
Sang et al. Advances in Difference Equations        (2021) 2021:156 
https://doi.org/10.1186/s13662-021-03318-8

R E S E A R C H Open Access

Existence of positive solutions for a class of
fractional differential equations with the
derivative term via a new fixed point theorem
Yanbin Sang1* , Luxuan He1, Yanling Wang2, Yaqi Ren3 and Na Shi1

*Correspondence:
syb6662004@163.com
1Department of Mathematics,
School of Science, North University
of China, Taiyuan, Shanxi, 030051,
P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, we firstly establish the existence and uniqueness of solutions of the
operator equation A(x, x) + B(x, x) + C(x) + e = x, where A and B are two mixed
monotone operators, C is a decreasing operator, and e ∈ P with θ ≤ e≤ h. Then, using
our abstract theorem, we prove a class of fractional boundary value problems with
the derivative term to have a unique solution and construct the corresponding
iterative sequences to approximate the unique solution.
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1 Introduction
In this paper, we consider the following fractional order boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + f (t, u(t), Dβ

0+ u(t)) + g(t, u(t), (Hu)(t)) – b = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n–2)(0) = 0,

[Dγ

0+ u(t)]t=1 = k(u(1)),

(1.1)

where b > 0 is a constant, n – 1 < α ≤ n, 1 ≤ β < γ ≤ n – 2, n > 3 (n ∈ N). f , g : [0, 1] ×
(–∞, +∞) × (–∞, +∞) → (–∞, +∞) are continuous functions, k : [0, +∞) → [0, +∞) is
a continuous function, and Dα

0+ is the Riemann–Liouville fractional derivative of order α.
Fractional differential equations have been increasingly adopted to describe some phys-

ical phenomena in thermology, electromagnetic wave, electrochemistry, and other appli-
cations [1–8]. There are a great deal of results about the existence and uniqueness of pos-
itive solutions for fractional boundary value problems. For example, Zhao and Gong [9]
studied the unique positive solution of a class of higher order fractional equations with
a parameter by Banach fixed point theorem. In [10], Wang, Zhang, and Wang obtained
fixed point theorems of nonlinear sum operators and applications in a fractional differen-
tial equation. On the other hand, much attention has been paid to fractional differential
equations involving nonlinearities with the derivative term. In [11], Ji et al. investigated
positive solutions for the nonlinear fractional differential equation with a derivative term.
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Moreover, Yue and Zou [12] were concerned with a class of fractional Dirichlet boundary
value problems with dependence on the first order derivative. Some sufficient conditions
for the uniqueness of solutions for the above-mentioned problem were given. The main
tool is also classical Banach’s contraction mapping principle.

It is well known that problem (1.1) is the generalization of elastic beam equation [13].
In [14], Goodrich first studied the Green’s function associated with problem (1.1) when
k ≡ 0 and established the existence result on sublinear nonlinearity. Furthermore, Xu,
Wei, and Dong [15] also considered sublinear problem (1.1) by using of the fixed point
index theorem and spectral theory. Jleli and Samet [16] utilized a mixed monotone fixed
point theorem to obtain a unique solution of problem (1.1) when b = 0. Moreover, Yang,
Shen, and Xie [17] investigated the nonlinear term involving the first order derivative for
problem (1.1).

We should mention the main results obtained in [18–22], which motivated us to con-
sider problem (1.1). In [18], Wang and Zhang studied the operator equation Ax + Bx +
C(x, x) = x, where A is an increasing α-concave operator, B is a decreasing operator, and
C is a mixed monotone operator. Existence and uniqueness of the operator equation were
established. Furthermore, Zhang and Tian [19] considered the following fractional bound-
ary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ x(t) + f (t, x(t), Dβ

0+ x(t)) + g(t, x(t)) = 0, t ∈ (0, 1),

x(0) = x′(0) = · · · = x(n–2)(0) = 0,

[Dγ

0+ x(t)]t=1 = k(x(1)),

(1.2)

where n ≥ 3, 1 ≤ β ≤ γ ≤ n – 2, f : [0, 1] × [0, +∞) × [0, +∞) −→ [0, +∞), g : [0, 1] ×
[0, +∞) −→ [0, +∞), and k : [0, +∞) −→ [0, +∞). The authors used the abstract theo-
rem obtained in [18] to prove that problem (1.2) admits a unique positive solution. Sub-
sequently, Wang [20] considered the following singular nonlinear fractional differential
equation:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + p(t)f (t, u(t), Dβ

0+ u(t)) + q(t)g(t, u(t), (Hu)(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n–2)(0) = 0,

[Dγ

0+ u(t)]t=1 = k(u(1)),

(1.3)

where n – 1 < α ≤ n, n > 3, 1 ≤ β ≤ γ ≤ n – 2, p, q ∈ C((0, 1), [0, +∞)), p(t) and q(t) are
allowed to be singular at t = 0 or t = 1. f : (0, 1) × (0, +∞) × (0, +∞) −→ [0, +∞) is contin-
uous, g : (0, 1) × [0, +∞) × [0, +∞) −→ [0, +∞) is continuous, and k : [0, 1) → [0, +∞) is
also continuous. The author proved problem (1.3) to have a unique positive solution based
on a new mixed monotone fixed theorem. Very recently, Sang and Ren [21] investigated
the following fractional boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

–Dα
0+ u(t) = f (t, u(t), u(t)) + g(t, u(t), u(t)) – b, 0 < t < 1, n – 1 < α ≤ n,

u(i)(0) = 0, 0 ≤ i ≤ n – 2,

[Dβ

0+ u(t)]t=1 = 0, 1 ≤ β ≤ n – 2,

(1.4)
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where n ≥ 3 (n ∈N), b > 0 is a constant, f , g : [0, 1] × (–∞, +∞) × (–∞, +∞) → (–∞, +∞)
are continuous functions. In fact, Zhai and Wang [22] considered the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + f (t, u(t)) = b, t ∈ [0, 1],

u(0) = u′(0) = 0,

u(1) = β
∫ 1

0 u(s) ds,

(1.5)

where 2 < α ≤ 3, 0 < β < α, b > 0 is a constant, f : [0, 1] × (–∞, +∞) −→ (–∞, +∞) is con-
tinuous. The authors introduced φ – (h, e) operators and used monotone iterative method
to establish the existence and uniqueness of a nontrivial solution for problem (1.5).

