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Abstract
This manuscript is devoted to a study of the existence and uniqueness of solutions to
a mathematical model addressing the transmission dynamics of the coronavirus-19
infectious disease (COVID-19). The mentioned model is considered with a nonsingular
kernel type derivative given by Caputo–Fabrizo with fractional order. For the required
results of the existence and uniqueness of solution to the proposed model, Picard’s
iterative method is applied. Furthermore, to investigate approximate solutions to the
proposed model, we utilize the Laplace transform and Adomian’s decomposition
(LADM). Some graphical presentations are given for different fractional orders for
various compartments of the model under consideration.
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1 Introduction
COVID-19 is the nuisance word today that affected individuals all over the world as it
marched forward across continents and spread throughout all countries. Coronavirus
caused a total loss of motion of the development on the planet, which hit the economy
and mended nature. It has made dread, despondency and uneasiness in individuals with
social separating and the main treatment has become face cover, hand washing, and chem-
icals that are delivered on the basis of an everyday schedule. Governments stand weak in
the face of startlingly high death rates particularly with the old and individuals who have
reactions from interminable illnesses, the clinical community addressing patients in dan-
ger, made researchers search for an antibody and specialists develop scientific models to
restrict the spread of this fatal infection.

The historical backdrop of coronaviruses started in 1965 [1]. It was found in the cul-
tures of the fetal trachea organs obtained from the respiratory system of an adult suffering
from a common cold. Recent research has revealed that coronary respiratory infections
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frequently emerge in the spring and winter more than in the autumn and summer seasons.
COVID-19 added up to 35 of overall respiratory viral vigor through epidemics.

A mathematical modeling of disease transmission is intended to understand the dy-
namic spread of infection between individuals; see [2–6] and the references therein. Ac-
tually, it has been observed that infectious disease models have many advantages for
forestalling and pointing out rising infectious diseases as well as controlling them like
COVID-19. The spreading of infections was found to follow an exponential function and
the growth rate differs from 2 to 5 days in some regions. According to the latest statis-
tics to the date of July-01-2020, confirmed infections with the coronavirus have exceeded
10,609,665 worldwide, while the number of deaths has reached 514,449, and the number
of people recovered has risen to 5,817,869, according to the Worldometer website that
specializes in counting COVID-19 victims.

Infectious sicknesses represent a major threat to people, and additionally to the nation’s
economy. A careful comprehension of the behavior of diseases plays a noteworthy role
in the decline of the infection in the population. Execution of an advantageous technique
contra ailment transportation is another challenge. Various disease models were created in
the recent literature that permit us to more readily control the spread of the infection. The
vast majority of these models are established by ordinary differential equations; see [7–13].
Nonetheless, as of lately the job of fractional calculus that deals with fractional orders has
shown up, as it has a noticeable job in the understanding of real-world phenomena, just
as in demonstrating modeling of the exact description of hereditary qualities and memory
[14–17]. As of lately, it has been seen that fractional differential equations can be employed
to model worldwide problems with more subtlety; see [18, 19].

Recently, new fractional operators were developed that give a precise description of
memory and have succeeded with regards to modeling infectious ailments; see [20–22].
The worldwide issue of the spread of the ailment attracted the consideration of analysts
from different fields, which prompted the rise of various propositions to examine and pre-
dict the development of the epidemic [23, 24]. Our contribution relates to the considera-
tion of the best-known class, which is the classification that presently shows up in clinical
diaries [25–36]. This new work incorporates various theoretical and practical analyses
on examining the dynamic conduct of the speed of spreading the coronavirus infection
(COVID-19) disease and how to lessen the spread of infection in the public arena, and
numerical simulations are likewise considered in this work.

As is well known, fractional calculus has a vast range of applicability in expounding
convoluted dynamical systems with memory effects in different areas of engineering, bi-
ological sciences, and social sciences. Furthermore, the fractional order derivatives given
by Caputo and Riemann–Liouville contain a singular type kernel. Fractional differential
operators in fact are definite integrals which geometrically represent a complete spectrum
of the functions or accumulation. The singular kernel some time creates difficulty during
numerical analysis. This is because of its local singular kernel. To overcome this difficulty,
Caputo and Fabrizo in 2016 introduced the concept of a nonlocal nonsingular kernel type
derivative; see [37]. Recently many authors have proved that the mentioned derivative has
interesting features in the descriptions of many processes and phenomena in the thermal
sciences; see [38–42]. Keeping the importance of fractional derivatives, recently authors
have investigated some models of COVID-19 from different aspects; see [43, 44]. Very re-
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cently, authors [45] studied the behavior of COVID-19 transmission through new control
strategies, involving all possible conditions of human-to-human transmission.

