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Abstract
The main aim of this paper is to present some existence criteria for an infinite system
of Hilfer fractional boundary value problems of the form

Dα,β
a+ ui = –Fi(t,u), ui(a) = ui(b) = 0,a < t < b, i = 1, 2, . . . ,

in Banach sequence spaces of c0 and lp,p ≥ 1 types. Our approach is based on the
Darbo-type fixed point theorems acting on the condensing operators. The obtained
existence results in each of the above sequence spaces are illustrated by presenting
some numerical examples.

MSC: Primary 34A08; 45A05; 47H08; secondary 26A33; 34B12; 47H10

Keywords: Infinite systems of fractional differential equations; Hilfer fractional
derivatives; Measure on noncompactness; Condensing operators; Darbo-type fixed
point theorem; Existence of solutions

1 Introduction
Nowadays it is a well-known fact that one may take the integration and differentiation of
arbitrary order in the appropriate functional spaces. The governing theory of such op-
erations is known as fractional calculus, and consequently differential equations recon-
structed in this theory are called fractional differential equations. So, it is a natural ex-
pectation that we try to re-obtain the fractional-order approaches of the current results
belonging to the ordinary differential calculus. Between various versions of the fractional-
order differentiation the Hilfer fractional derivatives have an interesting technical prop-
erty, which makes these derivatives much more important than other fractional-order
derivatives, that is, the Hilfer fractional derivatives unify the Riemann–Liouville and Ca-
puto fractional derivatives. This property makes the Hilfer fractional derivatives a more
powerful mathematical tool in studying real-life phenomena and their engineering refine-
ments. In this way, we suggest some resources for fractional differential equations such as
[1, 5, 7, 8, 11–15, 19–22, 25, 27–29, 31, 32, 34, 36–40] and the references cited therein, for
more consultation on this topic.
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In this paper we deal with one of the above-mentioned approaches, that is, the solvability
assessment of an infinite system of the boundary value problems equipped with the Hilfer
fractional derivatives. This fractional-order system can be formulated as

Dα,β
a+ ui = –Fi(t, u), ui(a) = ui(b) = 0, a < t < b, i = 1, 2, . . . , (1.1)

where
(A1) Dα,β

a+ denotes the Hilfer fractional derivative of order 1 < α ≤ 2 and type 0 ≤ β ≤ 1.
(A2) Fi(t, u) := ai(t) + gi(t, u1, u2, . . .), i = 1, 2, . . . .
(A3) ai ∈ C([a, b],R), i = 1, 2, . . . .
(A4) gi ∈ C([a, b] ×R

∞), i = 1, 2, . . . .
As special cases of the infinite systems of the Hilfer fractional differential equations (1.1),
one may consider the following instances:

1. The Hilfer fractional relaxation:

Fi(t, u) = Cu, u := (ui)∞i=1, C ∈R.

2. The Hilfer fractional diffusion:

Fi(t, u) = C�u, u := (ui)∞i=1, C ∈R,

with the Laplacian �.
The importance of the infinite systems of differential equations arises naturally in solving
of partial differential equations. For instance, in the field of statistical physics infinite sys-
tems of ordinary differential equations appear as moment problems associated with the
Fokker–Planck partial differential equations as described in [30]. As another application
for the infinite systems of ordinary differential equations, one can consider the second-
order nonlinear partial differential equation of the form

∂2u
∂t2 –

∂2u
∂y2 = F

(
∂u
∂y

,
∂u
∂t

, u, y, t
)

,

such that solving it can be reduced to solving the infinite system of the ordinary differential
equations

d2xn

dt2 + n2xn = fn

(
t, x1,

dx1

dt
, x2,

dx2

dt
, . . .

)
, n = 1, 2, . . . .

More details can be found in [18] and the cited bibliography. Also, by the use of the lon-
gitudinal method of lines acting on the infinite systems of ordinary differential equations
corresponding to some parabolic partial differential equations, one may obtain the ap-
proximate solutions of the partial differential equations as has been presented in detail
in [35]. Besides, studying the infinite systems of differential equations leads to some sig-
nificant problems in engineering, mechanics, theory of the branching processes, theory
of the neural networks, and the theory of the dissociation of polymers (cf. [18, 23] and
[24]). On the other hand, studying the infinite systems of differential equations on ap-
propriate Banach spaces by themselves may occupy a distinguished place from the point
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of view of their solvability processes. As a consequence, one can consider the measures
of noncompactness and constructed fixed point theory based on them as a pioneering
technique to investigate the existence of solutions for the infinite systems of differential
equations. Actually, measures of noncompactness from the point of view of applicability
have a wide range of applications in providing solvability criteria for nonlinear differential
equations via various refinements of the Darbo fixed point theorem. The history of mea-
sures of noncompactness originated with the Polish mathematician Kuratowski [17], and
the first measure of noncompactness introduced by him was as follows:

α(S) := inf

{
δ > 0|S =

n⋃
i=1

Si for some Si with diam(Si) ≤ δ, 1 ≤ i ≤ n < ∞
}

,

for the bounded subset S of the metric space X. Besides, diam(T) denotes the diameter
of the set T ⊂ X, i.e., diam(T) := sup{d(x, y)|x, y ∈ T}. However, from the point of view of
applicability there is an another measure of noncompactness, which can be considered as
the one most convenient and useful in applications. This measure is called the Hausdorff
measure of noncompactness and is defined by

χ (S) := inf{ε|S has a finite ε-net in X}.

As a useful and compact collection of resources for more detailed consultation we refer to
[4, 6, 9] and [10] and the references therein. From now on, for the sake of convenience we
will use the abbreviation MNC for the measure of noncompactness.

Having the measures of noncompactness and related fixed point theory as our main
technical tool, we now mention the following papers that are the inspiring resources of
this paper, indeed. The authors in [23], studied the solvability of the infinite system of
second-order periodic boundary value problem

u′′
i = –fi(t, u1, u2, . . .), ui(0) = ui(T) = 0, t ∈ [0, T], i = 1, 2, . . . , (1.2)

by the use of the measures of noncompactness and Darbo-type fixed point theorems on
condensing operators. Motivated by this problem, and essentially following the applied
technique in [23], we initiate studying the solvability of the infinite system of the Hilfer
fractional boundary value problem (1.1).