Compared with problem (1.4), we add the derivative term Dβ

0+ u(t), the operator term
(Hu)(t), and nonlinear boundary conditions k(u(1)) into problem (1.1). Furthermore, dif-
ferent from problems (1.2) and (1.3), we break through the restriction of positivity on
nonlinearities f and g . The first goal of this paper is to establish the existence and unique-
ness theorem of solution for the operator equation A(x, x) + B(x, x) + C(x) + e = x, where A
and B are both mixed monotone, C(x) is decreasing, and e ∈ P with P is a cone in Banach
space E. Our abstract theorem generalizes the result on the cone mappings (see Theo-
rem 3.1 in [19]) to non-cone case. Some sufficient conditions under which problem (1.1)
has a unique solution are provided. Moreover, we also construct two iterative sequences
for approximating a unique solution.

The structure of this paper includes the following sections. In Sect. 2, we introduce some
definitions and give preliminary results to be used in the proof of our main theorems. In
Sect. 3, we establish the existence and uniqueness of solutions for problem (1.1) based on
a new fixed point theorem.

2 Preliminaries
In this section, we give some definitions and preliminary results that are used in this paper
[23–25].

In this paper, (E,‖ · ‖) is a real Banach space, which is partially ordered by a cone P ⊂ E,
i.e., x ≤ y if and only if y – x ∈ P. θ is the zero element in E. Recall that a nonempty closed
convex set P ⊂ E is a cone if it satisfies: x ∈ P, λ ≥ 0 ⇒ λx ∈ P and x ∈ P, –x ∈ P ⇒ x = θ .
P is called to be normal if there exists N > 0 such that θ ≤ x ≤ y ⇒ ‖x‖ ≤ N‖y‖. Given
h > θ , we denote Ph by

Ph = {x ∈ E | there exist λ > 0,μ > 0 such that λh ≤ x ≤ μh}.

Let e ∈ P with θ ≤ e ≤ h, we define

Ph,e = {x ∈ E|x + e ∈ Ph}.

Definition 2.1 ([23, 24]) Let an operator A : Ph,e × Ph,e → E be a mixed monotone oper-
ator if A(x, y) is increasing in x and decreasing in y, i.e., for ui, vi ∈ Ph,e, (i = 1, 2), u1 ≤ v1,
v2 ≤ u2 imply A(u1, u2) ≤ A(v1, v2). The element x ∈ Ph,e is called a fixed point of A if
A(x, x) = x.

Lemma 2.1 ([21]) Let P be a normal cone of E and T : Ph,e × Ph,e −→ E be a mixed mono-
tone operator with T(h, h) ∈ Ph,e, and the following condition is satisfied:
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(H) There exists a mapping ϕ : (0, 1) −→ (0, +∞) with ϕ(λ) > λ such that

T
(
λu + (λ – 1)e,λ–1v +

(
λ–1 – 1

)
e
) ≥ ϕ(λ)T(u, v) +

(
ϕ(λ) – 1

)
e

for all u, v ∈ Ph,e and λ ∈ (0, 1). Then
(1) There exist u0, v0 ∈ Ph,e and s ∈ (0, 1) such that

sv0 ≤ u0 < v0, u0 ≤ T(u0, v0) ≤ T(v0, u0) ≤ v0;

(2) T has a unique fixed point x∗ in Ph,e;
(3) For any initial values x0, y0 ∈ Ph,e, by constructing successively the sequence as

follows:

xn = T(xn–1, yn–1), yn = T(yn–1, xn–1), n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.

Definition 2.2 ([3]) The Riemann–Liouville fractional derivative of order α of a function
y ∈ C[0, 1] is defined by

Dα
0+ y(t) =

1
	(n – α)

(
d
dt

)n ∫ t

0

y(s)
(t – s)α–n–1 ds,

where n = [α] + 1, [α] denotes the integer part of the number α, provided that the right-
hand side is pointwise defined on (0, ∞).

Lemma 2.2 ([19, 26]) Let h(t) ∈ C[0, 1], then the unique solution of the linear problem

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + h(t) = 0, 0 < t < 1, n – 1 < α ≤ n,

u(0) = u′(0) = · · · = u(n–2)(0) = 0,

[Dγ

0+ u(t)]t=1 = k(u(1)), 1 ≤ γ ≤ n – 2,

is given by

u(t) =
∫ 1

0
G(t, s)h(s) ds +

	(α – γ )
	(α)

k
(
u(1)

)
tα–1,

where

G(t, s) =
1

	(α)

⎧
⎨

⎩

tα–1(1 – s)α–γ –1 – (t – s)α–1, 0 ≤ s ≤ t ≤ 1,

tα–1(1 – s)α–γ –1, 0 ≤ t ≤ s ≤ 1,

is the Green’s function.

Lemma 2.3 ([19]) The Green’s function G(t, s) in Lemma 2.2 has the following properties:
(1) G(t, s) : [0, 1] × [0, 1] → [0,∞) is continuous;
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(2) For all t, s ∈ [0, 1], we have

0 ≤ [
1 – (1 – s)γ

]
(1 – s)α–γ –1tα–1 ≤ 	(α)G(t, s) ≤ (1 – s)α–γ –1tα–1;

(3) For all t, s ∈ [0, 1], we have

0 ≤ [
1 – (1 – s)γ –β

]
(1 – s)α–γ –1tα–β–1 ≤ 	(α – β)Dβ

0+ G(t, s) ≤ (1 – s)α–γ –1tα–β–1.