Mathematical models of infectious disease under fractional order derivatives provide a
comprehensive description of the global and local dynamics. Furthermore, such a kind of
models in which fractional calculus is involved more precisely describes the phenomena
in the best way. Motivated by [37] and [45], we will study the following COVID-19 model
with the Caputo–Fabrizio fractional derivative:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

CF
D

θE(t) = B – α1EI + α7ED + α9H + α10EI – δE ,
CF
D

θI(t) = α1EI – α2I – α6I – α8I – α10EI – δI ,
CF
D

θC(t) = α2I – α5C – α3C + α4H – δC,
CF
D

θH(t) = α3C – α4H + α8I – α9H – δH,
CF
D

θD(t) = α5C + α6I – α7ED,

(1.1)

with the initial conditions
⎧
⎨

⎩

E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, C(0) = C0 ≥ 0,

H(0) = H0 ≥ 0, D(0) = D0 ≥ 0,
(1.2)

where 0 ≤ t ≤ T < ∞ and CFDθ denotes the Caputo–Fabrizio fractional derivative of order
0 < θ ≤ 1. The details of the given model are described as follows:

• The total population is classified into five compartments of individuals as follows: E(t)
is for exposed (uninfected but surrounded by infection); I(t) for infected (with
obvious clinical symptoms but not critical); C(t) for critically infected; H(t) for
hospitalized individuals; D(t) for dead individuals due to COVID-19.

• B represents a birth rate of exposed individuals.
• δ is the rate of natural mortality.
• α1 is the rate of individuals transmission from exposed to infected compartment.
• α2 is the rate of critical cases of infected individuals.
• α3 is the rate of critical infected hospitalized.
• α4 is the rate of hospitalized individuals which not recovered and stay in critical case.
• α5 is the rate of death in critically infected individuals class.
• α6 is the rate of death in infected individuals class.
• α7 is the rate of infected people due to spreading infection from a dead body.
• α8 is the rate of infected individuals which hospitalized without passing in critical case.
• α9 is the rate of recovered which individuals hospitalized and get exposed again.
• α10 is the rate of recovered in infected individuals class due to powerful immunity and

get exposed again.
We first establish the existence theory of the model under the said derivative via a Picard
type analysis of fixed point theory. Then on using LADM, we derive a semi-analytical so-
lution to the problem under consideration. Here we remark that treating Caputo–Fabrizo
type differential equations by LADM is very rare in the literature.

Our manuscript is arranged as follows. Some useful fundamentals are given in Sect. 2.
Further theoretical results are given in Sect. 3. Numerical results are presented in Sect. 4.
Finally, a brief conclusion is given in Sect. 5.



Thabet et al. Advances in Difference Equations        (2021) 2021:184 Page 4 of 17

2 Preliminaries
In this section, we recall some useful fundamentals related to fractional calculus.

Definition 2.1 ([46]) The Caputo–Fabrizio fractional derivative of order γ ∈ (0, 1) for a
function Ω ∈H1(a, b) is given by

CFDγ Ω(t) =
(2 – γ )N (γ )

2(1 – γ )

∫ t

a
exp

(
–γ

1 – γ
(t – s)

)

Ω ′(s) ds, t > 0,

where N (γ ) is the normalization function which defined by N (γ ) = 2
2–γ

and it satis-
fies N (0) = N (1) = 1. If Ω /∈ H1(a, b), then the derivative can be represented for Ω ∈
L1(–∞, b) as

CFDγ Ω(t) =
γN (γ )
1 – γ

∫ b

–∞

(
Ω(t) – Ω(s)

)
exp

(
–γ

1 – γ
(t – s)

)

ds.

Definition 2.2 ([46]) The Caputo–Fabrizio fractional integral of order γ ∈ (0, 1] for a
function Ω ∈H1(0, T) is given by

CFIγ Ω(t) =
2(1 – γ )

(2 – γ )N (γ )
Ω(t) +

2γ

(2 – γ )N (γ )

∫ t

0
Ω(s) ds, t ≥ 0.