At the end of this section, we state the organization of this investigation as follows. In
Sect. 2, the Hilfer fractional derivatives and their importance in fractional calculus will be
summarized. Besides, the concept of MNC and related Darbo-type fixed point theory will
be presented. Section 3, is devoted to the some solvability criteria for the Hilfer fractional
infinite system (1.1). We divide this section into the two parts. First, we define the Ba-
nach sequence space c0, and consequently we provide some conditions on nonlinearities
to obtain at least one solution for the infinite system (1.1). In the second part, present-
ing the Banach sequence space lp, p ≥ 1, we give some another sufficient conditions that
lead us to the existence of at least one solution of the infinite system (1.1). Applicability of
the obtained theoretical results in Sect. 3 will be illustrated in Sect. 4 by presenting some
numerical examples for each existence criterion in c0 and lp.
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2 Technical background
In this section we first define the Hilfer fractional derivatives and their essential properties.
So, we have the following definition.

Definition 2.1 ([15, 33]) Assume n – 1 < α ≤ n, n ∈ N, 0 ≤ β ≤ 1 and f ∈ ACn[a, b]. Then
the left and right sided Hilfer fractional derivatives of order α and type β , are defined as
follows:

Dα,β
a+(b–)f (t) =

⎧⎨
⎩
Dα,β

a+ f (t) := (Iβ(n–α)
a+ Dα+β(n–α)

a+ f )(t), t > a,

Dα,β
b–

f (t) := (Iβ(n–α)
b–

Dα+β(n–α)
b–

f )(t), t < b.
(2.1)

We note that in this definition, Iα
a+(b–) stands for the left (right) sided Riemann–Liouville

fractional integral of order α that acts on f ∈ L(a, b) as follows [16]:

Iα
a+(b–)f (t) =

⎧⎪⎪⎨
⎪⎪⎩
Iα

a+ f (t) = 1
	(α)

∫ t
a (t – s)α–1f (s) ds; α > 0,

Iα
b–

f (t) = 1
	(α)

∫ b
t (s – t)α–1f (s) ds; α > 0,

f (t); α = 0.

In addition, Dα
a+(b–) stands for the Riemann–Liouville fractional derivative of order α that

acts on f ∈ ACn[a, b] as follows [16]:

Dα
a+(b–)f (t)

=

⎧⎪⎪⎨
⎪⎪⎩
Dα

a+ f (t) := ( dn

dtn )In–α
a+ f (t) = 1

	(n–α) ( dn

dtn )
∫ t

a (t – s)n–α–1f (s) ds; α > 0,

Dα
b–

f (t) := (–1)n( dn

dtn )In–α
b–

f (t) = (–1)n

	(n–α) ( dn

dtn )
∫ b

t (s – t)n–α–1f (s) ds; α > 0,

f (t); α = 0,

where n = [α] + 1.

Remark 2.2 Concentrating on the Hilfer fractional derivative Dα,β
a+(b–), it follows that if we

take β := 0, then this fractional derivative reduces to the Riemann–Liouville fractional
derivatives, while taking β := 1, one obtains the left (right) sided Caputo fractional deriva-
tives

⎧⎨
⎩

cDα
a+ f (t) := In–α

a+ f (n)(t), t > a,
cDα

b–
f (t) := (–1)nIn–α

b–
f (n)(t), t < b.

In the following lemma, the inversion formula for the Hilfer fractional derivatives is
given.

Lemma 2.3 ([33]) Assume n – 1 < α ≤ n, n ∈ N and 0 ≤ β ≤ 1. If f ∈ L(a, b) and
I (n–α)(1–β)

a+ f ∈ ACn–1[a, b], then

(
Iα

a+Dα,β
a+ f

)
(t) = f (t) –

n–1∑
k=0

(t – a)k–(n–α)(1–β)

	(k – (n – α)(1 – β) + 1)
lim

t→a+

dk

dxk

(
I (n–α)(1–β)

a+ f
)
(t). (2.2)
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Table 1 Advantage of using the Hilfer fractional derivatives

α,β Corresponding reduced BVPs

β := 1 (Dα,β
a+

u)(t) = –h(t),u(a) = u(b) = 0−→c Dα
a+
u(t) = –h(t),u(a) = u(b) = 0

β := 0 (Dα,β
a+

u)(t) = –h(t),u(a) = u(b) = 0−→ Dα
a+
u(t) = –h(t),u(a) = u(b) = 0

α := 2 (Dα,β
a+

u)(t) = –h(t),u(a) = u(b) = 0−→ u′′(t) = –h(t),u(a) = u(b) = 0

Now, we can represent the Green function corresponding to the infinite system of the
Hilfer fractional boundary value problems (1.1).

Lemma 2.4 ([26]) Assume h ∈ L(a, b). Then the Hilfer boundary value problem

(
Dα,β

a+ u
)
(t) = –h(t), u(a) = u(b) = 0, a < t < b, (2.3)

is equivalent to the integral equation

u(t) :=
∫ b

a
G(t, s)h(s) ds, (2.4)

where

G(t, s) :=
1

	(α)

⎧⎨
⎩

( t–a
b–a )1–(2–α)(1–β)(b – s)α–1 – (t – s)α–1; a ≤ s ≤ t ≤ b,

( t–a
b–a )1–(2–α)(1–β)(b – s)α–1; a ≤ t ≤ s ≤ b.

(2.5)

Lemma 2.5 ([26]) For all (t, s) ∈ [a, b] × [a, b],

max
∣∣G(t, s)

∣∣ = 
 :=
(b – a)α–1[α – 1 + β(2 – α)]α–1+β(2–α)(α – 1)α–1

	(α)[2α – 2 + β(2 – α]2α–2+β(2–α) . (2.6)

In this position, we are going to show the importance of the Hilfer fractional differential
equations as a consequence of Remark 2.2.