Theorem 2.1 Let P be a normal cone in E, and let A, B : Ph,e × Ph,e −→ E be two mixed
monotone operators, C : P → P be a decreasing operator satisfying the following condi-
tions:

(A1) For all t ∈ (0, 1) and x, y ∈ Ph,e, there exists ψ(t) ∈ (t, 1) such that

A
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
) ≥ ψ(t)A(x, y) +

(
ψ(t) – 1

)
e;

(A2) For all t ∈ (0, 1) and x, y ∈ Ph,e,

B
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
) ≥ tB(x, y) + (t – 1)e;

(A3) For all t ∈ (0, 1) and y ∈ P, we have

C
(
t–1y +

(
t–1 – 1

)
e
) ≥ tC(y);

(A4) A(h, h) ∈ Ph,e, B(h, h) ∈ Ph,e, and C(h) ∈ Ph;
(A5) For all x, y ∈ Ph,e, there exists a constant δ > 0 such that

A(x, y) ≥ δ
(
B(x, y) + C(y)

)
+ (δ – 1)e.

Then the operator equation A(x, x) + B(x, x) + C(x) + e = x has a unique solution x∗ in Ph,e,
and for any initial values x0, y0 ∈ Ph,e, by setting two iterative sequences {xn} {yn} as follows:

xn = A(xn–1, yn–1) + B(xn–1, yn–1) + C(yn–1) + e, n = 1, 2, . . . ,

yn = A(yn–1, xn–1) + B(yn–1, xn–1) + C(xn–1) + e, n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ in E as n → ∞.

Proof We prove Theorem 2.1 in view of Lemma 2.1. Firstly, by condition (A4), and com-
bining with Lemma 2.2 in [18], we have that there exist constants ai > 0 and bi > 0
(i = 1, 2, 3) such that

a1h + (a1 – 1)e ≤ A(h, h) ≤ b1h + (b1 – 1)e, (2.1)

a2h + (a2 – 1)e ≤ B(h, h) ≤ b2h + (b2 – 1)e, (2.2)

a3h ≤ C(h) ≤ b3h. (2.3)
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Consequently, for all x, y ∈ Ph,e, by [21], we obtain

ψ(μ)a1h +
(
ψ(μ)a1 – 1

)
e ≤ A(x, y) ≤ ψ(μ)–1b1h +

(
ψ(μ)–1b1 – 1

)
e, μ ∈ (0, 1).

Hence A(x, y) ∈ Ph,e, that is, A : Ph,e × Ph,e → Ph,e. Similarly, for all x, y ∈ Ph,e, we deduce
that

ηa2h + (ηa2 – 1)e ≤ B(x, y) ≤ η–1b2h +
(
η–1b2 – 1

)
e, η ∈ (0, 1).

Therefore B : Ph,e × Ph,e → Ph,e.
For all y ∈ Ph, there exists σ ∈ (0, 1) such that σh ≤ y ≤ σ –1h. Since C is a decreasing

operator, we have

C(y) ≥ C
(
σ –1h

) ≥ σC(h) ≥ σa3h,

C(y) ≤ C(σh) ≤ σ –1C(h) ≤ σ –1b3h.

Let m1 = σa3, m2 = σ –1b3, that is, m1h ≤ C(y) ≤ m2h. Hence C(y) ∈ Ph, that is, C : Ph →
Ph.

Now we define the operator T = A + B + C + e : Ph,e × Ph,e → E by

T(x, y) = A(x, y) + B(x, y) + C(y) + e for all x, y ∈ Ph,e. (2.4)

Let xi, yi ∈ Ph,e (i = 1, 2) with x1 ≤ x2, y1 ≥ y2, we obtain

A(x1, y1) ≤ A(x2, y2), B(x1, y1) ≤ B(x2, y2), C(y1) ≤ C(y2).

Hence, T(x1, y1) ≤ T(x2, y2), T is a mixed monotone operator.
From (2.4), we have

T(h, h) = A(h, h) + B(h, h) + C(h) + e.

By (2.1)–(2.3), we can deduce that

T(h, h) ≥ (a1 + a2 + a3)h + (a1 + a2 – 1)e ≥ (a1 + a2)h + (a1 + a2 – 1)e

and

T(h, h) ≤ (b1 + b2 + b3)h + (b1 + b2 – 1)e ≤ (b1 + b2 + b3)h + (b1 + b2 + b3 – 1)e.

Let ϕ1 = a1 + a2 and ϕ2 = b1 + b2 + b3. Then

ϕ1h + (ϕ1 – 1)e ≤ T(h, h) ≤ ϕ2h + (ϕ2 – 1)e.

Hence T(h, h) ∈ Ph,e.
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Finally, we prove that, for every t ∈ (0, 1), there exists ϕ(t) ∈ (t, 1] such that, for all x, y ∈
Ph,e,

T
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
) ≥ ϕ(t)T(x, y) +

(
ϕ(t) – 1

)
e.

By condition (A5), we have that

A(x, y) + δA(x, y) ≥ δ
(
B(x, y) + C(y)

)
+ (δ – 1)e + δA(x, y),

that is,

A(x, y) ≥ δ

1 + δ
T(x, y) –

e
1 + δ

. (2.5)

Moreover, it follows from (2.4), (2.5) and conditions (A1)–(A3) that

T
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
)

– tT(x, y)

= A
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
)

+ B
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
)

+ C
(
t–1y +

(
t–1 – 1

)
e
)

+ e – t
(
A(x, y) + B(x, y) + C(y) + e

)

≥ ψ(t)A(x, y) +
(
ψ(t) – 1

)
e + tB(x, y) + (t – 1)e + tC(y) + e – tA(x, y)

– tB(x, y) – tC(y) – te

=
(
ψ(t) – t

)
A(x, y) +

(
ψ(t) – 1

)
e

≥ (
ψ(t) – t

)
(

δ

1 + δ
T(x, y) –

e
1 + δ

)

+
(
ψ(t) – 1

)
e

=
δ(ψ(t) – t)

1 + δ
T(x, y) +

(

ψ(t) – 1 –
ψ(t) – t

1 + δ

)

e for all x, y ∈ Ph,e.

