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Abstract
In the present article, we propose and analyze a new mathematical model for a
predator–prey system including the following terms: a Monod–Haldane functional
response (a generalized Holling type IV), a term describing the anti-predator behavior
of prey populations and one for an impulsive control strategy. In particular, we
establish the existence condition under which the system has a locally asymptotically
stable prey-eradication periodic solution. Violating such a condition, the system turns
out to be permanent. Employing bifurcation theory, some conditions, under which
the existence and stability of a positive periodic solution of the system occur but its
prey-eradication periodic solution becomes unstable, are provided. Furthermore,
numerical simulations for the proposed model are given to confirm the obtained
theoretical results.
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1 Introduction
Natural phenomena such as porous medium problems and periodically oscillatory waves
that we usually observe in science, engineering or some other fields can be explained via
mathematical models which are often formulated by means of a differential equation or
a system of differential equations [1–3]. However, a relationship between predators and
preys in an ecological system is considered as one of the most interesting natural phenom-
ena because it is a type of the most fundamental biological systems in nature. Due to its
universal existence and importance, the dynamical behaviors of predator–prey systems
have been studied by a great number of scholars [4–7]. Interactions between predator
and prey populations are extensively exploited for arranging economically damaging prey
(pest) species in an eco-friendly community. In 1925–1926, Lotka and Volterra described
the relationship between predators and their preys in an ecological system by establishing
a system of two autonomous ordinary differential equations, namely the Lotka–Volterra
model. The Lotka–Volterra system is the simplest model of predator–prey interactions

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-021-03324-w
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-021-03324-w&domain=pdf
http://orcid.org/0000-0003-0715-470X
http://orcid.org/0000-0001-7053-0072
http://orcid.org/0000-0002-7249-2687
mailto:sekson.s@sci.kmutnb.ac.th


Sirisubtawee et al. Advances in Difference Equations        (2021) 2021:160 Page 2 of 26

based on linear per capita growth rates [8, 9]. Some recent developments of complex
predator–prey systems, which have been investigated in depth by many researchers to ob-
tain their dynamics, are as follows. For example, Tiwari et al. [10] proposed and analyzed
a mathematical model for a predator–prey system with multiple Allee effect acting on
the growth rate of the prey population. Haldar et al. [11] formulated a delay-induced eco-
epidemic model using a reconstructed Leslie–Gower-type growth rate and then analyzed
the dynamics of the system with infection in the prey population. A predator–prey model
with the additive Allee effect and the fear effect in the prey was presented and investigated
by Lai et al. [12]. The bifurcation analysis of the model was explored by considering on the
impact of these two effects. To further grasp other crucial predator–prey mathematical
models in detail, one can refer to [13–19].

It has been found that the prey adopts several mechanisms for overcoming the predation
pressure in their interactions. Two such techniques, which are used in the predator–prey
models for an ecological system but not well scrutinized in the literature, are group de-
fense and anti-predator behavior in prey [20]. Firstly, group defense [21–24] is a term used
to describe the phenomenon whereby predation is decreased or even prevented altogether
because of the enlarged ability of the prey to maintain its own survival via better defending
or disguising itself when a sufficiently large number of prey appear. The explorations for
predator–prey models with group defense were considered by many researchers such as in
[24–27]. Particularly, Freedman and Wolkowicz introduced a general model of predator–
prey interactions in which the prey behaves a group defense and there is no mutual in-
terference among predators. Their model consisting of autonomous ordinary differential
equations of generalized Gauss-type can be expressed as follows:

x′(t) = xg(x, k) – yp(x),

y′(t) = y
(
–d + q(x)

)
,

x(0) ≥ 0, y(0) ≥ 0,

(1)

where x(t) and y(t) represent the density of prey and predator populations, respectively.
The functions g , p and q are assumed to be continuously differentiable and the parameters
d and k are positive constants. More details as regards system (1) can be found in [21].

