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Abstract
In this article, we introduce the concept of orthogonalm-metric space and prove
some fixed point theorems in this space. Furthermore, we obtain results that extend
and improve certain comparable results in the existing literature. Eventually, our
results lead us to the existence and uniqueness of solutions for Fredholm integral
equations.
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1 Introdction and preliminaries
Since the French mathematician Frechet had interpreted metric space axiomatically, de-
velopments in mathematics in general, and functional analysis in particular, took new di-
rections in the year 1906. Looking at the subject of fixed point theory and its applications
in different fields, we can see its extensiveness. Those theorems which are related to the
existence of fixed points and their properties are called fixed point theorems. These the-
orems play a crucial role in illustrating the nature and uniqueness of solutions for various
mathematical models. After the advent of the well-known Banach contraction principle,
metric fixed point theory has taken new dimensions, and this contraction principle gives
us a genuinely suitable basis to find a fixed point for self mapping. The Banach contraction
method has played a key role in promoting metric fixed point theory in the recent past.
Refer to [1–7] for more information on Banach contractions and applications. The fruit-
fulness of this basic principle has been proven by numerous generalizations in different
directions. Inspired by this natural idea, several investigators have tried various general-
izations of this notation.

In 1994, Matthews [8] introduced the notion of partial metric space. Since then, this
theory has fascinated many researchers in proving the existence and solutions for various
mathematical models and has a wide variety of applications in different fields related to
mathematics. In 2014, Asadi et al. [9] extended the concept of a partial metric space and
presented some examples to show that their definitions are a real generalization of partial
metric space. They called this new notion an m-metric space. Later on, Patel et al. [10]
extended this concept for set-valued mappings. Recently, Eshaghi Gordji et al. [11] intro-
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duced the notation of orthogonal sets and gave a new extension for the classical Banach
fixed point theorem and more details please refer [11–13].

In this article, we have introduced the notation of orthogonal m⊥-metric spaces. And
in this context, we have improved and generalized some well-known results in the litera-
ture and developed some fixed point theorems for the proposed contraction. Inspired by
the work of many scientist [14–18] regarding fixed point theorems to prove the existence
and uniqueness of solutions for certain types of integral equations related to fractional
type differential equations, we have also developed an illustrative example and a possi-
ble application for the system of Fredholm integral equations to claim the validity of the
proposed results.

Definition 1 ([9]) A partial metric on a nonempty set E is a function ρ : E × E → [0,∞)
such that, for all � , υ , κ ∈ E,

(ρ1) � = υ if and only if ρ(� ,� ) = ρ(� ,υ) = ρ(υ,υ);
(ρ2) ρ(� ,� ) ≤ ρ(� ,υ);
(ρ3) ρ(� ,υ) = ρ(υ,� );
(ρ4) ρ(� ,υ) ≤ ρ(� ,κ) + ρ(κ,υ) – ρ(κ,κ).

A partial metric space is a pair (E,ρ) such that E is a nonempty set and ρ is a partial metric
on E.

Notation 1 The following notations are useful in the sequel:
(1) μ� ,υ = min{μ(� ,� ),μ(υ,υ)}.
(2) μ′

� ,υ = max{μ(� ,� ),μ(υ,υ)}.

Definition 2 ([10]) Let E be a nonempty set. A function μ : E × E → [0,∞) is called an
m-metric if the following conditions are satisfied:

(μ1) � = υ if and only if μ(� ,� ) = μ(� ,υ) = μ(υ,υ);
(μ2) μ� ,υ ≤ μ(� ,υ);
(μ3) μ(� ,υ) = μ(υ,� );
(μ4) μ(� ,υ) – μ� ,υ ≤ (μ(� ,κ) – μ� ,κ) + (μ(κ,υ) – μκ,υ )

for all � , υ , κ ∈ E.
Then the pair (E,μ) is called an m-metric space.

Example 1 ([10])
(a) Let E = {1, 2, 3}. Define μ on E × E as follows:

μ(1, 1) = 1, μ(2, 2) = 4, μ(3, 3) = 5, μ(1, 2) = μ(2, 1) = 9,

μ(1, 3) = μ(3, 1) = 7, μ(3, 2) = μ(2, 3) = 6.

It is easy to verify that (E,μ) is an m-metric space but it is not a partial metric
space, since μ(1, 2) � μ(1, 3) + μ(3, 2) – μ(3, 3).

(b) Let E = [0,∞). Then μ(� ,υ) = |� – υ| on E is an m-metric.