Lemma 2.1 ([46]) The solution of the following system:

⎧
⎨

⎩

CFDγ Ω(t) = ψ(t), γ ∈ (0, 1],

Ω(0) = Ω0 ∈ R,

is given by

Ω(t) = Ω0 +
2(1 – γ )

(2 – γ )N (γ )
[
ψ(t) – ψ(0)

]
+

2γ

(2 – γ )N (γ )

∫ t

0
ψ(s) ds.

Lemma 2.2 ([46]) The Laplace transform of fractional derivative in the sense of Caputo–
Fabrizio of order γ ∈ (0, 1] for a function Ω(t) is defined as follows:

L
[CF

D
γ Ω(t)

]
=

sL[Ω(t)] – Ω(0)
s + γ (1 – s)

, s ≥ 0.

3 Theoretical approach
In this section, we aim to present the existence and uniqueness result for a solution of the
model (1.1)–(1.2) by using Picard’s successive iterative approximation method [47]. For
this purpose, let X = � × � × � × � × � denote a Banach space with supremum norm

‖X ‖ =
∥
∥(E ,I ,C,H,D)

∥
∥

= sup
t∈[0,T]

{
E(t) + I(t) + C(t) + H(t) + D(t)

}
,E ,I ,C,H,D ∈ � = C[0, T].
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Now, we rewrite the model (1.1) in the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

CF
D

θE = X1(t,E ,I ,C,H,D),
CF
D

θI = X2(t,E ,I ,C,H,D),
CF
D

θC = X3(t,E ,I ,C,H,D),
CF
D

θH = X4(t,E ,I ,C,H,D),
CF
D

θD = X5(t,E ,I ,C,H,D),

(3.1)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1(t,E ,I ,C,H,D) = B – α1EI + α7ED + α9H + α10EI – δE ,

X2(t,E ,I ,C,H,D) = α1EI – α2I – α6I – α8I – α10EI – δI ,

X3(t,E ,I ,C,H,D) = α2I – α5C – α3C + α4H – δC,

X4(t,E ,I ,C,H,D) = α3C – α4H + α8I – α9H – δH,

X5(t,E ,I ,C,H,D) = α5C + α6I – α7ED.

(3.2)

Using (3.1) and (3.2), our model (1.1)–(1.2) becomes

⎧
⎨

⎩

CF
D

θϒ(t) = 
(t,ϒ(t)), t ∈ [0, T],

ϒ(0) = ϒ0 ≥ 0,
(3.3)

such that

ϒ(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

E(t)
I(t)
C(t)
H(t)
D(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ϒ0(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

E0

I0

C0

H0

D0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 

(
t,ϒ(t)

)
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

X1(t,E ,I ,C,H,D)
X2(t,E ,I ,C,H,D)
X3(t,E ,I ,C,H,D)
X4(t,E ,I ,C,H,D)
X5(t,E ,I ,C,H,D)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.4)

and


0(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

X1(0,E0,I0,C0,H0,D0)
X2(0,E0,I0,C0,H0,D0)
X3(0,E0,I0,C0,H0,D0)
X4(0,E0,I0,C0,H0,D0)
X5(0,E0,I0,C0,H0,D0)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.5)

According to Lemma 2.1, the system (3.3) is equivalent to the following fractional integral
equation:

ϒ(t) = ϒ0 +
2(1 – θ )

(2 – θ )N (θ )
[



(
t,ϒ(t)

)
– 
0

]
+

2θ

(2 – θ )N (θ )

∫ t

0



(
s,ϒ(s)

)
ds. (3.6)

Theorem 3.1 Let 
 ∈ X be a continuous function. Suppose there exists a constant � > 0
such that |
(t,ϒ1) – 
(t,ϒ2)| ≤ �|ϒ1 – ϒ2|, for all t ∈ [0, T], ϒ1,ϒ2 ∈ X, and there ex-
ists a positive constant M such that supt∈[0,T] |
(t,ϒ0(t))| ≤ M. Then there exists a unique
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solution ϒ(t) for the model (1.1)–(1.2) on [0, T], provided that

�

[
2(1 – θ )