Secondly, preys can sometimes jeopardize their predators. This leads to role reversals in
predators and prey, namely anti-predator behaviors. Several authors studied the compli-
cated dynamics of predator–prey systems with anti-predator behaviors such as in [20, 28–
33]. In particular, an anti-predator behavior of prey [20] is a counterattacking approach in
which adult preys attack the juvenile predators to decrease their future predation circum-
stances. Biological experiments demonstrate that anti-predator behaviors of prey popu-
lations are characterized as (i) morphological changes or behavior changes [34, 35], or
(ii) attacking their predators [29, 36]. Normally, juvenile preys escaping from predation
and becoming adult can counterattack and kill juvenile predators, but do not consume
them so that a number of preys probably killed in the future are reduced [37]. There-
fore, this cyclic dominance is very significant for predator–prey interactions because there
are adverse effects on the biological control strategy. Here are some recent examples of
studies of predator–prey models with anti-predator behaviors. In 2017, Sun et al. [38] in-
troduced a predator–prey model equipped with anti-predator behaviors occurring only
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when the population size of the prey is greater than a threshold. They concluded that a
large anti-predator rate induces the prey population to persist but whether we have co-
existence between prey and predator populations depends upon the threshold activating
anti-predator behavior. In 2019, Prasad et al. [20] analyzed the predator–prey model with
an anti-predator behavior in prey to overcome the loss in predator populations via cater-
ing the predators with some additional food. However, we are quite interested in studying
the effect of anti-predator behavior on the predator–prey system proposed by Tang and
Xiao [30]. Their mathematical model is expressed as

x′(t) = rx
(

1 –
x
k

)
– yΨ (x),

y′(t) = μyΨ (x) – dy – ηxy,
(2)

in which the functional response Ψ (x) is specifically chosen to be the simplified Monod–
Haldane functional response Ψ (x) = βx

a+x2 , where β is the capture rate of the predator and
a is the reciprocal of group defense in prey. The remaining parameters in system (2) are
described as follows: r is the intrinsic growth rate of the prey, k is the prey carrying ca-
pacity, μ is the conversion fraction of prey into predator and d is the natural death rate
of the predator population. The parameter η is the rate of anti-predator behavior of prey
to the predator population in such a way that this behavior reduces the growth of the
predator population because the prey population is not mainly fed on the predator pop-
ulation. All of the parameter values in system (2) are assumed to be positive. Actually,
there are many types of functional response Ψ (x) indicating the change in the density of
prey attacked per unit of time per predator when the prey density changes. Some interest-
ing functional responses, widely used in predator–prey models, are Holling type, sigmoid
type and Beddington–DeAngelis functional responses. More details as regards the func-
tional responses can be found in [23, 39–41]. However, the generalized Holling type IV
functional response or the Monod–Haldane function [5, 42–45]

Ψ (x) =
βx

a + bx + x2 , (3)

where β , a, b are positive constants, will be selected to use in our work due to its non-
monotonicity.

Next, we adopt the predator–prey model with anti-predator behavior (2) via replacing
Ψ (x) with the generalized Holling type IV functional response in Eq. (3). As mentioned,
we obtain the following autonomous system:

x′(t) = rx
(

1 –
x
k

)
–

βxy
a + bx + x2 ,

y′(t) =
μβxy

a + bx + x2 – dy – ηxy.
(4)

System (4) can be thought of as adding the anti-predator term, –ηxy, to the predator–prey
model with prey group defense in Eq. (1) from which the functions g , p and q are identified
as

g(x, k) = r
(

1 –
x
k

)
, p(x) =

βx
a + bx + x2 , and q(x) = μp(x). (5)
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The functions g , p and q in (5) satisfy the conditions (2)–(4) given in [21], respectively,
with M =

√
a.