Remark 2.6 Let us consider the Hilfer fractional boundary value problem (2.3). Ta-
ble 1 illustrates that in view point of comprehensiveness, the Hilfer fractional differen-
tial equations include not only their related integer-order differential equations but also
the Riemann–Liouville and Caputo versions of the corresponding fractional differential
equations.

Consequently, the following table shows that the corresponding Green functions depend
on the special values of the parameters α and β and their maximums.

The first and second rows in Table 2 generalize the third row and the Hilfer–Green
function (2.4) and its maximum, (2.5), generalizes the first and second rows. So, we arrive
at the conclusion that on the most elementary level, the infinite system of Hilfer fractional
boundary value problems (1.1) generalizes the research work [23], which was mentioned
in the previous section.

It is time to have a quick overview on MNCs and the related fixed point theory. To this
aim, we first state the following notations. Let (E,‖ · ‖) be a Banach space, R+ := [0,∞).
If X is a subset of E, then the symbols X and Conv X denote the closure and the convex
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Table 2 Corresponding Green functions and their maximums

α,β G(t, s) maxG(t, s)

β := 1 1
	(α)

{
( t–ab–a )(b – s)

α–1 – (t – s)α–1; a ≤ s≤ t ≤ b,

( t–ab–a )(b – s)
α–1; a ≤ t ≤ s≤ b.

(b–a)α–1(α–1)α–1

	(α)αα

β := 0 1
	(α)

{
( t–ab–a )

α–1(b – s)α–1 – (t – s)α–1; a ≤ s≤ t ≤ b,

( t–ab–a )
α–1(b – s)α–1; a ≤ t ≤ s≤ b.

(b–a)α–1

	(α)4α–1

α := 2

{
( s–ab–a )(b – t); a ≤ s≤ t ≤ b,

( t–ab–a )(b – s); a ≤ t ≤ s≤ b.
b–a
4

closure of X, respectively. Let ME and NE denote the families of the nonempty bounded
and nonempty relatively compact subsets of E, respectively. We are now ready to define
the concept of MNC.

Definition 2.7 ([2, 23]) A mapping μ : ME → R+ is said to be the measure of noncom-
pactness in E if it satisfies the following conditions:

(A1) The family kerμ := {X ∈ME : μ(X) = 0} is nonempty and kerμ ⊂NE .
(A2) X ⊂ Y 
⇒ μ(X) ≤ μ(Y ).
(A3) μ(X) = μ(X).
(A4) μ(Conv X) = μ(X).
(A5) μ(λX + (1 – λ)Y ) ≤ λμ(X) + (1 – λ)μ(Y ) for λ ∈ [0, 1].
(A6) If {Xn} is a sequence of closed sets in ME , such that Xn+1 ⊂ Xn, n = 1, 2, . . . and if

limn→∞ μ(Xn) = 0, then X∞ :=
⋂∞

n=1 Xn �= ∅.
If an MNC satisfies the following additional conditions, we call it a regular MNC:
(A7) μ(X ∪ Y ) = max{μ(X),μ(Y )}.
(A8) μ(X + Y ) ≤ μ(X) + μ(Y ).
(A9) μ(λX) = |λ|μ(X) for λ ∈ R.

(A10) kerμ = NE .

Since our solvability approach will be constructed by the Darbo-type fixed point theo-
rem on the condensing operators, we first have to present the classic Darbo fixed point
theorem and definition of a condensing operator.

Theorem 2.8 (Darbo fixed point theorem, [3, 23]) Let � be a nonempty, bounded, closed
and convex subset of a Banach space E and let T : � → � be a continuous mapping such
that there exists a constant k ∈ [0, 1) with the property

μ
(
T(�)

)≤ kμ(�).

Then T has a fixed point in the set �.

Let us mention the fact that, in the Darbo fixed point theorem, μ stands for the Kura-
towski MNC. In what follows we are going to present a generalization of the Darbo fixed
point theorem that admits every arbitrary MNC to obtain at least one fixed point. To this
aim, we define the concept of condensing operators.

Definition 2.9 ([3, 23]) Let Ei, i = 1, 2 be two Banach spaces and μi, i = 1, 2 be two arbitrary
MNCs on Ei, i = 1, 2, respectively. An operator T : E1 → E2 is called a (μ1,μ2)-condensing
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operator if it is continuous and μ2(T(�)) < μ1(�), for every bounded noncompact set
� ⊂ E1.

We note that if E1 = E2 and μ1 = μ2, then T is called a μ-condensing operator.

As stated above we are interested in the solvability processes represented in [23]. Thus,
we shall consider a particular class of the condensing operators, the so-called the Meir-
keeler condensing operators that are defined as follows.

Definition 2.10 ([3, 23]) Let C be a nonempty subset of a Banach space E and let μ be
an arbitrary MNC on E. We say that an operator T : C → C is a Meir–Keeler condensing
operator if for any ε > 0, there exists δ > 0 such that

ε ≤ μ(X) < ε + δ 
⇒ μ
(
T(X)

)
< ε, (2.7)

for any bounded subset X of C.

Theorem 2.11 ([3, 23]) Let C be a nonempty, bounded, closed and convex subset of a Ba-
nach space E and let μ be an arbitrary MNC on E. If T : C → C is a continuous and con-
densing operator, then T has a fixed point and the set of all of fixed points of T in C is
compact.

We finalize this section with formulating the Hausdorff MNC in two Banach sequence
spaces c0 and l1. More details can be found in ([10], pp. 162–163, Th. 5.18, (a), (b)).

In the Banach sequence space (c0,‖ · ‖c0 ), the Hausdorff MNC χ can be formulated as

χ (B) := lim
n−→∞

{
sup
u∈B

[
max
k≥n

|uk|
]}

, B ∈Mc0 , (2.8)

in which u(t) = {ui(t)}∞i=1 ∈ c0, for each t ∈ [a, b].
Furthermore, in the Banach sequence space lp, p ≥ 1, the Hausdorff MNC χ can be for-

mulated as

χ (B) := lim
n−→∞

{
sup
u∈B

[∑
k≥n

|uk|p
] 1

p
}

, B ∈Mlp , (2.9)

in which u(t) = {ui(t)}∞i=1 ∈ l1, for each t ∈ [a, b].