(2 – θ )N (θ )
+

2θT
(2 – θ )N (θ )

]

< 1. (3.7)

Proof Obviously, the solution of the model (1.1)–(1.2) is equivalent to the fractional inte-
gral equation (3.6). Consider

ϒ0(t) = ϒ0 –
2(1 – θ )

(2 – θ )N (θ )

0 (3.8)

and

ϒn(t) = ϒ0 –
2(1 – θ )

(2 – θ )N (θ )

0 +

2(1 – θ )
(2 – θ )N (θ )



(
t,ϒn–1(t)

)

+
2θ

(2 – θ )N (θ )

∫ t

0



(
s,ϒn–1(s)

)
ds. (3.9)

Its clear that ϒn(t) = ϒ0 +
∑n

i=1(ϒi(t) – ϒi–1(t)), which is a partial sum of ϒ0 +
∑∞

i=1(ϒi(t) –
ϒi–1(t)). Our target is a proof that the sequence {ϒn(t)} converges to ϒ(t).

Now, by mathematical induction, for each t ∈ [0, T], we prove that

‖ϒn – ϒn–1‖ ≤ M�n–1
[

2(1 – θ )
(2 – θ )N (θ )

+
2θT

(2 – θ )N (θ )

]n

, n ∈N. (3.10)

From Eqs. (3.8) and (3.9), we get

‖ϒ1 – ϒ0‖ = sup
t∈[0,T]

∣
∣
∣
∣

2(1 – θ )
(2 – θ )N (θ )



(
t,ϒ0(t)

)
+

2θ

(2 – θ )N (θ )

∫ t

0



(
s,ϒ0(s)

)
ds

∣
∣
∣
∣

≤ 2(1 – θ )
(2 – θ )N (θ )

sup
t∈[0,T]

∣
∣


(
t,ϒ0(t)

)∣
∣ +

2θ

(2 – θ )N (θ )

∫ t

0
sup

t∈[0,T]

∣
∣


(
s,ϒ0(s)

)∣
∣ds

≤ 2M(1 – θ )
(2 – θ )N (θ )

+
2MθT

(2 – θ )N (θ )
.

Thus, the inequality (3.10) is true for n = 1. Next, we suppose that the inequality (3.10)
holds for n = k. Then

‖ϒk+1 – ϒk‖ = sup
t∈[0,T]

∣
∣
∣
∣

2(1 – θ )
(2 – θ )N (θ )



(
t,ϒk(t)

)
+

2θ

(2 – θ )N (θ )

∫ t

0



(
s,ϒk(s)

)
ds

–
2(1 – θ )

(2 – θ )N (θ )



(
t,ϒk–1(t)

)
–

2θ

(2 – θ )N (θ )

∫ t

0



(
s,ϒk–1(s)

)
ds

∣
∣
∣
∣

≤ 2(1 – θ )
(2 – θ )N (θ )

sup
t∈[0,T]

∣
∣


(
t,ϒk(t)

)
– 


(
t,ϒk–1(t)

)∣
∣

+
2θ

(2 – θ )N (θ )

∫ t

0
sup

t∈[0,T]

∣
∣


(
s,ϒk(s)

)
– 


(
s,ϒk–1(s)

)∣
∣ds

≤ 2�(1 – θ )
(2 – θ )N (θ )

‖ϒk – ϒk–1‖ +
2�θ

(2 – θ )N (θ )

∫ t

0
‖ϒk – ϒk–1‖ds
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≤ 2�(1 – θ )
(2 – θ )N (θ )

M�k–1
[

2(1 – θ )
(2 – θ )N (θ )

+
2θT

(2 – θ )N (θ )

]k

+
2�θ

(2 – θ )N (θ )

∫ t

0
M�k–1

[
2(1 – θ )

(2 – θ )N (θ )
+

2θT
(2 – θ )N (θ )

]k

ds

≤ M�(k+1)–1
[

2(1 – θ )
(2 – θ )N (θ )

+
2θT

(2 – θ )N (θ )

](k+1)

.