Defining Q(x) = q(x) – ηx, we obtain

Q′(x) =
–1

(a + bx + x2)2

[
ηx4 + 2bηx3 +

(
ηb2 + 2aη + βμ

)
x2 + 2abηx + a(aη – βμ)

]
. (6)

Using Descartes’ rule of signs, if aη < βμ, then the equation Q′(x) = 0 has exactly one
positive real root denoted by x = M∗. It is not difficult to see that Q(x), x ∈ [0,∞) has a
global maximum at M∗. Now, we must assume for system (4) that Q(M∗) > d because
of otherwise the predator cannot survive on the prey at any density. The predator–prey
system (4) will be a part of our impulsive problem proposed later on.

The remaining parts of this paper are organized as follows. In Sect. 2, an impulsive dif-
ferential system based on the predator–prey model (4) is formulated. The meaning of the
state variables and the parameters of the system is given there. Section 3 provides the the-
oretical outcomes of the impulsive model including the basic results, the extinction and
permanence and the bifurcation and existence of positive periodic solution obtained us-
ing the Floquet theory of an impulsive system and bifurcation theory. Numerical results
showing that the system can exhibit several interesting phenomena are given in Sect. 4.
We discuss and conclude our results in the last section.

2 Impulsive model formulation
Over the last few decades, impulsive differential equations have been found in almost ev-
ery region of applied science and have been studied in many fields such as impulsive birth
[46], impulsive vaccination [47], chemotherapeutic treatment of disease [48] and popula-
tion ecology [49, 50]. In general, they are exploited to describe the phenomena depending
upon steep or instantaneous changes which make the differential system more intractable.
A large number of researchers have suggested to apply an impulsive control strategy [50–
54] to a modified predator–prey model for obtaining some desired results such as a reduc-
tion in pest populations in a farm. This approach is known as integrated pest management
(IPM), which is a suitable method for manipulating pests (or preys) with a combination
of biological, cultural, physical and chemical tools so that one can minimize economic,
health and environmental risks [51, 55]. Periodically releasing natural enemies or spray-
ing pesticides at a different fixed time is regarded as a certain example of the IPM.

The present section is devoted to formulating an impulsive mathematical model for
predator–prey model (4) in which the generalized Holling type IV functional response
and the anti-predator behavior are inserted. Our impulsive differential system with a fixed
moment can be expressed as

x′(t) = rx
(

1 –
x
k

)
–

βxy
a + bx + x2 , t �= nT ,

y′(t) =
μβxy

a + bx + x2 – dy – ηxy, t �= nT ,

�x(t) = –p1x(t), t = nT ,

�y(t) = –p2y(t) + p3, t = nT ,

(7)
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Table 1 Descriptive list of the variables and parameters appearing in system (7)

Parameter Dimension Description

t time Time
x biomass Prey density
y biomass Predator density
r time–1 Prey intrinsic growth rate
k biomass Prey carrying capacity
β biomass · time–1 Capture rate of the predator
a biomass2 Reciprocal of group defense in prey
b biomass Reciprocal of group defense in prey associated with the prey x
μ – Conversion fraction of the prey into the predator
d time–1 Natural death rate of the predator
η biomass–1 · time–1 Rate of anti-predator behavior of the prey
p1 – Proportional constant of the prey which dies due to the pesticide
p2 – Proportional constant of the predator which dies due to the pesticide
p3 biomass Density of the predators released each time

where �x(t) = x(t+) – x(t), �y(t) = y(t+) – y(t) and T is the impulsive period for releas-
ing predators in order to remove target pests, prevent harmless pests from extinction and
drive target pests to extinction, or control target pests at acceptably low level to avoid an
increase of pest population due to an economic loss. The notations x(t+) and y(t+) are the
right limits representing the values of x and y immediately after a pulse at time t. The
number n ∈ N = {1, 2, 3, . . .} and p1, p2, p3 are nonnegative constants with 0 ≤ p1, p2 < 1,
p3 ≥ 0. Here, p1 and p2 represent the proportional constants of the prey and predator, re-
spectively which are eradicated by using chemical poisons in agriculture or by harvesting.
The constant p3 is the density of predators released each time. Consequently, the last two
equations of Eq. (7) can be considered as the IPM of the system. The values of the param-
eters r, k, β , μ, a, b, d, η are assumed to be positive. The descriptive list of the variables
and parameters presented in system (7) is shown in Table 1. To the best of the authors’
knowledge, the impulsive system (7) has never been proposed and investigated before so
the dynamics of the system remains unclear, and falls within the scope of our exploration.