Definition 3 ([19]) Let E be a nonempty set. Assume that a function μ : E × E → R
+

satisfies the following conditions:
(1) � = υ if and only if μ(� ,� ) = μ(� ,υ) = (υ,υ);
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(2) μ� ,υ ≤ μ(� ,υ) for all � , υ ∈ E;
(3) μ(� ,υ) = μ(υ,� ) for all � , υ ∈ E;
(4) there exists a real number s ≥ 1 such that for all � , υ , κ ∈ E we have

(
μ(� ,υ) – μ� ,υ

) ≤ s
[(

μ(� ,κ) – μ� ,κ
)

+
(
μ(κ,υ) – μκ,υ

)]
– μ(κ,κ).

The number s is called the coefficient of the mb-metric space. The pair (E,μ) is
called an mb-metric space.

Definition 4 ([10]) Let (E,μ) be an m-metric space. Then:
(1) A sequence {�η} in an m-metric space (E,μ) converges to a point � ∈ E if and only

if

lim
η→∞

(
μ(�η,� ) – μ�η ,�

)
= 0.

(2) A sequence {�η} in an m-metric space (E,μ) is called m-Cauchy sequence if

lim
η,j→∞

(
μ(�η,�j) – μ�η ,�j

)
and lim

η,j→∞
(
μ′

�η ,�j
– μ�η ,�j

)

exist (and are finite).
(3) An m-metric space (E,μ) is said to be complete if every m-Cauchy sequence {�η}

converges to a point � ∈ E, such that

lim
η→∞

(
μ(�η,� ) – μ�η ,�

)
= 0 and lim

η→∞
(
μ′

�η ,� – μ�η ,�
)

= 0.

Definition 5 ([13]) Let E be a nonempty set and ⊥ be a binary relation defined on E × E.
Then (E,⊥) is said to be an orthogonal set (in short, O-set) if there exists �0 ∈ E, such that

(∀υ ∈ E,�0 ⊥ υ) or (∀υ ∈ E,υ ⊥ �0).

The element �0 is called an orthogonal element. An orthogonal set may have more than
one orthogonal element.

Example 2 ([13]) Let E = [4,∞]. Define � ⊥ υ if there exists � ≤ υ . Then by putting
�0 = 4, (E,⊥) is an O-set.

Definition 6 ([11]) Let (E,⊥) be an O-set. A sequence {�η} is called an orthogonal se-
quence if

(∀η ∈ N,�η ⊥ �η+1) or (∀η ∈N,�η+1 ⊥ �η).

Definition 7 ([13]) A mapping T : E → E is orthogonal continuous (or ⊥-continuous) in
� ∈ E if for each O-sequence {�η}η∈N ∈ E such that �η → � , T(�η) → T(� ). Also T is
said to be ⊥-continuous on E if T is ⊥-continuous at each � ∈ E.
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Example 3 ([13]) Let E = [0, 1). Suppose that

� ⊥ υ ⇔
{

� ≤ υ ≤ 1
6 ,

� = 0,

}

is an orthogonal metric space with μ(� ,υ) = �+υ
2 . If we take orthogonal sequence �η = η

2
for all η ≥ 1, then it converges to some point that does not lie in E when η → 0. So (E,⊥,μ)
is not a complete metric but if we take � = [0, 3

4 ) and take an orthogonal subsequence of
�η , which is �ηz ≤ 3

4 for all η ≥ 1 or we take a subsequence �ηz = 1
η

for all η ≥ 1 then it
converges to 0 ∈ [0, 3

4 ] when η → ∞. So we know that the orthogonal Cauchy sequence
is convergent if its subsequence is convergent. Hence the orthogonal Cauchy sequence
converges and therefore (E,⊥,μ) is an orthogonally complete metric space.

Definition 8 ([13]) Let (E,⊥, d) be an orthogonal metric space. Then X is said to be or-
thogonally complete if every Cauchy O-sequence is convergent.

Definition 9 ([13]) Let (E,⊥) be an O-set. A mapping T : E → E is said to be ⊥-preserving
if T� ⊥ Tυ whenever � ⊥ υ . Also T : E → E is said to be weakly ⊥-preserving if T� ⊥
Tυ or Tυ ⊥ T� whenever � ⊥ υ .

Example 4 ([13]) Let E = [0, 1), and σ⊥ : E × E → [0,∞) be defined by

σ⊥(� ,υ) = |� – υ|2 +
[
max{� ,υ}]2 for all � ,υ ∈ E.

Define � ⊥ υ if �υ ≤ max{�
4 , υ

4 }. Then E is not complete but it is an orthogonally com-
plete metric space. Let � ⊥ υ and �υ ≤ �

4 . If {�z} is an arbitrary Cauchy O-sequence in
� , then there exists a subsequence {�zη } of {�z} such that �zη = 0 for all η or there exists
a subsequence {�zη } of {�z} such that �zη ≤ 1

4 for all η. It follows that {�zη } converges to
a � ∈ [0, 1). On the other hand, we know that every Cauchy sequence with a convergent
subsequence is convergent. It follows that {Ez} is convergent. Let T : E → E be a mapping
defined by

T(� ) =

{
�
4 ,� ≤ 1

4 ,
0,� > 1

4 .