So, the inequality (3.10) is true for n = k + 1. Hence, by the principle of mathematical
induction the inequality (3.10) is satisfied for each n ∈ N and each t ∈ [0, T]. Therefore,
we have

∞∑

n=1

‖ϒn – ϒn–1‖ ≤
∞∑

n=1

M�n–1
[

2(1 – θ )
(2 – θ )N (θ )

+
2θT

(2 – θ )N (θ )

]n

. (3.11)

By the condition (3.7), the geometric series in the right hand side of the above inequality
is convergent and by the comparison test the series

∑∞
n=1 ‖ϒn – ϒn–1‖ also is convergent,

which shows that ϒ0 +
∑∞

n=1 ‖ϒn – ϒn–1‖ converges. Let us suppose

ϒ = ϒ0 +
∞∑

n=1

‖ϒn – ϒn–1‖.

Thus,

‖ϒn – ϒ‖ −→ 0 as n −→ ∞. (3.12)

This proves that the solution of proposed model exists. Actually, by using (3.12), we get

∥
∥


(·,ϒn–1(·)) – 

(·,ϒ(·))∥∥ ≤ �‖ϒn–1 – ϒ‖ −→ 0 as n −→ ∞.

So,

∥
∥


(·,ϒn–1(·)) – 

(·,ϒ(·))∥∥ −→ 0 as n −→ ∞. (3.13)

Hence, taking the limit n −→ ∞ on both sides of (3.9) and using (3.13), we conclude

ϒ(t) = ϒ0 –
2(1 – θ )

(2 – θ )N (θ )

0 +

2(1 – θ )
(2 – θ )N (θ )



(
t,ϒ(t)

)

+
2θ

(2 – θ )N (θ )

∫ t

0



(
s,ϒ(s)

)
ds, (3.14)

which is the solution of the model (1.1)–(1.2).
Finally, we show the solution ϒ is unique. To this aim, let ϒ̃ be another solution of our

model. Then we get

‖ϒ – ϒ̃‖ ≤ 2(1 – θ )
(2 – θ )N (θ )

sup
t∈[0,T]

∣
∣


(
t,ϒ(t)

)
– 


(
t, ϒ̃(t)

)∣
∣

+
2θ

(2 – θ )N (θ )

∫ t

0
sup

t∈[0,T]

∣
∣


(
s,ϒ(s)

)
– 


(
s, ϒ̃(s)

)∣
∣ds



Thabet et al. Advances in Difference Equations        (2021) 2021:184 Page 8 of 17

≤ 2�(1 – θ )
(2 – θ )N (θ )

‖ϒ – ϒ̃‖ +
2�θ

(2 – θ )N (θ )

∫ t

0
‖ϒ – ϒ̃‖ds

≤ �

[
2(1 – θ )

(2 – θ )N (θ )
+

2θT
(2 – θ )N (θ )

]

‖ϒ – ϒ̃‖.

Hence, in view of condition (3.7), we should have ‖ϒ – ϒ̃‖ = 0, thus ϒ(t) = ϒ̃(t). This
finishes the proof. �

4 Numerical approach
Throughout this section, we introduce the series type solution of the proposed model
(1.1)–(1.2), by utilizing the Laplace transform with the Adomian decomposition method
[48]. For the convergence of such a method, we refer the reader to [49]. Applying the
Laplace transform to both sides of (1.1), we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L[E(t)] = E(0)
s + s+θ (1–s)

s L[B – α1EI + α7ED + α9H + α10EI – δE],

L[I(t)] = I(0)
s + s+θ (1–s)

s L[α1EI – α2I – α6I – α8I – α10EI – δI],

L[C(t)] = C(0)
s + s+θ (1–s)

s L[α2I – α5C – α3C + α4H – δC],

L[H(t)] = H(0)
s + s+θ (1–s)

s L[α3C – α4H + α8I – α9H – δH],

L[D(t)] = D(0)
s + s+θ (1–s)

s L[α5C + α6I – α7ED].

(4.1)

Next, suppose the solution in the following series type:

E(t) =
∞∑

n=0

En(t), I(t) =
∞∑

n=0

In(t), C(t) =
∞∑

n=0

Cn(t),

H(t) =
∞∑

n=0

Hn(t), D(t) =
∞∑

n=0

Dn(t).