3 Existence criteria via measures of noncompactness in Banach sequence
spaces

As discussed above, depending on the Banach sequence spaces c0 and lp we divide this
section into two parts and then we attempt to present solvability criterion in each case for
the infinite system of the Hilfer fractional boundary value problems (1.1). From now on by
a MNC, we mean the Hausdorff measure of noncompactness χ defined by (2.8) and (2.9).

3.1 Existence criterion in c0

To begin with, we have to consider the following hypotheses:
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C.1 Fi : [a, b] ×R
∞ →R and the operator Q : [a, b] × c0 → c0 defined as

(Qu)(t) :=
(
F1(t, u), F2(t, u), F3(t, u), . . .

)
,

such that the class of all functions ((Qu)(t))t∈[a,b] is equicontinuous at every point of
the sequence space c0.

C.2 ai(t) ∈ C([a, b];R+), i = 1, 2, . . . and the sequence {ai}∞i=1 converges uniformly on
[a, b] to a function identically vanishing on [a, b].

C.3 |gi(t, u1, u2, u3, . . .)| ≤ bi(t) + qi(t) supk≥i{|uk|}, i = 1, 2, . . . such that {bi}∞i=1 has the
same conditions as asserted in (C.2) and qi(t) ∈ C([a, b];R+) and the sequence
{qi}∞i=1 is equibounded on [a, b].

Before presenting the first main result, for the sake of convenience we set the following
notation:

1. A := sup{ai(t) + bi(t)|t ∈ [a, b], i ∈N}.
2. Q := sup{qi(t)|t ∈ [a, b], i ∈N}.

Theorem 3.1 Assume that the hypotheses (C.1)–(C.3) are satisfied. Then the infinite
system of the Hilfer fractional boundary value problems (1.1) has at least one solution
u(t) = (ui(t))i provided that 
(b – a)Q < 1, in which for each t ∈ [a, b], u(t) ∈ c0. Moreover,
for each t ∈ [a, b], u(t) ∈ kerχ .

Proof At the beginning let us recall the conclusion of Lemma 2.4, that is the infinite system
of the Hilfer fractional boundary value problems (1.1), is equivalent to the infinite system
of the integral equations

ui(t) :=
∫ b

a
G(t, s)Fi

(
s, u(s)

)
ds, i = 1, 2, . . . . (3.1)

Note that, since in the Green function G(t, s) defined by (2.5), we have

G(a, s) = 0, G(b, s) = 0,

if we define the fixed point problem

(Fiu)(t) :=
∫ b

a
G(t, s)Fi

(
s, u(s)

)
ds, i = 1, 2, . . . , (3.2)

it is clear that

(Fiu)(a) = 0, (Fiu)(b) = 0. (3.3)

In other mean, the integral operators Fiu, i = 1, 2, . . . , satisfy the boundary conditions of
(1.1).

Having this fixed point problem in hand, we now able to prove that all conditions of
Theorem 2.11 hold. So, let us begin as follows.

According to the (3.1), we get

‖u‖c0 = max
i≥1

∣∣∣∣
∫ b

a
G(t, s)Fi

(
s, u(s)

)
ds
∣∣∣∣
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≤ max
i≥1

∫ b

a

∣∣G(t, s)Fi(s), u(s)
∣∣ds

≤ 
(b – a) max
i≥1

[
sup

s∈[a,b]

(
ai(s) + bi(s) + qi(s)

∣∣ui(s)
∣∣)]

≤ 
(b – a)
[
A + Q‖u‖c0

]
.

So, we have

‖u‖c0 ≤ 
(b – a)A
1 – 
(b – a)Q

:= θ . (3.4)

Here we start with introducing the nonempty, bounded, closed and convex subset of a
Banach space c0. Consider u0(t) := (u0

i (t)), t ∈ [a, b] in which for each i = 1, 2, 3, . . . , u0
i (t) :=

0. In this case B(u0; r) denoting the closed ball centered at u0, and having radius r ≤ θ ,
coincides with all conditions of the subset C in Theorem 2.11. Now, it is time to define
an operator T on B satisfying all conditions mentioned in Theorem 2.11, that is, T must
be continuous and a Meir–Keeler condensing operator on B. To this aim, we refer to the
operators (Fiu)(t), i = 1, 2, 3, . . . defined by (3.2) and define the operator T on C([a, b], B)
for each t ∈ [a, b] as follows:

(Tu)(t) :=
{

(Fiu)(t)
}

=
{∫ b

a
G(t, s)Fi

(
s, u(s)

)
ds
}

, i = 1, 2, . . . , (3.5)

such that u(t) := (ui(t)) ∈ B and ui(t) ∈ C([a, b],R) for i = 1, 2, 3, . . . .
In accordance with the hypothesis (C.1), we prove that, for each t ∈ [a, b], (Tu)(t) ∈ c0.

Indeed, since for each t ∈ [a, b], (Fi(t, u(t))) ∈ c0, it follows that

lim
i→∞(Tu)(t) := lim

i→∞

{∫ b

a
G(t, s)Fi

(
s, u(s)

)
ds
}

=
{∫ b

a
G(t, s) lim

i→∞ Fi
(
s, u(s)

)
ds
}

= 0.

To proceed, we recall these basic facts; as a result of the hypothesis (C.1), the operator T
defined by (3.5) belongs to C([a, b], B). Besides, according to (3.2) and (3.4), it is clear that

∥∥(Tu) – u0∥∥
c0

= ‖Tu‖c0 ≤ θ .

Thus, T is self-mapping on B. Furthermore, because of the (3.3), T satisfies the boundary
conditions of the infinite system of the Hilfer fractional boundary value problems (1.1)
that is (Tu)(a) = 0 and (Tu)(b) = 0.