3 Analysis of the model
With a view on the use of the generalized Holling type IV functional response, the anti-
predator behavior and the impulsive IPM appearing in the impulsive predator–prey sys-
tem (7), we are interested in analyzing some important properties of the system in this
section.

3.1 Fundamental results
In the following section, we will show that a solution of system (7) is nonnegative and
bounded above for sufficient large t. In addition, the system has a prey-eradication peri-
odic solution.

Let R+ = [0,∞), R2
+ = {z = (x, y) ∈R

2 : x, y ∈R+}. Let F = (F1, F2) denote the map defined
by the right hand of system (7). Then a function V : R+ × R

2
+ → R+ is said to belong to

class V0 if [56]:
(i) V is continuous in (t, z) ∈ (nT , (n + 1)T] ×R

2
+ and for each z ∈R

2
+, n ∈ N,

lim
(t,v)→(nT+,z)

V (t, v) = V
(
nT+, z

)
(8)

exists.
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(ii) V is locally Lipschitzian in z.

Definition 3.1 Let V ∈ V0. Then, for (t, z) ∈ (nT , (n+1)T]×R
2
+, the upper right derivative

of V (t, z) with respect to the impulsive differential system (7) is defined as

D+V (t, z) = lim
h→0+

sup
1
h
[
V

(
t + h, z + hF(t, z)

)
– V (t, z)

]
. (9)

The solution z(t) = (x(t), y(t)) of system (7) is a piecewise continuous function with
the properties that z : R+ → R

2
+ is continuous on (nT , (n + 1)T], n ∈ N, and z(nT+) =

limt→nT+ z(t) exists. The smoothness properties of F ensure the global existence and
uniqueness of solutions of system (7). More details can be found in [57]. Note from
system (7) that dx(t)

dt = 0 and dy(t)
dt = 0 whenever x(t) = 0 and y(t) = 0 for t �= nT and

x(nT+) = (1 – p1)x(nT) and y(nT+) = (1 – p2)y(nT) + p3 where 0 ≤ p1, p2 < 1, p3 ≥ 0. Then
we have the following lemma.

Lemma 3.1 Suppose z(t) = (x(t), y(t)) is a solution of system (7) with z(0+) ≥ 0. Then z(t) ≥
0 for all t ≥ 0. Moreover, z(t) > 0 for all t ≥ 0 if z(0+) > 0.

Proof The proof by contradiction is here performed. Suppose that there exists t̂ ∈ (0, T]
such that x(t) ≥ 0, y(t) ≥ 0, x(t̂) = 0, x′(t̂) < 0 and y(t̂) ≥ 0 for all t ∈ (0, t̂). From the first
equation of system (7), we have x′(t̂) = 0, which is a contradiction. Furthermore, we also
obtain

x(t) = x
(
0+)

exp

(∫ t

0

[
r
(

1 –
x(τ )

k

)
–

βy(τ )
a + bx(τ ) + x(τ )2

]
dτ

)
, (10)

where t ∈ (0, nT]. Hence, x(t) ≥ 0 if x(0+) ≥ 0 and x(t) > 0 if x(0+) > 0 for t ∈ (0, T]. The
proof for y(t) can be conducted in a like manner. �

Next, we show that all solutions of system (7) are uniformly ultimately bounded.

Lemma 3.2 There exists a constant M > 0 such that x(t) ≤ M and y(t) ≤ M for each solu-
tion z(t) = (x(t), y(t)) of system (7) for sufficient large t.