(4.2)

Moreover, by Adomian’s polynomial we can decompose the nonlinear terms E(t)I(t) and
E(t)D(t) as follows:

E(t)I(t) =
∞∑

n=0

An(E ,I), E(t)D(t) =
∞∑

n=0

Bn(E ,D), (4.3)

where the Adomian polynomial An(E ,I) can be defined as

An(E ,I) =
1
n!

dn

dλn

[ q∑

i=0

λiEi(t)
q∑

i=0

λiIi(t)

]∣
∣
∣
∣
∣
λ=0

. (4.4)

In particular, we have

A0(E ,I) = E0(t)I0(t), A1(E ,I) = E1(t)I0(t) + E0(t)I1(t). (4.5)

Similarly, we can define the polynomial Bn(E ,D).
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Therefore, by applying (4.2)–(4.5) into (4.1), we get
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L[
∑∞

n=0 En(t)]
= E(0)

s + s+θ (1–s)
s L[B – α1

∑∞
n=0 An(E ,I) + α7

∑∞
n=0 Bn(E ,D)

+ α9
∑∞

n=0 Hn + α10
∑∞

n=0 An(E ,I) – δ
∑∞

n=0 En],
L[

∑∞
n=0 In(t)]

= I(0)
s + s+θ (1–s)

s L[α1
∑∞

n=0 An(E ,I) – α2
∑∞

n=0 In – α6
∑∞

n=0 In

– α8
∑∞

n=0 In – α10
∑∞

n=0 An(E ,I) – δ
∑∞

n=0 In],
L[

∑∞
n=0 Cn(t)]

= C(0)
s + s+θ (1–s)

s L[α2
∑∞

n=0 In – α5
∑∞

n=0 Cn – α3
∑∞

n=0 Cn + α4
∑∞

n=0 Hn

– δ
∑∞

n=0 Cn],
L[

∑∞
n=0 Hn(t)]

= H(0)
s + s+θ (1–s)

s L[α3
∑∞

n=0 Cn – α4
∑∞

n=0 Hn + α8
∑∞

n=0 In – α9
∑∞

n=0 Hn

– δ
∑∞

n=0 Hn],
L[

∑∞
n=0 Dn(t)]

= D(0)
s + s+θ (1–s)

s L[α5
∑∞

n=0 Cn + α6
∑∞

n=0 In – α7
∑∞

n=0 Bn(E ,D)].

(4.6)

Now, matching the terms on both sides of (4.6), we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L[E0(t)] = E0
s , L[I0(t)] = I0

s , L[C0(t)] = C0
s ,

L[H0(t)] = H0
s , L[D0(t)] = D0

s ,
L[E1(t)] = s+θ (1–s)

s L[B – α1A0(E ,I) + α7B0(E ,D) + α9H0

+ α10A0(E ,I) – δE0],
L[I1(t)] = s+θ (1–s)

s L[α1A0(E ,I) – α2I0 – α6I0 – α8I0

– α10A0(E ,I) – δI0],
L[C1(t)] = s+θ (1–s)

s L[α2I0 – α5C0 – α3C0 + α4H0 – δC0],
L[H1(t)] = s+θ (1–s)

s L[α3C0 – α4H0 + α8I0 – α9H0 – δH0],
L[D1(t)] = s+θ (1–s)

s L[α5C0 + α6I0 – α7B0(E ,D)],
L[E2(t)] = s+θ (1–s)

s L[B – α1A1(E ,I) + α7B1(E ,D) + α9H1

+ α10A1(E ,I) – δE1],
L[I2(t)] = s+θ (1–s)

s L[α1A1(E ,I) – α2I1 – α6I1 – α8I1

– α10A1(E ,I) – δI1],
L[C2(t)] = s+θ (1–s)

s L[α2I1 – α5C1 – α3C1 + α4H1 – δC1],
L[H2(t)] = s+θ (1–s)

s L[α3C1 – α4H1 + α8I1 – α9H1 – δH1],
L[D2(t)] = s+θ (1–s)

s L[α5C1 + α6I1 – α7B1(E ,D)],
...
L[En+1(t)] = s+θ (1–s)

s L[B – α1An(E ,I) + α7Bn(E ,D) + α9Hn

+ α10An(E ,I) – δEn],
L[In+1(t)] = s+θ (1–s)

s L[α1An(E ,I) – α2In – α6In – α8In

– α10An(E ,I) – δIn],
L[Cn+1(t)] = s+θ (1–s)

s L[α2In – α5Cn – α3Cn + α4Hn – δCn],
L[Hn+1(t)] = s+θ (1–s)

s L[α3Cn – α4Hn + α8In – α9Hn – δHn],
L[Dn+1(t)] = s+θ (1–s)

s L[α5Cn + α6In – α7Bn(E ,D)], n ≥ 0.