Looking back into the proof and compare it with the proof of Theorem 2.11, it just re-
mains to prove that the operator T is a Meir–Keeler condensing operator. To this aim, for
each arbitrary ε > 0 we have to find an δ > 0 such that

ε ≤ χ (B) < ε + δ 
⇒ χ
(
T(B)

)
< ε.
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Here we recall the c0-definition of the Hausdorff MNC presented in (2.8), and apply it as
follows:

χ
(
T(B)

)
:= lim

n→∞

(
sup

u(t)∈B

[
max
i≥n

∣∣∣∣
∫ b

a
G(t, s)Fi

(
s, u(s)

)
ds
∣∣∣∣
])

≤ lim
n→∞

(
sup

u(t)∈B

[
max
i≥n

∣∣∣∣
∫ b

a
G(t, s)

{
ai(s) + bi(s) + qi(s) sup

i≥n

∣∣ui(s)
∣∣}ds

∣∣∣∣
])

≤ lim
n→∞

(
sup

u(t)∈B

[
max
i≥n

∣∣∣Q sup
i≥n

∣∣∣ui

∣∣∣∣
∫ b

a
G(t, s) ds

∣∣∣∣
])

< Q
(b – a) lim
n→∞

(
sup
u∈B

[
max
i≥n

|ui|
])

= χ (B)Q
(b – a).

Now, it is enough to choose

δ :=
ε(1 – 
(b – a)Q)


(b – a)Q
,

to obtain χ (T(B)) < ε. This means that the operator T is a Meir–Keeler condensing op-
erator on B ⊂ c0. So, T has at least one fixed point in B that is a solution of the infinite
system of the Hilfer fractional boundary value problems (1.1). In addition, if we consider
the fixed point set

K := {u ∈ B : u = Tu},

clearly K is closed and nonempty (u0 ∈ K). Moreover, since K ⊂ Conv(TK ∪ {u0}), it fol-
lows that

χ (K) ≤ χ
(
TK ∪ {

u0}) = χ (TK) ≤ kχ (K), k ∈ (0, 1).

So, we arrive at the conclusion that K ⊂ kerχ . This completes the proof. �

3.2 Existence criterion in lp

Guaranteeing the existence at least one solution for the infinite system of the Hilfer frac-
tional boundary value problems (1.1) in Banach sequence space lp requires the following
general assumptions:

L.1 Fi : [a, b] ×R
∞ →R and the operator S : [a, b] × lp → lp defined as

(Su)(t) :=
(
F1(t, u), F2(t, u), F3(t, u), . . .

)
,

such that the class of all functions ((Su)(t))t∈[a,b] is equicontinuous at every point of
the sequence space lp.

L.2 ai(t) ∈ C([a, b];R+), i = 1, 2, . . . , and the function series
∑∞

i=1 ai(t) is uniformly
convergent.
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L.3 For any natural i, there exists a function qi(t) ∈ C([a, b];R+) such that

∣∣gi(t, u1, u2, u3, . . .)
∣∣p ≤ bi(t) + qi(t)|ui|p

holds for t ∈ [a, b] and u = (ui) ∈ lp for i = 1, 2, . . . , the sequence {bi(t)}∞i=1 behaves as
mentioned in the hypothesis (L.2) and the sequence {qi(t)}∞i=1 is equibounded on
[a, b].

Similar to the previous section, we introduce here the following finite constants:
1. A := sup{g(t)|t ∈ [a, b]}, such that g(t) :=

∑∞
i=1(ai(t) + bi(t)) is a continuous and

uniformly convergent series function on [a, b].
2. Q := sup{q(t)|t ∈ [a, b]}, in which q(t) :=

∑∞
i=1 qi(t) is a continuous series function on

[a, b].
Here we are ready to state and prove the second existence criterion for the infinite system
of the Hilfer fractional boundary value problems (1.1). So, we have the following theorem.

Theorem 3.2 Assume that the hypotheses (L.1)–(L.3) hold. Then the infinite system
of the integral equations (3.1) has at least one solution u(t) = (ui(t))i, provided that

p(b – a)

p+q
q Q < 1, 1

p + 1
q = 1, in which for each t ∈ [a, b], u(t) ∈ lp. Moreover, for each

t ∈ [a, b], u(t) ∈ kerχ .

Proof Since in Sects. 3.1 and 3.2 the infinite system (1.1) must be studied, in the proof of
this theorem we try to skip those parts that are the same as those in Theorem 3.1. So, we
do not repeat the first part of the proof of Theorem, (3.1) up to (3.3), here. Therefore, we
start as follows. Consider the space C([a, b]; lp) of all continuous functions on [a, b] with
values in the space lp and endowed with the classic norm

‖u‖ := sup
{∥∥u(t)

∥∥
lp

: t ∈ [a, b]
}

.

We now define the operator L on the space C([a, b]; lp) as

(Lu)(t) :=
{

(Fiu)(t)
}

:=
{∫ b

a
G(t, s)Fi

(
s, u(s)

)
ds
}

. (3.6)

Accordingly, for a fixed u(t) = (ui(t)) ∈ C([a, b]; lp), for each t ∈ [a, b] and by the use of the
Hölder inequality, we have

∥∥Lu(t)
∥∥p

lp
=

∞∑
i=1

∣∣∣∣
∫ b

a
G(t, s)Fi

(
s, u(s)

)
ds
∣∣∣∣
p

≤
∞∑
i=1

(∣∣G(t, s)
∣∣p∣∣Fi

(
s, u(s)

)∣∣p ds
)(∫ b

a
ds
) p

q

≤ (b – a)
p
q

∞∑
i=1

∫ b

a

∣∣G(t, s)
∣∣p[ai(s) + bi(s) + qi(s)

∣∣ui(s)
∣∣p]ds

≤ (b – a)
p
q

∞∑
i=1

[∫ b

a

∣∣G(t, s)
∣∣p(ai(s) + bi(s)

)
ds +

∫ b

a

∣∣G(t, s)
∣∣pqi(s)