Proof Let V (t, z(t)) = μx(t) + y(t). It is clear that V ∈ V0. Choosing a positive constant c
such that

0 < c ≤ d, (11)

and using the upper right derivative of V (t, z(t)) along a solution of system (7), we obtain
for t �= nT

D+V |(7) + cV = μ
dx
dt

+
dy
dt

+ cμx + cy

= rμx
(

1 –
x
k

)
–

μβxy
a + bx1 + x2

1
+

μβxy
a + bx1 + x2

1

– dy – ηxy + cμx + cy (12)
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= (r + c)x –
rx2

k
+ (c – d)y – ηxy

≤ M0,

where M0 ≡ k(r+c)2

4r . Hence, D+V ≤ –cV + M0 for t �= nT .
For t = nT ,

V
(
nT+)

= μx
(
nT+)

+ y
(
nT+)

= (1 – p1)μx(nT) + (1 – p2)y(nT) + p3

≤ μx(nT) + y(nT) + p3

= V (nT) + p3.

(13)

Hence, for t ∈ (nT , (n + 1)T] and tk = kT , k = 1, 2, . . . , n, Lemma 2.2 of [58] implies that

V (t) ≤ V (0)e–ct +
∫ t

0
M0e–c(t–s) ds + p3

∑

0<tk<t

e
∫ t

tk
–c dτ

= V (0)e–ct +
M0

c
(
1 – e–ct) + p3

(
e–c(t–T) – e–c(t–(n+1)T)

1 – ecT

)

→ M0

c
≡ M as t → ∞.

(14)

Therefore, V (t, z) is ultimately bounded by M > 0. In consequence, x(t) ≤ M and y(t) ≤
M when t is sufficiently large. In other words, the positive solution z(t) of system (7) is
uniformly ultimately bounded. This completes the proof. �

The following comparison theorem on impulsive differential systems [57] will be used
for system (7).

Lemma 3.3 Suppose V ∈ V0. Assume that

D+V (t, z) ≤ g
(
t, V (t, z)

)
, t �= nT ,

V
(
t, z

(
t+)) ≤ hn

(
V (t, z)

)
, t = nT ,

(15)

where g : R+ × R+ → R is continuous in (nT , (n + 1)T] × R+, and for u ∈ R+, n ∈ N,
lim(t,v)→(nT+,u) g(t, v) = g(nT+, u) exists and hn : R+ →R+ is nondecreasing.

Let R(t) be the maximal solution of the scalar impulsive differential equation

u′(t) = g
(
t, u(t)

)
, t �= nT ,

u
(
t+)

= hn
(
u(t)

)
, t = nT ,

u
(
0+)

= u0,

(16)

existing on [0,∞). Then V (0+, z(0+)) ≤ u0 implies that V (t, z(t)) ≤ R(t) for all t ≥ 0, where
z(t) is any solution of system (7).

Let r(t) be the minimal solution of (16) existing on [0,∞), and assume that the inequal-
ities in (15) are reversed and hn is nonincreasing. Then V (t, z(t)) ≥ r(t) for all t ≥ 0.
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Note that if we have some smoothness conditions on g to ensure the existence and
uniqueness of solutions for (16), then R(t) and r(t) are exactly the unique solution of (16).

Consider the following system:

y′(t) = –dy(t), t �= nT ,

�y(t) = –p2y(t) + p3, t = nT ,

y
(
0+)

= y0 ≥ 0,

(17)

which is a subsystem of system (7). Some important properties of subsystem (17) are given
as follows. It is not difficult to see that

ỹ(t) =
p3 exp(–d(t – nT))

1 – (1 – p2) exp(–dT)
(18)

is a positive solution of system (17) for t ∈ (nT , (n + 1)T], n ∈N with

ỹ
(
0+)

=
p3

1 – (1 – p2) exp(–dT)
. (19)

Since

y(t) =
(

y0 –
p3

1 – (1 – p2) exp(–dT)

)
exp(–dt) + ỹ(t) (20)

is the solution of system (17) for t ∈ (nT , (n + 1)T] where n ∈ N, we have the following
lemma.