Thus

T
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
)

≥
(

δ(ψ(t) – t)
1 + δ

+ t
)

T(x, y) +
(

ψ(t) – 1 –
ψ(t) – t

1 + δ

)

e

=
δψ(t) + t

1 + δ
T(x, y) +

(
δψ(t) + t

1 + δ
– 1

)

e for x, y ∈ Ph,e.

(2.6)

Let ϕ(t) = δψ(t)+t
1+δ

, then ϕ(t) ∈ (t,ψ(t)) ⊂ (t, 1], t ∈ (0, 1), by (2.6), we can conclude that

T
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
) ≥ ϕ(t)T(x, y) +

(
ϕ(t) – 1

)
e, ∀x, y ∈ Ph,e.

We derive the conclusion of Theorem 2.1 from Lemma 2.1. �

3 Main result
In the section, we use Theorem 2.1 to obtain the existence and uniqueness of a positive
solution for problem (1.1).

Set E = {x|x ∈ C[0, 1], Dβ

0+ x ∈ C[0, 1]}, then E is a Banach space with an order relation u ≤
v if u(t) ≤ v(t), Dβ

0+ u(t) ≤ Dβ

0+ v(t). Let P ⊂ E be defined by P = {x ∈ E|x(t) ≥ 0, Dβ

0+ x(t) ≥ 0}
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for all t ∈ [0, 1]. It is clear that P is a normal cone. Let

e(t) =
b

(α – γ )	(α)

(

tα–1 –
α – γ

α
tα

)

, t ∈ [0, 1].

Theorem 3.1 Assume that the following conditions are satisfied:
(B1) f , g : [0, 1] × [–e∗, +∞) × [–e∗, +∞) → (–∞, +∞) are continuous and

k : [0, +∞) → [0, +∞) is continuous. For all t ∈ [0, 1], g(t, 0, H(L)) ≥ 0 with
g(t, 0, H(L)) �≡ 0, where L ≥ b

(α–γ )	(α) and e∗ = max{e(t) : t ∈ [0, 1]};
(B2) For fixed t ∈ [0, 1] and y ∈ [–e∗, +∞), f (t, x, y), g(t, x, y) are increasing in

x ∈ [–e∗, +∞); for fixed t ∈ [0, 1] and x ∈ [–e∗, +∞), f (t, x, y), g(t, x, y) are
decreasing in y ∈ [–e∗, +∞); k(y) is decreasing in y ∈ [0, +∞), k(L) �= 0;

(B3) For all λ ∈ (0, 1), there exists ψ(λ) ∈ (λ, 1) such that, for all t ∈ [0, 1],
(a) f (t,λx + (λ – 1)ρ1,λ–1y + (λ–1 – 1)ρ2) ≥ ψ(λ)f (t, x, y),
(b) g(t,λx + (λ – 1)ρ1,λ–1y + (λ–1 – 1)ρ2) ≥ λg(t, x, y),
(c) k(λ–1y + (λ–1 – 1)ρ1) ≥ λk(y),
where x, y ∈ (–∞, +∞) and ρ1,ρ2 ∈ [0, e∗];

(B4) For all t ∈ [0, 1], x, y ∈ [–e∗, +∞), there exist two constants δ1, δ2 > 0 such that
(a) f (t, x, y) ≥ δ1g(t, x, 0),
(b) f (t, x, y) ≥ δ2k(y);

(B5) H : C[0, 1] → C[0, 1] and satisfies the following conditions:
(a) Hu ≥ 0 for every u ∈ Ph,e;
(b) for u, v ∈ Ph,e, u ≤ v �⇒ Hu ≤ Hv;
(c) for all λ ∈ (0, 1) and u ∈ Ph,e such that

H
(
λu + (λ – 1)ê

) ≥ λH(u) + (λ – 1)ê, ê ∈ [
0, e∗].

Then we have the following conclusions:
(1) Problem (1.1) has a unique nontrivial solution u∗ in Ph,e, where h(t) = Ltα–1 for all

t ∈ [0, 1];
(2) We can construct the following two sequences:

ωn(t) =
∫ 1

0
G(t, s)

[
f
(
s,ωn–1(s), Dβ

0+τn–1(s)
)

+ g
(
s,ωn–1(s), (Hτn–1)(s)

)]
ds

+
	(α – γ )

	(α)
k
(
τn–1(1)

)
tα–1 – e(t), n = 1, 2, . . . ,

τn(t) =
∫ 1

0
G(t, s)

[
f
(
s, τn–1(s), Dβ

0+ωn–1(s)
)

+ g
(
s, τn–1(s), (Hωn–1)(s)

)]
ds

+
	(α – γ )

	(α)
k
(
ωn–1(1)

)
tα–1 – e(t), n = 1, 2, . . . ,

for any initial values ω0, τ0 ∈ Ph,e, and sequences {ωn(t)} and {τn(t)} for
approximating u∗(t), we have ωn(t) → u∗(t) and τn(t) → u∗(t) as n → ∞.