}

Also, � ⊥ υ and �υ ≤ �
4 and so � = 0 or υ ≤ 1

4 . We have the following cases:

(a) � = 0 and υ ≤ 1
4 . Then T(� ) = 0 and T(υ) = υ

4 .
(b) � = 0 and υ > 1

4 . Then T(� ) = T(υ) = 0.
(c) υ ≤ 1

4 and � ≤ 1
4 . Then T(υ) = υ

4 and T(� ) = �
4 .

(d) υ ≤ 1
4 and � > 1

4 . Then T(υ) = υ
4 and T(� ) = 0.

Each case implies that T(� )T(υ) ≤ T(� )
4 . Hence T is ⊥-preserving.

Also, one can see that T(� ) – T(υ) ≤ 1
4 |� –υ|. Hence T is a ⊥-contraction. But T is not

a contraction. Otherwise, for two points 1
4 and 2

3 and for all 0 < c < 1 we have T( 1
4 )–T( 2

3 ) ≤
c| 1

4 – 2
3 |, which is a contradiction.
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Let {�η} be an arbitrary O-sequence in � which converges to � ∈ E. Since T is a ⊥-
contraction, for each η ∈N we have

T(�η) – T(� ) ≤ 1
4
|�η – � |.

So T is ⊥-continuous. But it can be easily seen that T is not continuous.

2 Main results
We will start this section with the definition of an m⊥-metric space, but first we introduce
the following notations, which would be helpful during the proof.

Notation 2 (1) σ⊥� ,υ = min{σ⊥(� ,� ),σ⊥(υ,υ)}.
(2) σ ′

⊥� ,υ = max{σ⊥(� ,� ),σ⊥(υ,υ)}.

Definition 10 Let E be a nonempty set. A function σ⊥ : E × E → R
+ is called an orthog-

onal m⊥-metric on the orthogonal set (E,⊥) if the following conditions are satisfied:
(σ⊥1) � = υ if and only if σ⊥(� ,� ) = σ⊥(� ,υ) = σ⊥(υ,υ);
(σ⊥2) σ⊥� ,υ ≤ σ⊥(� ,υ) for all � , υ ∈ E;
(σ⊥3) σ⊥(� ,υ) = σ⊥(υ,� ) for all � , υ ∈ E;
(σ⊥4) there exists a real number s ≥ 1 such that for all � , υ , κ ∈ E with � ⊥ κ ⊥ υ we

have

(
σ⊥(� ,υ) –σ⊥� ,υ

) ≤ s
[(

σ⊥(� ,κ) –σ⊥� ,κ
)

+
(
σ⊥(κ,υ) –σ⊥κ,υ

)]
–σ⊥(κ,κ).

The pair (E,σ⊥) is called an orthogonal m⊥-metric space.

Definition 11 Let (E,σ⊥) be an orthogonal m⊥-metric space with the coefficient s ≥ 1.
Then:

(1) An orthogonal sequence {�η} in an m⊥-metric space (E,σ⊥) converges to a point
� ∈ E if and only if

lim
η→∞

(
σ⊥(�η,� ) – σ⊥�η ,�

)
= 0.

(2) An orthogonal sequence {�η} in E is said to be m⊥-Cauchy sequence if and only if

lim
η,j→∞

(
σ⊥(�η,�j) – σ⊥�η ,�j

)
and lim

η,j→∞
(
σ ′

⊥�η ,�j
– σ⊥�η ,�j

)
,

exist and are finite.
(3) An orthogonal m⊥-metric space E is said to be orthogonally complete if every

m⊥-Cauchy sequence {�η} converges to a point � ∈ E, such that

(
lim

η→∞
(
σ⊥(�η,� ) – σ⊥�η ,�

)
= 0 and lim

η→∞
(
σ ′

⊥�η ,� – σ⊥�η ,�
)

= 0
)

.

Definition 12 Let (E,σ⊥) be an orthogonal m⊥-metric space. Then T : E → E is said to
be orthogonally continuous (or ⊥-continuous at � ∈ E if for each O-sequence {�η} in E
with σ⊥(�η,� ) → 0, we have σ⊥(T�η, T� ) → 0. Also, T is said to be ⊥-continuous on
E if T is ⊥-continuous at each � ∈ E.
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Definition 13 Let (E,σ⊥) be an orthogonal m⊥-metric space with coefficient s ≥ 1. Then
E is said to be orthogonally complete (or O-complete) if every Cauchy O-sequence is con-
vergent in E.