(4.7)
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Next, applying the inverse of a Laplace transform on both sides of (4.7), we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E0(t) = E0, I0(t) = I0, C0(t) = C0,

H0(t) = H0, D0(t) = D0,

E1(t) = [B – α1E0I0 + α7E0D0 + α9H0 + α10E0I0 – δE0](1 + θ (t – 1)),

I1(t) = [α1E0I0 – α2I0 – α6I0 – α8I0 – α10E0I0 – δI0](1 + θ (t – 1)),

C1(t) = [α2I0 – α5C0 – α3C0 + α4H0 – δC0](1 + θ (t – 1)),

H1(t) = [α3C0 – α4H0 + α8I0 – α9H0 – δH0](1 + θ (t – 1)),

D1(t) = [α5C0 + α6I0 – α7E0D0](1 + θ (t – 1)),

E2(t) = (1 + θ (t – 1))B + (1 + 2(t – 1)θ + 1
2 (2 – 4t + t2)θ2)

× {(α10 – α1)I0[B – α1E0I0 + α7E0D0 + α9H0 + α10E0I0 – δE0]

+ (α10 – α1)E0[α1E0I0 – α2I0 – α6I0 – α8I0 – α10E0I0 – δI0]

+ α7E0[α5C0 + α6I0 – α7E0D0]

+ (α7D0 – δ)[B – α1E0I0 + α7E0D0 + α9H0 + α10E0I0 – δE0]

+ α9[α3C0 – α4H0 + α8I0 – α9H0 – δH0]},
I2(t) = (1 + 2(t – 1)θ + 1

2 (2 – 4t + t2)θ2)

× {(α1 – α10)I0[B – α1E0I0 + α7E0D0 + α9H0 + α10E0I0 – δE0]

+ (α1 – α10)E0[α1E0I0 – α2I0 – α6I0 – α8I0 – α10E0I0 – δI0]

– (α2 + α6 + α8 + δ)[α1E0I0 – α2I0 – α6I0 – α8I0

– α10E0I0 – δI0]},
C2(t) = (1 + 2(t – 1)θ + 1

2 (2 – 4t + t2)θ2)

× {α2[α1E0I0 – α2I0 – α6I0 – α8I0 – α10E0I0 – δI0]

– (α5 + α3 + δ)[α2I0 – α5C0 – α3C0 + α4H0 – δC0]

+ α4[α3C0 – α4H0 + α8I0 – α9H0 – δH0]},
H2(t) = (1 + 2(t – 1)θ + 1

2 (2 – 4t + t2)θ2)

× {α3[α2I0 – α5C0 – α3C0 + α4H0 – δC0]

+ α8[α1E0I0 – α2I0 – α6I0 – α8I0 – α10E0I0 – δI0]

– (α4 + α9 + δ)[α3C0 – α4H0 + α8I0 – α9H0 – δH0]},
D2(t) = (1 + 2(t – 1)θ + 1

2 (2 – 4t + t2)θ2)

× {α5[α2I0 – α5C0 – α3C0 + α4H0 – δC0]

+ α6[α1E0I0 – α2I0 – α6I0 – α8I0 – α10E0I0 – δI0]

– α7E0[α5C0 + α6I0 – α7E0D0]

– α7D0[B – α1E0I0 + α7E0D0 + α9H0 + α10E0I0 – δE0]},

(4.8)

and so on. Hence, we obtain the required solution as follows:

E(t) = E0(t) + E1(t) + E2(t) + · · · , I(t) = I0(t) + I1(t) + I2(t) + · · · ,

C(t) = C0(t) + C1(t) + C2(t) + · · · , H(t) = H0(t) + H1(t) + H2(t) + · · · ,

D(t) = D0(t) + D1(t) + D2(t) + · · · .
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Table 1 The physical interpretation of the parameters and numerical values

Parameters Numerical values [45]

B 0.80
δ 0.01
α1 0.55
α2 0.40
α3 0.60
α4 0.80
α5 0.34
α6 0.30
α7 0.35
α8 0.30
α9 0.35
α10 0.32