Proof We will use Theorem 2.1 to prove Theorem 3.1.
For e ∈ P, t ∈ [0, 1], we have

Ph,e =
{

x ∈ C[0, 1]|x + e ∈ Ph
}

.
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Furthermore, for L ≥ b
(α–γ )	(α) and t ∈ [0, 1], we have

e(t) =
b

(α – γ )	(α)
tα–1 –

b
α	(α)

tα ≤ b
(α – γ )	(α)

tα–1 ≤ Ltα–1 = h(t). (3.1)

Hence 0 < e(t) ≤ h(t).
From Lemma 2.2, problem (1.1) has the integral formulation

u(t) =
∫ 1

0
G(t, s)

[
f
(
s, u(s), Dβ

0+ u(s)
)

+ g
(
s, u(s), (Hu)(s)

)
– b

]
ds

+
	(α – γ )

	(α)
k
(
u(1)

)
tα–1

=
∫ 1

0
G(t, s)f

(
s, u(s), Dβ

0+ u(s)
)

ds +
∫ 1

0
G(t, s)g

(
s, u(s), (Hu)(s)

)
ds

+
	(α – γ )

	(α)
k
(
u(1)

)
tα–1 – b

∫ 1

0
G(t, s) ds

=
∫ 1

0
G(t, s)f

(
s, u(s), Dβ

0+ u(s)
)

ds +
∫ 1

0
G(t, s)g

(
s, u(s), (Hu)(s)

)
ds

+
	(α – γ )

	(α)
k
(
u(1)

)
tα–1 –

b
(α – γ )	(α)

(

tα–1 –
α – γ

α
tα

)

=
∫ 1

0
G(t, s)f

(
s, u(s), Dβ

0+ u(s)
)

ds +
∫ 1

0
G(t, s)g

(
s, u(s), (Hu)(s)

)
ds

+
	(α – γ )

	(α)
k
(
u(1)

)
tα–1 – e(t)

=
∫ 1

0
G(t, s)f

(
s, u(s), Dβ

0+ u(s)
)

ds – e(t) +
∫ 1

0
G(t, s)g

(
s, u(s), (Hu)(s)

)
ds

– e(t) +
	(α – γ )

	(α)
k
(
u(1)

)
tα–1 + e(t).

For every t ∈ [0, 1] and u, v ∈ Ph,e, we consider the following operators:

A(u, v)(t) =
∫ 1

0
G(t, s)f

(
s, u(s), Dβ

0+ v(s)
)

ds – e(t), (3.2)

B(u, v)(t) =
∫ 1

0
G(t, s)g

(
s, u(s), (Hv)(s)

)
ds – e(t), (3.3)

and

C(v)(t) =
	(α – γ )

	(α)
k
(
v(1)

)
tα–1. (3.4)

It is clear that u(t) is the solution of problem (1.1) if and only if u is the fixed point of the
operator A(u, u) + B(u, u) + C(u) + e. Further, by (3.2)–(3.4), we can calculate that

Dβ

0+ A(u, v)(t) =
∫ 1

0
Dβ

0+ G(t, s)f
(
s, u(s), Dβ

0+ v(s)
)

ds – Dβ

0+ e(t), (3.5)

Dβ

0+ B(u, v)(t) =
∫ 1

0
Dβ

0+ G(t, s)g
(
s, u(s), (Hv)(s)

)
ds – Dβ

0+ e(t), (3.6)
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and

Dβ

0+ C(v)(t) =
	(α – γ )
	(α – β)

k
(
v(1)

)
tα–β–1.

(1) Firstly, for all ui, vi ∈ Ph,e (i = 1, 2) with u1 ≥ u2, v1 ≤ v2, by (B5), we get that H(v1) ≤
H(v2). It follows from condition (B2), (3.2), and (3.5) that

A(u1, v1)(t) =
∫ 1

0
G(t, s)f

(
s, u1(s), Dβ

0+ v1(s)
)

ds – e(t)

≥
∫ 1

0
G(t, s)f

(
s, u2(s), Dβ

0+ v2(s)
)

ds – e(t) = A(u2, v2)(t),

and

Dβ

0+ A(u1, v1)(t) =
∫ 1

0
Dβ

0+ G(t, s)f
(
s, u1(s), Dβ

0+ v1(s)
)

ds – Dβ

0+ e(t)

≥
∫ 1

0
Dβ

0+ G(t, s)f
(
s, u2(s), Dβ

0+ v2(s)
)

ds – Dβ

0+ e(t) = Dβ

0+ A(u2, v2)(t).

Thus, A is a mixed monotone operator. Similarly, we have from (3.3) and (3.6) that

B(u1, v1)(t) =
∫ 1

0
G(t, s)g

(
s, u1(s), (Hv1)(s)

)
ds – e(t)

≥
∫ 1

0
G(t, s)g

(
s, u2(s), (Hv2)(s)

)
ds – e(t) = B(u2, v2)(t)

and

Dβ

0+ B(u1, v1)(t) =
∫ 1

0
Dβ

0+ G(t, s)g
(
s, u1(s), (Hv1)(s)

)
ds – Dβ

0+ e(t)

≥
∫ 1

0
Dβ

0+ G(t, s)g
(
s, u2(s), (Hv2)(s)

)
ds – Dβ

0+ e(t) = Dβ

0+ B(u2, v2)(t).

Hence, B is a mixed monotone operator. Since

C(v1)(t) =
	(α – γ )

	(α)
k
(
v1(1)

)
tα–1 ≥ 	(α – γ )

	(α)
k
(
v2(1)

)
tα–1 = C(v2)(t)

and

Dβ

0+ C(v1)(t) =
	(α – γ )
	(α – β)

k
(
v1(1)

)
tα–β–1 ≥ 	(α – γ )

	(α – β)
k
(
v2(1)

)
tα–β–1 = Dβ

0+ C(v2)(t),

Then C is a decreasing operator.
(2) In view of condition (B3)(a), for every λ ∈ [0, 1] and t ∈ [0, 1], there exists ψ(λ) ∈ (λ, 1)

such that, for all u, v ∈ Ph,e, we have

A
(
λu + (λ – 1)e,λ–1v +

(
λ–1 – 1

)
e
)
(t)

=
∫ 1

0
G(t, s)f

(
s,λu(s) + (λ – 1)e, Dβ

0+
(
λ–1v(s) +

(
λ–1 – 1

)
e
))

ds – e(t)
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=
∫ 1

0
G(t, s)f

(
s,λu(s) + (λ – 1)e,λ–1Dβ

0+ v(s) +
(
λ–1 – 1

)
Dβ

0+ e
)

ds – e(t)