Theorem 1 Let (E,σ⊥) be an O-complete m⊥-metric space with coefficient s ≥ 1 and T :
E → E be ⊥-preserving, and ⊥-continuous and satisfy the following condition:

σ⊥(T� , Tυ) ≤ zσ⊥(� ,υ) for all � ,υ ∈ E with � ⊥ υ, (2.1)

where z ∈ [0, 1). Then T has a unique fixed point � ∈ E and σ⊥(� ,� ) = 0.

Proof By the definition of orthogonality, there exists �0 ∈ E such that (∀υ ∈ E,�0 ⊥ υ)
or (∀υ ∈ E,υ ⊥ �0). It follows that �0 ⊥ T�0 or T�0 ⊥ �0. Let �1 = T�0, �2 = T�1,
�3 = T�2, �4 = T�3, . . . ,�η+1 = T�η , for all η ∈ N. Since T is ⊥-preserving, {�η} is O-
sequence. Then by (2.1), we get

σ⊥(�η,�η+1) = σ⊥(T�η–1, T�η) ≤ zησ⊥(�0,�1)

for all η ∈ N. For any two positive integers j > η, we have

σ⊥(�η,�j) ≤ σ⊥(T�η–1, T�j–1)

≤ zσ⊥(�η–1,�j–1)

≤ zσ⊥
(
zσ⊥(�η–2,�j–2)

)

≤ z2σ⊥(�η–2,�j–2)

...

≤ zησ⊥(�0,�j–η).

Hence

σ⊥(�η,�j) – σ⊥�η ,�j

≤ zη
(
sσ⊥(�0,�1) + sσ⊥(�1,�j–η)

)

≤ zη
(
sσ⊥(�0,�1) + s2σ⊥(�1,�2) + s2σ⊥(�2,�j–η)

)

≤ zη
(
sσ⊥(�0,�1) + s2σ⊥(�1,�2) + · · · + sj–ησ⊥(�j–η–1,�j–η)

)

≤ zη
(
sσ⊥(�0,�1) + zηs2zσ⊥(�0,�1) + · · · + zηsj–η–1zj–1σ⊥(�0,�1)

)

≤ szη
(
1 + sz + (sz)2 + · · · + · · · )σ⊥(�0,�1)

=
szη

1 – sz
σ⊥(�0,�1).

Since z ∈ [0, 1) and s > 0, it follows from the above inequality that

σ⊥(�η,�j) – σ⊥�η ,�j → 0 as η, j → ∞.
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Similarly,

σ ′
⊥(�η,�j) – σ⊥�η ,�j → 0 as η, j → ∞

and so σ⊥�η ,� → 0 as η → ∞. Hence we have σ⊥(�η,� ) → 0 as η → ∞. σ⊥(� ,� ) = 0 =
σ⊥�η ,� . Thus {�η} is an m⊥-Cauchy sequence in E. Since E is O-complete, there exists
� ∈ E such that

σ⊥(�η,� ) – σ⊥�η ,� → 0 as η → ∞.

Now we show that E is a fixed point of T in E.

σ⊥(� , T� ) ≤ lim
η→∞ sup

(
σ⊥(� ,�η)

)
+ lim

η→∞ sup
(
σ⊥(�η, T� )

)

= lim
η→∞ supσ⊥(�η, T� )

= lim
η→∞ supσ⊥(T�η–1, T� )

≤ lim
η→∞ sup zσ⊥(�η–1,� )

and by (σ⊥4) we have

σ⊥(� , T� )

≤ lim
η→∞ sup z

[(
σ⊥(�η–1, T� ) – σ⊥�η–1,T�

)
+

(
σ⊥(T� ,� ) – σ⊥T� ,�

)]

– σ⊥(T� , T� )

≤ zσ⊥(T� ,� ).

So

σ⊥(� , T� ) = 0,

0 ≤ σ⊥(T� , T� ) ≤ zσ⊥(� ,� ) = 0.

Thus

σ⊥(T� , T� ) = σ⊥(� , T� ) = σ⊥(� ,� ).

By (σ⊥1), we get T� = � . Hence � is a fixed point of T .
To prove the uniqueness property of fixed point, let υ ∈ E be another fixed point of T .

Then we have Tη� = � , Tηυ = υ for all η ∈ N. By the choice of �0 in the first part of the
proof, we obtain

[�0 ⊥ � and �0 ⊥ υ] or [� ⊥ �0 and υ ⊥ �0].