∣∣ui(s)
∣∣p ds

]
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≤ 
p(b – a)
p
q

∞∑
i=1

[∫ b

a

(
ai(s) + bi(s)

)
ds +

∫ b

a
qi(s)

∣∣ui(s)
∣∣p ds

]

= 
p(b – a)
p
q

[∫ b

a

∞∑
i=1

(
ai(s) + bi(s)

)
ds +

∫ b

a

∞∑
i=1

qi(s)
∣∣ui(s)

∣∣p ds

]

≤ 
p(b – a)
p
q

[∫ b

a
g(s) ds + Q

∫ b

a

∞∑
i=1

∣∣ui(s)
∣∣p ds

]

≤ 
p(b – a)
p+q

q
[
A + Q‖u‖p

lp

]
,

where q > 1 is the conjugate number of p, that is, 1
p + 1

q = 1. So, we get the following:

‖Lu‖p
lp ≤ 
p(b – a)

p+q
q
[
A + Q‖u‖p

lp

]
.

This inequality ensures that Lu is bounded on the interval [a, b] that guarantees that the
operatorL transforms the space C([a, b]; lp) into itself. Besides, considering the fixed point
problem (3.1)–(3.2), we obtain the following inequality:

‖u‖p
lp ≤ 
p(b – a)

p+q
q
[
A + Q‖u‖p

lp

]
,

which leads us to the following straightforward inequality:

‖u‖ ≤ 
(b – a)
p+q
pq A

1
p

(1 – 
p(b – a)
p+q

q Q)
1
p

:= ϑ . (3.7)

In this position, we are ready to show that all conditions of Theorem 2.11 are satisfied.
First, similar to Theorem 3.1, we consider the nonempty, bounded, closed and convex
set B(u0, r) ⊂ lp as defined in Theorem 3.1 with r ≤ ϑ . Next, since based on the hypothesis
(L.1) the operator L is continuous on C([a, b]; B), it is just enough to prove that for each t ∈
[a, b] the operator L defined by (3.6) is a Meir–Keeler condensing operator on C([a, b]; B).
To this end, for an arbitrary ε > 0 we find an δ > 0 such that if ε ≤ χ (B) < ε + δ, then
χ (L(B)) < ε. To achieve the desired result, we use the lp-definition of the Hausdorff MNC
χ represented by (2.9). Hence, in the light of the Hölder inequality we get

χ
(
L(B)

)p =≤
{

lim
n→∞

(
sup

u(t)∈B

[∑
i≥n

∫ b

a
G(t, s)Fi

(
s, u(s)

)
ds
])}p

≤ lim
n→∞

(
sup

u(t)∈B

[∑
i≥n

∣∣∣∣
∫ b

a
G(t, s)Fi

(
s, u(s)

)
ds
∣∣∣∣
p])

≤ lim
n→∞

(
sup

u(t)∈B

[∑
i≥n

∫ b

a

∣∣G(t, s)Fi
(
s, u(s)

)∣∣p ds
(∫ b

a
ds
) p

q
])

≤ (b – a)
p
q lim

n→∞

(
sup

u(t)∈B

[∑
i≥n

∫ b

a

∣∣G(t, s)p∣∣[ai(s) + bi(s) + qi(s)
∣∣ui(s)

∣∣p]ds
])

≤ 
p(b – a)
p
q lim

n→∞

(
sup

u(t)∈B

[∑
i≥n

∫ b

a

[
ai(s) + bi(s) + qi(s)

∣∣ui(s)
∣∣p]ds

])
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≤ 
p(b – a)
p
q Qχ (B)p,

where q is the conjugate number of p. So, we have

χ
(
L(B)

)p ≤ 
p(b – a)
p
q Qχ (B)p.

Equivalently, it follows that

χ
(
L(B)

)≤ 
(b – a)
p+q
pq Q

1
p χ (B).

Therefore, choosing

δ :=
ε(1 – 
(b – a)

p+q
pq Q

1
p )


(b – a)
p+q
pq Q

1
p

,

we arrive at the conclusion that if ε ≤ χ (B) < ε + δ, then χ (L(B)) < ε. In other words, the
operator L is a Meir–Keeler condensing operator on C([a, b]; B). So, according to Theo-
rem 2.11, the infinite system of integral equations (3.1) has at least one solution in B ⊂ lp.
Furthermore, the set of all such solutions belongs to kerχ as showed in Theorem 3.1. This
completes the proof. �

4 Numerical examples
Example 4.1 We start this section with the following infinite system of the Hilfer fractional
boundary value problems:

Dα,β
a+ ui = –ai(t) – gi(t, u1, u2, . . .), ui(a) = ui(b) = 0, a < t < b, i = 1, 2, . . . , (4.1)

subject to the following setting:

ai(t) =:=
(b – t)(t – a)

i2Eα,B(it)
,

gi(t, u1, u2, . . .) :=
∞∑
k=i

Eα,β(t)
k2(1 + i)

.
uk

1 + (k – i)4u4
k

, i = 1, 2, . . . ,
(4.2)

where

1 < α ≤ 2, β := 0.5, B := α + 0.5(2 – α), a := 0, b := 1. (4.3)

Note that by Eα,β(t) we mean the two-parametric Mittag-Leffler function

Eα,β (t) :=
∞∑

k=0

tk

	(αk + β)
, α > 0,β ∈C.

For the sake of better applicability, we choose p := 2, that is, we are migrating into the
Banach sequence space l2. Here, we begin by proving that all of the hypotheses (L.1)–
(L.3) are satisfied. But formerly we paid attention to the key point that, for an arbitrary
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positive constant ρ , it follows that

max
ω>0

ω

1 + ρ4ω4 :=
3 3

4

4ρ
. (4.4)

We fix the arbitrary natural number i to get the following:

∣∣Fi(t, u1, u2, . . .)
∣∣2

:=
∣∣ai(t) – gi(t, u1, u2, . . .)