≥ ψ(λ)
∫ 1

0
G(t, s)f

(
s, u(s), Dβ

0+ v(s)
)

ds – e(t) + ψ(λ)e(t) – ψ(λ)e(t)

= ψ(λ)A(u, v)(t) +
(
ψ(λ) – 1

)
e(t)

and

Dβ

0+ A
(
λu + (λ – 1)e,λ–1v +

(
λ–1 – 1

)
e
)
(t)

=
∫ 1

0
Dβ

0+ G(t, s)f
(
s,λu(s) + (λ – 1)e, Dβ

0+
(
λ–1v(s) +

(
λ–1 – 1

)
e
))

ds – Dβ

0+ e(t)

≥ ψ(λ)
∫ 1

0
Dβ

0+ G(t, s)f
(
s, u(s), Dβ

0+ v(s)
)

ds – Dβ

0+ e(t) + ψ(λ)Dβ

0+ e(t) – ψ(λ)Dβ

0+ e(t)

= ψ(λ)Dβ

0+ A(u, v)(t) +
(
ψ(λ) – 1

)
Dβ

0+ e(t).

Hence, A(λx + (λ – 1)e,λ–1y + (λ–1 – 1)e) ≥ ψ(λ)A(x, y) + (ψ(λ) – 1)e. It follows from con-
ditions (B3) and (B5) that

H
(
λu + (λ – 1)e

) ≥ λ(Hu) + (λ – 1)e,

H
(
λ–1u +

(
λ–1 – 1

)
e
) ≤ λ–1(Hu) +

(
λ–1 – 1

)
e,

B
(
λu + (λ – 1)e,λ–1v +

(
λ–1 – 1

)
e
)
(t)

=
∫ 1

0
G(t, s)g

(
s,λu(s) + (λ – 1)e(s), H

(
λ–1v(s) +

(
λ–1 – 1

)
e(s)

))
ds – e(t)

≥
∫ 1

0
G(t, s)g

(
s,λu(s) + (λ – 1)e(s),λ–1(Hv)(s) +

(
λ–1 – 1

)
e(s)

)
ds – e(t)

≥ λ

∫ 1

0
G(t, s)g

(
s, u(s), (Hv)(s)

)
ds – e(t) + λe(t) – λe(t)

= λB(u, v)(t) + (λ – 1)e(t)

and

Dβ

0+ B
(
λu + (λ – 1)e,λ–1v +

(
λ–1 – 1

)
e
)
(t)

=
∫ 1

0
Dβ

0+ G(t, s)g
(
s,λu(s) + (λ – 1)e(s), H

(
λ–1v(s) +

(
λ–1 – 1

)
e(s)

))
ds – Dβ

0+ e(t)

≥
∫ 1

0
Dβ

0+ G(t, s)g
(
s,λu(s) + (λ – 1)e(s),λ–1(Hv)(s) +

(
λ–1 – 1

)
e(s)

)
ds – Dβ

0+ e(t)

≥ λ

∫ 1

0
Dβ

0+ G(t, s)g
(
s, u(s), (Hv)(s)

)
ds – Dβ

0+ e(t) + λDβ

0+ e(t) – λDβ

0+ e(t)

= λDβ

0+ B(u, v)(t) + (λ – 1)Dβ

0+ e(t).



Sang et al. Advances in Difference Equations        (2021) 2021:156 Page 12 of 17

Thus, B(λu+(λ–1)e,λ–1v+(λ–1 –1)e) ≥ λB(u, v)+(λ–1)e. Moreover, by condition (B3)(c),
we have

C
(
λ–1v +

(
λ–1 – 1

)
e
)
(t) =

	(α – γ )
	(α)

k
(
λ–1v +

(
λ–1 – 1

)
e
)
(1)tα–1

≥ λ
	(α – γ )

	(α)
k(v)(1)tα–1 = λC(v)(t)

and

Dβ

0+ C
(
λ–1v +

(
λ–1 – 1

)
e
)
(t) =

	(α – γ )
	(α – β)

k
(
λ–1v +

(
λ–1 – 1

)
e
)
(1)tα–β–1

≥ λ
	(α – γ )
	(α – β)

k(v)(1)tα–β–1 = Dβ

0+λC(v)(t).

Thus, C(λ–1v + (λ–1 – 1)e) ≥ λC(v). Consequently, conditions (A1)–(A3) of Theorem 2.1
are satisfied.

(3) By condition (B4), for every u, v ∈ Ph,e, t ∈ [0, 1], we have

A(u, v)(t) =
∫ 1

0
G(t, s)f

(
s, u(s), Dβ

0+ v(s)
)

ds – e(t)

≥ δ1

∫ 1

0
G(t, s)g

(
s, u(s), 0

)
ds – e(t) – δ1e(t) + δ1e(t)

≥ δ1

(∫ 1

0
G(t, s)g

(
s, u(s), (Hv)(s)

)
ds – e(t)

)

+ (δ – 1)e(t)

= δ1B(u, v)(t) + (δ1 – 1)e(t)

and

Dβ

0+ A(u, v)(t) =
∫ 1

0
Dβ

0+ G(t, s)f
(
s, u(s), Dβ

0+ v(s)
)

ds – Dβ

0+ e(t)

≥ δ1

∫ 1

0
Dβ

0+ G(t, s)g
(
s, u(s), 0

)
ds – Dβ

0+ e(t) – δ1Dβ

0+ e(t) + δ1Dβ

0+ e(t)

≥ δ1

(∫ 1

0
Dβ

0+ G(t, s)g
(
s, u(s), (Hv)(s)

)
ds – Dβ

0+ e(t)
)

+ (δ1 – 1)Dβ

0+ e(t)

= δ1Dβ

0+ B(u, v)(t) + (δ1 – 1)Dβ

0+ e(t).

