

125
[∣∣w(t) – ¯w(t)

∣
∣].

HenceH satisfies the Hypothesis (F1) with AH = 18
125 . The functionH also satisfies the Hy-

pothesis (F2) with m = 3 and � = 1.2176 θ0(t) = t
50 , θ̄ (t) = t2+3

500 , θ1(t) = (t+3)2

1000 , θ2(t) = (t+2)2

1000 ,
θ3(t) = (t+4)2

1000 , θ4(t) = (t+5)2

1000 where θ∗
0 (t) = 1

25 , θ̄∗(t) = 1
125 , θ∗

1 (t) = 2
125 , θ∗

2 (t) = 9
1000 , θ∗

3 (t) = 1
40 ,

θ∗
4 (t) = 9

250 . Upon computation, (m + 1)AH� = 0.7013376 < 1. Thus on using Theorem 4,
the Problem 3 has at most one solution. Moreover, it also satisfies the condition of HU
stability and consequently GHU stability by using Theorem 5. Taking a nondecreasing
function ξ (t) = 1 + t2

2 , one can prove that the result of (3) is HUR stable and hence GHUR
stable upon the application of Theorem 6 and Theorem 7, respectively.

6 Conclusion
A comprehensive analysis corresponding to the existence theory of solution and stabil-
ity results has been established for a multi-term pantograph FODEs under APBCs. This
type of problem has been investigated with respect to the subject conditions for the first
time in terms of delay differential equations of any positive real order. The considered de-
lay type differential equations have important applications in various scientific fields, like
electro-locomotive dynamics. The whole analysis has been demonstrated by some proper
examples.
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