Since T is ⊥-preserving, we have

[
Tη�0 ⊥ Tη� and Tη�0 ⊥ Tηυ

]
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or

[
Tη� ⊥ Tη�0 and Tηυ ⊥ Tη�0

]

for all η ∈ N. Thus

σ⊥(� ,υ) = σ⊥
(
Tη� , Tηυ

) ≤ zσ⊥(� ,υ) < σ⊥(� ,υ),

which implies that

σ⊥(� ,υ) = 0

and so

� = υ.

Finally, we show that if � is a fixed point then σ⊥(� ,υ) = 0. Assume that � is a fixed
point of T . Then

σ⊥(� ,� ) = σ⊥
(
Tη� , Tηυ

) ≤ zσ⊥(� ,� ) < σ⊥(� ,� ),

that is, σ⊥(� ,� ) = 0. �

Example 5 Let E = [0, 10], and σ⊥ : E × E →R
+ be given by

σ⊥(� ,υ) = |� – υ|2

for all � , υ ∈ E. Define the binary relation ⊥ on E by � ⊥ υ if �υ ≤ 4� . Then (E,σ⊥) is
an O-complete m⊥-metric space. Define the mapping T : E → E by

T(� ) =

⎧
⎨

⎩

�
4 , 0 ≤ � ≤ 4,

0, 4 < � ≤ 10.

Let � ⊥ υ . Without loss of generality, we may assume that �υ ≤ 4� . Then the following
cases are satisfied:

(a) If � = 0 and 0 ≤ υ ≤ 4, then T(� ) = 0 and T(υ) = υ
4 .

(b) If � = 0 and 4 < υ ≤ 10, then T(� ) = T(υ) = 0.
(c) If 0 ≤ υ ≤ 1 and 0 ≤ � ≤ 4, then T(υ) = υ

4 and T(� ) = �
4 .

(d) If 0 ≤ υ ≤ 1 and 4 < � ≤ 10, then T(υ) = υ
4 and T(� ) = 0.

These cases imply that T(� )T(υ) ≤ 4T(� ). Hence T is ⊥-preserving.
Also, one can see that |T(� ) – T(υ)|2 ≤ 1

16 |� – υ|2 for all � , υ ∈ E with � ⊥ υ . Hence
T is a ⊥-contraction with z = 1

16 . But T is not a contraction. Otherwise, for two points 19
5

and 28
5 and for all 0 < c < 0.25 we have |T( 19

5 ) – T( 28
5 )|2 ≤ c| 19

5 – 28
5 |2.

Let {�η} be an arbitrary O-sequence in E such that {�η} converges to � ∈ E. Since T is
a ⊥-contraction, for each η ∈N we have

∣∣T(�η) – T(� )
∣∣2 ≤ 1

16
|�η – � |2.
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As η goes to infinity, T is ⊥-continuous, but it can be easily seen that T is not continuous.
Therefore all the conditions of Theorem 1 are satisfied. Hence we can conclude that T has
a unique fixed point in E, that is, a point 0.

Theorem 2 Let (E,σ⊥) be an O-complete m⊥-metric space with coefficient s ≥ 1 and T :
E → E be ⊥-preserving, ⊥-contraction and ⊥-continuous and satisfy

σ⊥(T� , Tυ) ≤ z
[
σ⊥(� , T� ) + σ⊥(υ, Tυ)

]
for all � ,υ ∈ E with � ⊥ υ, (2.2)

where z ∈ [0, 1
s ). Then T has a unique fixed point � ∈ E and σ⊥(� ,� ) = 0.

Proof By the definition of orthogonality, there exists �0 ∈ E such that (∀υ ∈ E,�0 ⊥ υ)
or (∀υ ∈ E,υ ⊥ �0). It follows that �0 ⊥ T�0 or T�0 ⊥ �0. Let �1 = T�0, �2 = T�1,
�3 = T�2, �4 = T�3, . . . ,�η+1 = T�η , for all η ∈ N. Since T is ⊥-preserving, {�η} is an
O-sequence. Then by (2.2), we get

σ⊥(�η,�η+1) = σ⊥(T�η–1, T�η) ≤ z
[
σ⊥(�η–1, T�η–1) + σ⊥(�η, T�η)

]

= z
[
σ⊥(�η–1,�η) + σ⊥(�η,�η+1)

]
(2.3)

for all η ∈ N. σ⊥(�η,�η+1) ≤ zσ⊥(�η–1,�η) + zσ⊥(�η,�η+1), which implies σ⊥(�η,
�η+1) ≤ ησ⊥(�η–1,�η), where k = z

1–z < 1 as z ∈ [0, 1
s ). By repeating this process, we get

σ⊥(�η,�η+1) ≤ kησ⊥(�0,�1).