Lemma 3.4 System (17) has a positive periodic solution ỹ(t) with a period T . For every
solution y(t) of (17) with y0 ≥ 0, we have |y(t) – ỹ(t)| → 0 as t → ∞. Therefore, system (7)
has a prey-eradication periodic solution

(
0, ỹ(t)

)
=

(
0,

p3 exp(–d(t – nT))
1 – (1 – p2) exp(–dT)

)
, (21)

for t ∈ (nT , (n + 1)T], and ỹ(nT+) = ỹ(0+) = p3
1–(1–p2) exp(–dT) , n ∈N.

3.2 Extinction and permanence
Before studying the permanence of system (7), we will give the condition ensuring the
locally asymptotical stability of the prey-eradication periodic solution (0, ỹ(t)). Next, the
condition for the permanence of the system will be given.

Theorem 3.1 Let (x(t), y(t)) be any solution of system (7). Then (0, ỹ(t)) is locally asymp-
totically stable provided that

rT –
βp3(1 – exp(–dT))

ad(1 – (1 – p2) exp(–dT))
< ln

(
1

1 – p1

)
. (22)

Proof The local stability of the periodic solution (0, ỹ(t)) in Eq. (21) may be determined by
scrutinizing the behavior of small amplitude perturbations of the solution. Defining

x(t) = u(t), y(t) = v(t) + ỹ(t), (23)



Sirisubtawee et al. Advances in Difference Equations        (2021) 2021:160 Page 9 of 26

then we may express

(
u(t)
v(t)

)

= �(t)

(
u(0)
v(0)

)

, 0 ≤ t < T , (24)

where �(t) is the fundamental solution matrix satisfying

�′(t) =

(
r – β

a ỹ(t) 0
( μβ

a – η)ỹ(t) –d

)

�(t), (25)

and �(0) = I , the 2 × 2 identity matrix. Hence,

�(t) =

(
exp(

∫ t
0 (r – β

a ỹ(s)) ds) 0
∗ exp(–dt)

)

. (26)

The term (∗) will not be used in further calculation; then there is no need to calculate the
exact expression for (∗) in the above equation.

The linearization of the last two equations of system (7) becomes

(
u(nT+)
v(nT+)

)

=

(
1 – p1 0

0 1 – p2

)(
u(nT)
v(nT)

)

. (27)

According to the Floquet theory [58] of an impulsive differential equation, if both eigen-
values of the matrix

M =

(
1 – p1 0

0 1 – p2

)

�(T) (28)

have absolute values less than one, then the periodic solution (0, ỹ(t)) is locally asymptot-
ically stable.

Let λ1 and λ2 denote the eigenvalues of M . We have

λ1 = (1 – p2) exp (–dT) (29)

and

λ2 = (1 – p1) exp

(∫ T

0

(
r –

β

a
ỹ(t)

)
dt

)

= (1 – p1) exp

(
rT –

p3β(1 – exp(–dT))
ad(1 – (1 – p2) exp(–dT))

)
.

(30)

It is obvious that |λ1| < 1. However, |λ2| < 1 if and only if

rT –
βp3(1 – exp(–dT))

ad(1 – (1 – p2) exp(–dT))
< ln

(
1

1 – p1

)
. (31)

Hence, the solution (0, ỹ(t)) of system (7) is locally asymptotically stable when the condi-
tion (31) holds. This completes the proof. �
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Definition 3.2 System (7) is said to be permanent if there exist positive constants m, M
and T0 such that each positive solution z(t) = (x(t), y(t)) of system (7) with the initial values
x(0+) > 0 and y(0+) > 0 satisfies m ≤ x(t) ≤ M and m ≤ y(t) ≤ M for all t ≥ T0. Note that
m, M are independent of the initial values but T0 may depend on the initial values.