Figure 1 Graphical representation of the approximate solution E for the first ten terms at different fractional
order

4.1 Numerical simulations and discussion
Here, we present the numerical simulation for the solution of the considered model (1.1)–
(1.2) in the form of an infinite series as given in (4.8). Here the time is in days. The nu-
merical values of the parameters utilized in the simulation are designated in Table 1. The
graphical representations of the numerical solution of compartment E(t), I(t), C(t), H(t),
D(t) with a various fractional order values θ = 0.75, 0.85, 0.95, 1.0 of the proposed model
(1.1)–(1.2) are shown in Figs. 1–5, respectively. We consider the initial values E(0) = 8,
I(0) = 1, C(0) = 0.12, H(0) = 1, D(0) = 5.

From Figs. 1–5, one can say that a huge population of exposed individuals becomes in-
fected within a month. The decline in uninfected population is represented via different
fractional order by taking the first ten terms. It is faster at smaller fractional order and
slower at greater order. The decay occurs in the uninfected class under different fractional
orders which is faster at lower fractional value by taking the first ten terms of the approxi-
mate solution in Fig. 1. As a result the exposed class will go up at a different rate due to the
fractional order derivative as given in Fig. 2. This is because more people are exposed to
infection. The infected class also goes on increasing. Here the growth is slow at lower frac-
tional order as compared to higher order as in Fig. 3. Furthermore, the critically infected
cases and hospitalization cases are also increasing as in Fig. 4. From Fig. 5, the death class
leads to a fluctuation, maybe due to better care of infected people who recovered from the
disease.
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Figure 2 Graphical representation of the approximate solution I for the first ten terms at different fractional
order

Figure 3 Graphical representation of the approximate solution C for the first ten terms at different fractional
order

Figure 4 Graphical representation of the approximate solutionH for the first ten terms at different fractional
order

Furthermore, we investigate the dynamical behavior on increasing the values of the three
parameters αi (i = 1, 2, 3), corresponding to integer order.

In Figs. 6–10, we have presented the dynamical behavior at different values of the pa-
rameters αi (i = 1, 2, 3) corresponding to integer order. As we increase the values of αi
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Figure 5 Graphical representation of the approximate solutionD for the first ten terms at different fractional
order

Figure 6 Dynamical behavior of E for different values of αi (i = 1, 2, 3) at integer order

Figure 7 Dynamical behavior of I for different values of αi (i = 1, 2, 3) at integer order

(i = 1, 2, 3), the corresponding infection, hospitalization and chronic infection are increas-
ing. Also the uncertain behavior has been observed on increasing the corresponding val-
ues of the aforesaid three parameters. Here we use a nonstandard finite difference scheme
for the illustration of the dynamics at given values of the parameters.
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Figure 8 Dynamical behavior of C for different values of αi (i = 1, 2, 3) at integer order

Figure 9 Dynamical behavior ofH for different values of αi (i = 1, 2, 3) at integer order

Figure 10 Dynamical behavior ofD for different values of αi (i = 1, 2, 3) at integer order

5 Conclusion
First of all, it is necessary that corresponding to a real-world problem the model one built
would exist. This question should be guaranteed and in this regard the fixed point ap-
proach is a powerful analysis which gives proper information about the existence of such
model. On the other hand, using a nonsingular derivative of fractional order for real-world
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problems is a new field in the last few years. Such investigations have been proved to get
significant information about the global dynamics of an infectious disease. Furthermore,
treating such a type of model by the Laplace Adomian decomposition method is another
best way to handle an approximate solution of such a type of problems. For the Caputo–
Fabrizo case, this concept has been very rarely adopted. The mentioned techniques omit
discretization of data and need no collocation to control the method. Therefore, with
the help of Picard’s iterative methods, we have successfully established a qualitative the-
ory for a five compartment model of COVID-19 with Caputo–Fabrizo fractional order
derivatives. Furthermore, some approximate analytical results have been developed via
the Laplace Adomian decomposition method. The concerned solution has been presented
via graphs for some numerical values. The fractional order derivative provides some more
details of the transmission dynamics of the proposed model. In the future the concerned
analysis can be extended to other mathematical models of infectious diseases.
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