So limη→∞ σ⊥(�η,�η+1) = 0. By (2.3), for any two natural numbers j > η,

σ⊥(�η,�j) ≤ σ⊥(T�η–1, T�j–1)

≤ z
[
σ⊥(�η–1, T�η–1) + σ⊥(�j–1, T�j–1)

]

= z
[
σ⊥(�η–1,�η) + σ⊥(�j–1,�j)

]

and so limη→∞ σ⊥(�η,�j) = 0. Thus, for every ξ > 0, we can find a natural number η0 such
that σ⊥(�η,�η+1) < ξ

2 and σ⊥(�j,�j+1) < ξ

2 for all η, j > η0. Therefore, it follows that

σ⊥(�η,�j) ≤ z
[
σ⊥(�η–1,�η)+σ⊥(�j–1,�j)

]
< z

[
ξ

2
+

ξ

2

]
<

ξ

2
+

ξ

2
= ξ for all η, j > η0,

and σ⊥(�η,�j) → 0 as η, j → ∞. Hence

σ⊥(�η,�j) – σ⊥�η ,�j < ξ for all η, j > η0.

Now for all natural numbers η, j, we have

σ⊥(�η,�η) = σ⊥(T�η–1, T�η–1)

≤ z
[
σ⊥(�η–1, T�η–1) + σ⊥(�η–1, T�η–1)

]

= z
[
σ⊥(�η–1,�η) + σ⊥(�η–1,�η)

]



Uddin et al. Advances in Difference Equations        (2021) 2021:159 Page 10 of 15

≤ 2zσ⊥(�η–1,�η) → 0 as η → ∞

and so σ⊥(�η,�η) → 0, which implies that

σ (�η,�j) – σ⊥�η ,�j < ξ for all η, j > η0.

Thus {�η} is an orthogonal m⊥-Cauchy sequence in E and

lim
η,j→∞σ⊥(�η,�j) – σ⊥�η ,�j = 0.

Thus {�η} is an m⊥-Cauchy sequence in E. Since E is O-complete, there exists � ∈ E such
that

σ⊥(�η,� ) – σ⊥�η ,� → 0 as η → ∞,

σ⊥(� ,� ) = 0 = σ⊥� ,T� .

Now we show that � is a fixed point of T in E:

σ⊥(� , T� ) ≤ lim
η→∞ sup

(
σ⊥(� ,�η)

)
+ lim

η→∞ sup
(
σ⊥(�η, T� )

)

= lim
η→∞ supσ⊥(�η, T� )

≤ lim
η→∞ sup

[
z
(
σ⊥(�η–1, T�η–1) + σ⊥(� , T� )

)]

≤ lim
η→∞ sup zσ⊥(�η–1,�η) + lim

η→∞ sup zσ⊥(� , T� )

≤ zσ⊥(� , T� ).

So

σ⊥(� , T� ) = 0,

0 ≤ σ⊥(T� , T� ) ≤ 2zσ⊥(� ,� ) = 0.

Thus we have

σ⊥(T� , T� ) = σ⊥(� , T� ) = σ⊥(� ,� ).

By (σ⊥1), we get T� = � . Hence � is a fixed point of T .
To prove the uniqueness property of fixed point, let υ ∈ E be another fixed point of T .

Then we have Tη� = � , Tηυ = υ for all η ∈ N. By the choice of �0 in the first part of the
proof, we obtain

[�0 ⊥ � and �0 ⊥ υ] or [� ⊥ �0 and υ ⊥ �0].

Since T is ⊥-preserving, we have

[
Tη�0 ⊥ Tη� and Tη�0 ⊥ Tηυ

]
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or

[
Tη� ⊥ Tη�0 and Tηυ ⊥ Tη�0

]

for all η ∈ N. Thus

σ⊥(� ,υ) = σ⊥
(
Tη� , Tηυ

)

≤ z
[
σ⊥(� , T� ) + σ⊥(υ, Tυ)

]

= z
[
σ⊥(� ,� ) + σ⊥(υ,υ)

]
= 0,

which implies that

σ⊥(� ,υ) = 0

and so

� = υ.

Finally, we show that if � is a fixed point then σ⊥(� ,υ) = 0. Assume that � is a fixed
point of T . Then

σ⊥(� ,� ) = σ⊥
(
Tη� , Tη�

)

≤ z
[
σ⊥(� , T� ) + σ⊥(� , T� )

]

= 2zσ⊥(� , T� )

= 2zσ⊥(� ,� ),

that is, σ⊥(� ,� ) = 0. �

Theorem 3 Let (E,σ⊥) be any O-complete m⊥-metric space with coefficient s ≥ 1 and T :
E → E be ⊥-preserving, and ⊥-continuous mapping satisfying the following conditions:

σ⊥(T� , Tυ) ≤ z max
{
σ⊥(� ,υ),σ⊥(� , T� ),σ⊥(υ, Tυ

}
(2.4)

for all � , υ ∈ E, where z ∈ [0, 1
s ). Then T has a unique fixed point � ∗ ∈ E and

σ⊥(� ∗,� ∗) = 0.