∣∣2

=

∣∣∣∣∣
(1 – t)t

i2Eα,B(it)
+

∞∑
k=i

Eα,β(t)
k2(1 + i)

.
uk

1 + (k – i)4u4
k

∣∣∣∣∣
2

≤ 2

{[
(1 – t)t

i2Eα,B(it)

]2

+

[ ∞∑
k=i

Eα,β (t)
k2(1 + i)

.
uk

1 + (k – i)4u4
k

]2}

≤ 2

{[
(1 – t)t

i2Eα,B(it)

]2

+

[( ∞∑
k=i

(
Eα,β (t)

k2(1 + i)

)2
) 1

2
( ∞∑

k=i

(
uk

1 + (k – i)4u4
k

)2
) 1

2
]2}

≤ 2
[

(1 – t)t
i2Eα,B(it)

]2

+ 2
∞∑
k=i

(
Eα,β(t)

k2(1 + i)

)2

.
∞∑
k=i

(
uk

1 + (k – i)4u4
k

)2

.

It is time to recall the max value (4.4), which helps us to obtain the following:

∣∣Fi(t, u1, u2, . . .)
∣∣2 ≤ 2

[
(1 – t)t
i2Eα,B(t)

]2

+ 2.
E2

α,β (t)
(1 + i)2 .

π4

90

(
u2

k +
3 3

4

4

(
1
12 +

1
22 +

1
32 + · · ·

))

= 2
[

(1 – t)t
i2Eα,B(it)

]2

+
3 3

4 π4

360
.
E2

α,β (t)
(1 + i)2

∞∑
m=1

1
m2 +

π4

45
.
E2

α,β (t)
(1 + i)2 u2

k

= 2
[

(1 – t)t
i2Eα,B(it)

]2

+
3 3

4 π6

10,800
.
E2

α,β (t)
(1 + i)2 +

π4

45
.
E2

α,β (t)
(1 + i)2 u2

k .

We now define

ri = ai + bi := 2
[

(1 – t)t
i2Eα,B(it)

]2

+
3 3

4 π6

10,800
.
E2

α,β(t)
(1 + i)2 , (4.5)

qi :=
π4

45
.
E2

α,β (t)
(1 + i)2 . (4.6)

Here, we need to apply the Weierstrass M-test to identify the validity of the hypotheses
(L.2) and (L.3). Since for the real-valued sequence {ri}∞i=1, we have

|ri| = ri ≤ 2
( 1

4 )2

i4 +
3 3

4 π6

10,800
.
E2

α,β(b)
(1 + i)2

≤
(

1
8

+
3 3

4 π6

10,800
E2

α,β (b)
)

1
i2︸ ︷︷ ︸

Mi

, i = 1, 2, . . . ,
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Figure 1 Step by step growth of the Mittag-Leffler function EA,B(z) with respect to the growth of z

Table 3 Numerical data corresponding to Fig. 1

A,B Growth of z Growth of EA,B(z)

A := α,B := A + 0.5(2 – A) (a), z → 100 EA,B(z)→ 2× 1011

A := α,B := A + 0.5(2 – A) (b), z → 200 EA,B(z)→ 4× 1019

A := α,B := A + 0.5(2 – A) (c), z → 300 EA,B(z)→ 1× 1027

A := α,B := A + 0.5(2 – A) (d), z → 400 EA,B(z)→ 3× 1035

and since

∞∑
i=1

Mi < ∞,

it follows from Fig. 1 and Table 3 that the sequence
∑∞

i=1 ri is uniformly convergent on
[a, b].

Besides, the upper bound estimate

|qi| = qi ≤ π6

270
E2

α,β (b),

indicates that the sequence {qi}∞i=1 is equibounded on [a, b]. Thus, considering

∣∣gi(t, u1, u2, . . .)
∣∣2 ≤ bi(t) + qi(t)u2

i ,

we arrive at the conclusion that the hypotheses (L.2) and (L.3) are satisfied. Here, we have
to prove that the hypothesis (L.1) is also satisfied. To this aim, we consider the operator

(Su)(t) :=
(
F1(t, u), F2(t, u), F3(t, u), . . .

)
, (4.7)
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and fix arbitrary t ∈ [a, b] and u = (ui) := (u1, u2, . . .) ∈ l2. So, we get

∞∑
i=1

∣∣Fi(t, u1, u2, . . .)
∣∣2 ≤

∞∑
i=1

ri(t) +
∞∑
i=1

qi(t)|ui|2 ≤A + Q
∞∑
i=1

|ui|2.

This proves that the operator S = (Fi) transforms the space [a, b]× l2 into l2. Next, we shall
take a fixed arbitrary positive constant ε and an arbitrary point u = (ui) ∈ l2. So, taking the
point v = (vi) ∈ l2 such that ‖u – v‖l2 < ε, it follows that

∥∥S(v) – S(u)
∥∥

l2
=

∞∑
i=1

∣∣Fi(t, v1, v2, . . .) – Fi(t, u1, u2, . . .)
∣∣2

=
∞∑
i=1

∣∣∣∣∣
∞∑
k=i

Eα,β(t)
k2(1 + i)

.
vk

1 + (k – i)4v4
k

–
∞∑
k=i

Eα,β (t)
k2(1 + i)

.
uk

1 + (k – i)4u4
k

∣∣∣∣∣
2

=
∞∑
i=1

∣∣∣∣∣
∞∑
k=i

Eα,β(t)
k2(1 + i)

{
vk

1 + (k – i)4v4
k

–
uk

1 + (k – i)4u4
k

}∣∣∣∣∣
2

≤
∞∑
i=1

{
Eα,β (t)
(1 + i)

∞∑
k=i

1
k2

∣∣∣∣ vk

1 + (k – i)4v4
k

–
uk

1 + (k – i)4u4
k

∣∣∣∣
}2

≤
∞∑
i=1

E2
α,β (t)

(1 + i)2

{ ∞∑
k=i

1
k2

∣∣∣∣ vk

1 + (k – i)4v4
k

–
uk

1 + (k – i)4u4
k

∣∣∣∣
}2

.