Thus, A(u, v) ≥ δ1B(u, v) + (δ1 – 1)e. Similarly, we get

A(u, v)(t) =
∫ 1

0
G(t, s)f

(
s, u(s), Dβ

0+ v(s)
)

ds – e(t)

≥
∫ 1

0
G(t, s)δ2k

(
v(1)

)
ds – e(t)

≥ δ2k
(
v(1)

) tα–1

	(α)

(
1

α – γ
–

1
α – β

)

– e(t)

=
δ2

	(α – γ )

(
1

α – γ
–

1
α – β

)

C(v)(t) – e(t)
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and

Dβ

0+ A(u, v)(t) =
∫ 1

0
Dβ

0+ G(t, s)f
(
s, u(s), Dβ

0+ v(s)
)

ds – Dβ

0+ e(t)

≥
∫ 1

0
Dβ

0+ G(t, s)δ2k
(
v(1)

)
ds – Dβ

0+ e(t)

≥ δ2k
(
v(1)

) tα–β–1

	(α – β)

(
1

α – γ
–

1
α – β

)

– Dβ

0+ e(t)

=
δ2

	(α – γ )

(
1

α – γ
–

1
α – β

)

Dβ

0+ C(v)(t) – Dβ

0+ e(t).

Let δ3 = δ2
	(α–γ ) ( 1

α–γ
– 1

α–β
), then A(u, v) ≥ δ3C(v) – e. Choose δ4 = min{δ1, δ3} and δ5 = 1

2δ4,
then

A(u, v) ≥ δ5
(
B(u, v) + C(v)

)
+ (δ5 – 1)e.

Therefore, condition (A5) of Theorem 2.1 is satisfied.
(4) Finally, we prove that condition (A4) is satisfied. By (3.1) and equality Dα

0+ tβ =
	(β+1)

	(β–α+1) tβ–α , we have

Dβ

0+ h(t) = Dβ

0+
(
Ltα–1) = L

	(α)
	(α – β)

tα–β–1.

In view of (B1), (B2), (B4), and Lemma 2.3, we have

A(h, h)(t) + e(t) =
∫ 1

0
G(t, s)f

(
s, h(s), Dβ

0+ h(s)
)

ds

≥
∫ 1

0

[1 – (1 – s)γ ](1 – s)α–γ –1

	(α)
tα–1f

(
s, Lsα–1, Dβ

0+ Lsα–1)ds

≥
∫ 1

0

[1 – (1 – s)γ ](1 – s)α–γ –1

	(α)
tα–1f

(

s, 0, L
	(α)

	(α – β)
sα–β–1

)

ds

≥ h(t)
∫ 1

0

[1 – (1 – s)γ ](1 – s)α–γ –1

L	(α)
f
(

s, 0, L
	(α)

	(α – β)

)

ds

≥ h(t)
∫ 1

0

[1 – (1 – s)γ –β](1 – s)α–γ –1

L	(α)
f
(

s, 0, L
	(α)

	(α – β)

)

ds,

A(h, h)(t) + e(t) =
∫ 1

0
G(t, s)f

(
s, h(s), Dβ

0+ h(s)
)

ds

≤
∫ 1

0

(1 – s)α–γ –1

	(α)
tα–1f

(
s, Lsα–1, 0

)
ds

≤ h(t)
1

L	(α)

∫ 1

0
(1 – s)α–γ –1f (s, L, 0) ds,

and

Dβ

0+ A(h, h)(t) + Dβ

0+ e(t)

=
∫ 1

0
Dβ

0+ G(t, s)f
(
s, h(s), Dβ

0+ h(s)
)

ds
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≥
∫ 1

0

[1 – (1 – s)γ –β](1 – s)α–γ –1

	(α – β)
tα–β–1f

(
s, Lsα–1, Dβ

0+ Lsα–1)ds

≥
∫ 1

0

[1 – (1 – s)γ –β](1 – s)α–γ –1

	(α – β)
tα–β–1f

(

s, 0, L
	(α)

	(α – β)
sα–β–1

)

ds

≥ Dβ

0+ h(t)
∫ 1

0

[1 – (1 – s)γ –β](1 – s)α–γ –1

L	(α)
f
(

s, 0, L
	(α)

	(α – β)

)

ds,

Dβ

0+ A(h, h)(t) + Dβ

0+ e(t)

=
∫ 1

0
Dβ

0+ G(t, s)f
(
s, h(s), Dβ

0+ h(s)
)

ds

≤
∫ 1

0

(1 – s)α–γ –1

	(α – β)
tα–β–1f

(
s, Lsα–1, 0

)
ds

≤ Dβ

0+ h(t)
1

L	(α)

∫ 1

0
(1 – s)α–γ –1f (s, L, 0) ds.

Let

l1 =
1

L	(α)

∫ 1

0

[
1 – (1 – s)γ –β

]
(1 – s)α–γ –1f

(

s, 0, L
	(α)

	(α – β)

)

ds,

l2 =
1

L	(α)

∫ 1

0
(1 – s)α–γ –1f (s, L, 0) ds.