Proof By the definition of orthogonality, there exists �0 ∈ E such that (∀υ ∈ E,�0 ⊥ υ)
or (∀υ ∈ E,υ ⊥ �0). It follows that �0 ⊥ T�0 or T�0 ⊥ �0. Let �1 = T�0, �2 =
T�1, . . . ,�η+1 = T�η for all η ∈ N. Since T is ⊥-preserving, {Eη} is an O-sequence. Then
by (2.4), we have

σ⊥(�η+1,�η) = σ⊥(T�η, T�η–1)

≤ z max
{
σ⊥(�η,�η–1),σ⊥(�η, T�η),σ⊥(�η–1, T�η–1)

}

= z max
{
σ⊥(�η,�η–1),σ⊥(�η,�η+1),σ⊥(�η–1,�η)

}
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= z max
{
σ⊥(�η,�η–1),σ⊥(�η,�η+1)

}
.

If max{σ⊥(�η,�η–1),σ⊥(�η,�η+1)} = σ⊥(�η+1,�η), then, from the above inequality, we
obtain σ⊥(�η+1,�η) ≤ zσ⊥(�η+1,�η) < σ⊥(�η+1,�η), which is a contradiction. Therefore,
we must have max{σ⊥(�η,�η–1),σ⊥(�η,�η+1)} = σ⊥(�η,�η–1) and again from the above
inequality, we have

σ⊥(�η+1,�η) ≤ zσ⊥(�η,�η–1).

Repeating this process, we obtain

σ⊥(�η+1,�η) ≤ zησ⊥(�1,�0)

for all η ≥ 0. Thus

σ⊥(�η,�j) – σ⊥�η ,�j

≤ zη
(
sσ⊥(�0,�1) + sσ⊥(�1,�j–η)

)

≤ zη
(
sσ⊥(�0,�1) + s2σ⊥(�1,�2) + s2σ⊥(�2,�j–η)

)

≤ zη
(
sσ⊥(�0,�1) + s2σ⊥(�1,�2) + · · · + sj–ησ⊥(�j–η–1,�j–η)

)

≤ zη
(
sσ⊥(�0,�1) + zηs2zσ⊥(�0,�1) + · · · + zηsj–η–1zj–1σ⊥(�0,�1)

)

≤ szη
(
1 + sz + (sz)2 + · · · + · · · )σ⊥(�0,�1)

=
szη

1 – sz
σ⊥(�0,�1).

Since z ∈ [0, 1
s ) and s > 0, it follows from the above inequality that

σ⊥(�η,�j) – σ⊥�η ,�j → 0 as η, j → ∞.

Similarly,

σ ′
⊥(�η,�j) – σ⊥�η ,�j → 0 as η, j → ∞

and so σ⊥�η ,� → 0 as η → ∞. Hence we have σ⊥(�η,� ) → 0 as η → ∞. σ⊥(� ,� ) = 0 =
σ⊥�η ,� . Thus {�η} is an m⊥-Cauchy sequence in E. Since E is O-complete, there exists
� ∈ E such that

σ⊥(�η,� ) – σ⊥�η ,� → 0 as η → ∞.

Now we show that � is a fixed point of T in E:

σ⊥(� , T� ) ≤ lim
η→∞ sup

(
σ⊥(� ,�η)

)
+ lim

η→∞ sup
(
σ⊥(�η, T� )

)

= lim
η→∞ supσ⊥(�η, T� )

= lim
η→∞ supσ⊥(T�η–1, T� )
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≤ lim
η→∞ sup

[
zσ⊥(�η–1,� ),σ⊥(�η–1, T�η–1),σ⊥(� , T� )

]

≤ lim
η→∞ sup zσ⊥(�η–1,� ), lim

η→∞ sup zσ⊥(�η–1,�η), lim
η→∞ sup zσ⊥(� , T� )

≤ zσ⊥(� , T� ).

So

σ⊥(� , T� ) = 0,

0 ≤ σ⊥(T� , T� ) ≤ z max
{
σ⊥(� ,� ),σ⊥(� , T� ),σ⊥(� , T� )

}
= σ⊥(� ,� ) = 0.

Thus

σ⊥(T� , T� ) = σ⊥(� , T� ) = σ⊥(� ,� ).