To complete this estimation, we need to apply the Cauchy–Schwarz inequality to obtain
the following:

∥∥(Sv)(t) – (Su)(t)
∥∥2

l2

≤
∞∑
i=1

E2
α,β (t)

(1 + i)2

{( ∞∑
k=i

1
k4

) 1
2
( ∞∑

k=i

∣∣∣∣ vk

1 + (k – i)4v4
k

–
uk

1 + (k – i)4u4
k

∣∣∣∣
2
) 1

2
}2

≤ π4

90
E2

α,β (t)
∞∑
i=1

1
(1 + i)2

{ ∞∑
k=i+1

[∣∣vi(t) – ui(t)
∣∣2 +

∣∣∣∣ vk

1 + (k – i)4v4
k

–
uk

1 + (k – i)4u4
k

∣∣∣∣
2]}

≤ π4

90
E2

α,β (t)
∞∑
i=1

1
(1 + i)2

∞∑
k=i

∣∣vk(t) – uk(t)
∣∣2

≤ π4

90
E2

α,β (t)
∞∑
i=1

1
(1 + i)2 ε2

≤ ε2 π6

540
E2

α,β (1).

If we summarize the above process, we conclude that

∥∥(Sv)(t) – (Su)(t)
∥∥

l2
≤ ε

π3

6
√

15
E2

α,β (1), t ∈ [0, 1].
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So, the recent inequality ensures that the hypothesis (L.1) is satisfied. Finally, choosing
α := 1.5,β := 0.5 and π ≈ 3.1416, we get


p(b – a)
p+q

q Q ≈ 0.961703 < 1. (4.8)

Therefore, since all conditions of Theorem 3.2 hold, it has been proved that the infinite
system of the Hilfer fractional boundary value problems (4.1) has at least one solution
u(t) = (ui(t)) in the sequence space C([a, b]; l2).

Example 4.2 In order to illustrate the applicability of the obtained theoretical existence
criterion in Theorem 3.1, we consider the following infinite system of the Hilfer fractional
boundary value problems:

Dα,β
a+ ui = –ai(t) – gi(t, u1, u2, . . .), ui(a) = ui(b) = 0, a < t < b, i = 1, 2, . . . , (4.9)

under the following setting:

ai(t) =:=
√

tEA,B(–it)
1 + i2 ,

gi(t, u1, u2, . . .) :=
∞∑
k=i

cos(t)
(1 + i)4 .

uk

1 + k4u2
k

, i = 1, 2, . . . .
(4.10)

We assume that all of the parameters in this application are the same as those in Exam-
ple 4.1. To see that the infinite system (4.9) has at least one solution in the sequence space
c0, we have to show that all conditions of Theorem 3.1 hold. To this aim, first one can
observe that

max
ω>0

ω

1 + ρ4ω2 :=
1

2ρ2 , ρ > 0.

So, if u(t) = (ui(t)) ∈ c0, then, by the use of this fact, we get the following:

lim
i→∞ Fi(t, u) = lim

i→∞

(√
tEA,B(–it)
1 + i2 +

∞∑
k=i

cos(t)
(1 + i)4 .

uk

1 + k4u2
k

)

≤ lim
i→∞

(√
tEA,B(–it)
1 + i2 +

cos(t)
(1 + i)4 .

∞∑
k=0

1
2k2

)

= lim
i→∞

(√
tEA,B(–it)
1 + i2 +

π2 cos(t)
12(1 + i)4

)
= 0,

that is, Fi(t, u) ∈ c0. Since the proof of equicontinuity of the operator Q : [a, b] × c0 → c0,

(Qu)(t) :=
(
F1(t, u), F2(t, u), . . .

)
,

is similar to that of in Example 4.1, so we omit it here. Hence, we begin with the hypothesis
(C.2) as follows. According to (4.10), it is easy to check that ai(t) ∈ C([a, b];R+) for i =
1, 2, . . . . Also, based on Fig. 2 and its corresponding numerical data Table 4, as represented
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Figure 2 Step by step decrement of the Mittag-Leffler function EA,B(–z) with respect to the growth of z

Table 4 Numerical data corresponding to Fig. 2

A,B Growth of z Decrement of EA,B(–z)

A := α,B := A + 0.5(2 – A) (a), z → 103 EA,B(–z) → 4× 10–3

A := α,B := A + 0.5(2 – A) (b), z → 104 EA,B(–z) → 4× 10–4

A := α,B := A + 0.5(2 – A) (c), z → 105 EA,B(–z) → 4× 10–5

A := α,B := A + 0.5(2 – A) (d), z → 106 EA,B(–z) → 4× 10–6

below, we arrive at the conclusion that {ai}∞i=1 vanishes identically on [a, b], that is, the
hypothesis (C.2) is satisfied.

Here we consider the functions gi(t, u1, u2, . . .), i = 1, 2, . . . . Thus, we have

∣∣gi(t, u1, u2, . . .)
∣∣ =

∣∣∣∣∣
∞∑
k=i

cos(t)
(1 + i)4 .

uk

1 + k4u2
k

∣∣∣∣∣

≤ cos(t)
(1 + i)4 .

∣∣∣∣∣
∞∑
k=i

uk

1 + k4u2
k

∣∣∣∣∣
≤ cos(t)

(1 + i)4

(
|uk| +

1
2

{
1
1!

+
1
2!

+
1
3!

+ · · ·
})

≤ π2 cos(t)
12(1 + i)4 +

cos(t)
(1 + i)4 sup

k≥i

{|uk|
}

:= bi(t) + qi(t) sup
k≥i

{|uk|
}

.

Now, it is easy to check that the hypothesis (C.3) is also satisfied. Finally, we have to check
that the assumption 
(b – a)Q holds. Since 
 ≈ 0.434314, a := 0, b := 1 and Q := 1, it
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follows that


(b – a)Q≈ 0.434314 < 1.

Therefore, Theorem 3.2 ensures that the infinite system of Hilfer fractional boundary
value problems (4.9) has at least one solution u(t) := (ui(t)) in c0.
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