Then l1h ≤ A(h, h) + e ≤ l2h. Thus, A(h, h) + e ∈ Ph, that is, A(h, h) ∈ Ph,e.
On the other hand, we have

B(h, h)(t) + e(t) =
∫ 1

0
G(t, s)g

(
s, h(s), (Hh)(s)

)
ds

≥
∫ 1

0

[1 – (1 – s)γ ](1 – s)α–γ –1

	(α)
tα–1g

(
s, 0, H

(
Lsα–1))ds

≥
∫ 1

0

[1 – (1 – s)γ ](1 – s)α–γ –1

	(α)
tα–1g

(
s, 0, H(L)

)
ds

= h(t)
1

L	(α)

∫ 1

0

[
1 – (1 – s)γ

]
(1 – s)α–γ –1g

(
s, 0, H(L)

)
ds

≥ h(t)
1

L	(α)

∫ 1

0

[
1 – (1 – s)γ –β

]
(1 – s)α–γ –1g

(
s, 0, H(L)

)
ds,

B(h, h)(t) + e(t) =
∫ 1

0
G(t, s)g

(
s, h(s), (Hh)(s)

)
ds

≤
∫ 1

0

(1 – s)α–γ –1

	(α)
tα–1g

(
s, Lsα–1, 0

)
ds

≤ h(t)
1

L	(α)

∫ 1

0
(1 – s)α–γ –1g(s, L, 0) ds,

and

Dβ

0+ B(h, h)(t) + Dβ

0+ e(t)

=
∫ 1

0
Dβ

0+ G(t, s)g
(
s, h(s), (Hh)(s)

)
ds
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≥
∫ 1

0

[1 – (1 – s)γ –β](1 – s)α–γ –1

	(α – β)
tα–β–1g

(
s, Lsα–1, H

(
Lsα–1))ds

≥ Dβ

0+ h(t)
1

L	(α)

∫ 1

0

[
1 – (1 – s)γ –β

]
(1 – s)α–γ –1g

(
s, 0, H(L)

)
ds,

Dβ

0+ B(h, h)(t) + Dβ

0+ e(t)

=
∫ 1

0
Dβ

0+ G(t, s)g
(
s, h(s), (Hh)(s)

)
ds

≤
∫ 1

0

(1 – s)α–γ –1

	(α – β)
tα–β–1g

(
s, Lsα–1, 0

)
ds

≤ Dβ

0+ h(t)
1

L	(α)

∫ 1

0
(1 – s)α–γ –1g(s, L, 0) ds.

Let

l3 =
1

L	(α)

∫ 1

0
(1 – s)α–γ –1g(s, L, 0) ds,

l4 =
1

L	(α)

∫ 1

0

[
1 – (1 – s)γ –β

]
(1 – s)α–γ –1g

(
s, 0, H(L)

)
ds.

Then l4h ≤ B(h, h) + e ≤ l3h, thus B(h, h) ∈ Ph,e. In addition, we have

C(h)(t) =
	(α – γ )

	(α)
k
(
h(1)

)
tα–1 =

	(α – γ )
	(α)

k(L)tα–1.

Then C(h) ∈ Ph. Consequently, (A4) is proved. Therefore, all the conditions of Theo-
rem 2.1 are satisfied. The conclusions of Theorem 3.1 hold. �

Now, we give an example to illustrate our main result.

Example 3.1 For problem (1.1), we choose n = 5, α = 9
2 , β = 3

2 , γ = 5
2 , and b = 2. Consider

the following boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D
9
2
0+ u(t) + [ e(t)

e∗ u(t) + e(t)] 1
2 + [ e(t)

e∗ D
3
2
0+ u(t) + e(t) + 1]– 1

2

+ [
∫ t

0 (u(s) + e∗) ds + e(t) + 2]– 1
3 – 2 = 0, t ∈ (0, 1),

u(0) = u′(0) = u′′(0) = u′′′(0) = 0,

[D
5
2
0+ u(t)]t=1 = 1

3√u(1)+2
,

(3.7)

where e(t) = t
7
2 – 4

9 t
9
2

	( 9
2 )

, t ∈ [0, 1], and e∗ = max{e(t) : t ∈ [0, 1]} = 5
9	( 9

2 )
. Clearly, e(t) ≤ t

7
2

	( 9
2 )

≤
h(t). Let f (t, u, v) = [ e(t)

e∗ u + e(t)] 1
2 + [ e(t)

e∗ v + e(t) + 1]– 1
2 , g(t, u, v) = [v + e(t) + 2]– 1

3 , k(u(1)) =
1

3√u(1)+2
, and (Hu)(t) =

∫ t
0 (u(s) + e∗) ds. It is easy to check that all the conditions in Theo-

rem 3.1 are satisfied. By Theorem 3.1, problem (3.7) has a unique nontrivial solution u∗ in
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Ph,e. Furthermore, we can set up the following sequences:

ωn(t) =
∫ 1

0
G(t, s)

{[
e(s)
e∗ ωn–1(s) + e(s)

] 1
2

+
[

e(s)
e∗ D

3
2
0+τn–1(s) + e(s) + 1

]– 1
2

+
[∫ t

0

(
τn–1(s) + e∗)ds + e(s) + 2

]– 1
3

+
	(2)
	( 9

2 )
1

3√τn–1(1) + 2
t

7
2

–
1

	( 9
2 )

t
7
2 +

4
9	( 9

2 )
t

9
2

}

ds

and

τn(t) =
∫ 1

0
G(t, s)

{[
e(s)
e∗ τn–1(s) + e(s)

] 1
2

+
[

e(s)
e∗ D

3
2
0+ωn–1(s) + e(s) + 1

]– 1
2

+
[∫ t

0

(
ωn–1(s) + e∗)ds + e(s) + 2

]– 1
3

+
	(2)
	( 9

2 )
1

3√ωn–1(1) + 2
t

7
2

–
1

	( 9
2 )

t
7
2 +

4
9	( 9

2 )
t

9
2

}

ds,

for any given ω0, τ0 ∈ Ph,e, we have {ωn(t)} and {τn(t)} both converge to u∗(t) uniformly for
all t ∈ [0, 1].

4 Conclusions
In this paper, we establish the existence and uniqueness theorem of a solution for the op-
erator equation A(x, x) + B(x, x) + C(x) + e = x, where A and B are both mixed monotone,
C(x) is decreasing, and e ∈ P with P is a cone in Banach space E. Using the abstract re-
sult, we give some sufficient conditions under which problem (1.1) has a unique solution.
Furthermore, we also construct two iterative sequences for approximating the unique so-
lution.
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