By (σ⊥1), we get T� = � . Hence � is a fixed point of T .
To prove the uniqueness property of fixed point, let υ∗ ∈ E be another fixed point of T .

Then we have Tη� ∗ = � ∗, Tηυ∗ = υ∗ for all η ∈N. By the choice of �0 in the first part of
the proof, we obtain

[
�0 ⊥ � ∗ and �0 ⊥ υ∗] or

[
� ∗ ⊥ �0 and υ∗ ⊥ �0

]
.

Since T is ⊥-preserving, we have

[
Tη�0 ⊥ Tη� ∗ and Tη�0 ⊥ Tηυ∗]

or

[
Tη� ∗ ⊥ Tη�0 and Tηυ∗ ⊥ Tη�0

]

for all η ∈ N. Hence we get

σ⊥
(
� ∗,υ∗) = σ⊥

(
Tη� ∗, Tηυ∗) ≤ z max

{
σ⊥

(
� ∗,υ∗),σ⊥

(
� ∗, T� ∗),σ⊥

(
υ∗, Tυ∗)}

= z max
{
σ⊥

(
� ∗,υ∗),σ⊥

(
� ∗,� ∗),σ⊥

(
υ∗,υ∗)}

= zσ⊥
(
� ∗,υ∗)

< σ⊥
(
� ∗,υ∗),

which is a contradiction. Therefore, we must have σ⊥(� ∗,υ∗) = 0, that is, � ∗ = υ∗. Thus
if a fixed point of T exists then it is unique. �

3 An application to integral equation
In this section, we endeavor to apply Theorem 1 to investigate the existence and unique-
ness of solution of the Fredholm integral equation. Consider the space E = C(I) of contin-
uous functions defined on I = [0, 1] with the m⊥-metric given by

σ⊥
(
� (t),υ(t)

)
= sup

t∈[a,b]

(∣
∣∣
∣
� (t) + υ(t)

2

∣
∣∣
∣

)
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for all � , υ ∈ C(I). This space can also be equipped with an orthogonal given by � , υ ∈
C(I), � ⊥ υ ⇔ � ≤ υ . Now, we consider the following Fredholm type integral equation:

� (t) =
∫ 1

0
G

(
t, s,� (t)

)
ds for t, s ∈ [0, 1], (3.1)

where G ∈ C([0, 1],R).
Then (E,σ⊥) is an orthogonal complete m⊥-metric space.
Now, we are going to state and prove our result.

Theorem 4 Assume that, for all � , υ ∈ C([0, 1],R),

∣∣G
(
t, s,� (t)

)
+ G

(
t, s,υ(t)

)∣∣ ≤ z
∣∣� (t) + υ(t)

∣∣, for all t, s ∈ [0, 1],

where z ∈ [0, 1). Then the integral equation (3.1) has a unique solution.

Proof Define T : E → E by

T� (t) =
∫ 1

0
G

(
t, s,� (t)

)
ds, for all t, s ∈ [0, 1].

Observe that existence of a fixed point of the operator T is equivalent to the existence of
a solution of the integral equation (3.1). Now, for all � , υ ∈ E, we have

σ⊥(T� , Tυ) =
∣
∣∣
∣
T� (t) + Tυ(t)

2

∣
∣∣
∣ =

∣
∣∣
∣

∫ 1

0

(
G(t, s,� (t)) + G(t, s,υ(t))

2

)
ds

∣
∣∣
∣

≤
∫ 1

0

∣∣
∣∣

(
G(t, s,� (t)) + G(t, s,υ(t))

2

)∣∣
∣∣ds

≤ z
∫ 1

0

∣∣∣
∣
� (t) + υ(t)

2

∣∣∣
∣ds

≤ z sup
t∈[a,b]

(
� (t) + υ(t)

2

)∫ 1

0
ds

≤ zσ⊥(� ,υ).

Thus the condition (2.1) is satisfied. Therefore, all the conditions of Theorem 1 are satis-
fied. Hence the operator has a unique fixed point, which means that the Fredholm integral
equation (3.1) has a unique solution. This completes the proof. �

4 Conclusion and future work
In this article, we have introduced the concept of orthogonal m⊥-metric space and proved
some fixed point theorems in this space. Furthermore, we have obtained results that ex-
tend and improve certain comparable results in the existing literature. Eventually, our re-
sults lead to the existence and uniqueness of solutions for Fredholm integral equations. As
future directions of the studies on the introduced new space, new fixed point results can
be investigated for the non-unique fixed points of self-mappings. More precisely, geomet-
ric properties of the set Fix(T) can be investigated as a future problem for a self-mapping
T on an orthogonal m⊥-metric space in the case of non-unique fixed point.
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