Theorem 3.2 System (7) is permanent if the condition

rT –
βp3(1 – exp(–dT))

ad(1 – (1 – p2) exp(–dT))
> ln

(
1

1 – p1

)
(32)

holds.

Proof Suppose that z(t) = (x(t), y(t)) is a solution of system (7) with x(0+) > 0, y(0+) > 0.
Then Lemma 3.2 guarantees that z(t) is bounded above when t is large enough. Conse-
quently, there is a constant M > ra

β
> 0 such that x(t) ≤ M and y(t) ≤ M when t is suffi-

ciently large.
Since μβxy

a+bx1+x2
1

≥ 0, system (7) implies that

y′(t) ≥ –D0y(t), t �= nT ,

y
(
t+)

= (1 – p2)y(t) + p3, t = nT ,

y
(
0+)

= y0 ≥ 0,

(33)

where D0 ≡ d + ηM > 0. Consider the comparison system

s′(t) = –D0s(t), t �= nT ,

s
(
t+)

= (1 – p2)s(t) + p3, t = nT ,

s
(
0+)

= y0.

(34)

We see that, for t ∈ (nT , (n + 1)T], n ∈N,

s̃(t) =
p3 exp(–D0(t – nT))

1 – (1 – p2) exp(–D0T)
(35)

is a positive solution of the comparison system (34) with

s̃
(
0+)

=
p3

1 – (1 – p2) exp(–D0T)
. (36)

Therefore, the solution of the comparison system (34) is

s(t) =
(

y0 –
p3

1 – (1 – p2) exp(–D0T)

)
exp(–D0t) + s̃(t), (37)

for t ∈ (nT , (n + 1)T], n ∈N and s(t) → s̃(t) as t → ∞. Then we have

s(t) > s̃(t) – ε2, (38)
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for some ε2 > 0 and for all sufficiently large t. According to [57], we have y(t) ≥ s(t) by
Lemma 3.3 and hence, when t is large enough,

y(t) ≥ p3 exp(–D0T)
1 – (1 – p2) exp(–D0T)

– ε2 ≡ m2 > 0. (39)

Then we only need to find a constant m1 > 0 such that x(t) ≥ m1 for all t large enough.
Following the two steps below, we will obtain the desired result.

Step 1. From condition (32), we can equivalently get

(1 – p1) exp

[
rT –

βp3(1 – exp(–dT))
ad(1 – (1 – p2) exp(–dT))

]
> 1. (40)

Based on condition (40), one can choose m3 > 0 and ε1 > 0 sufficiently small such that
m3 < min{k, ad

μβ
}, D1 ≡ d – μβm3

a > 0 and


 ≡ (1 – p1)

× exp

[(
r –

r
k

m3 –
β

a
ε1

)
T –

β

a

(
p3(1 – exp(–D1T))

D1(1 – (1 – p2) exp(–D1T))

)]
> 1.

(41)

We will prove that x(t) < m3 cannot hold for all t ≥ 0. Otherwise, from the second and
fourth equations of system (7) and the fact that x2 + bx ≥ 0 and ηx ≥ 0 due to x(t) ≥ 0, we
consequently have

y′(t) ≤ y(t)
(

μβx(t)
a

– d – ηx(t)
)

≤ y(t)
(

μβx(t)
a

– d
)

< y(t)
(

μβm3

a
– d

)

= –D1y(t), t �= nT ,

y
(
t+)

= (1 – p2)y(t) + p3, t = nT .

(42)

From Lemmas 3.3 and 3.4, we obtain y(t) ≤ w(t) and w(t) → w̃(t) as t → ∞, where w(t)
is the solution of the following system:

w′(t) = –D1w(t), t �= nT ,

w
(
t+)

= (1 – p2)w(t) + p3, t = nT ,

w
(
0+)

= y
(
0+)

,

(43)

and

w̃(t) =
p3 exp(–D1(t – nT))

1 – (1 – p2) exp(–D1T)
, t ∈ (

nT , (n + 1)T
]
. (44)

Therefore, there exists a bound T1 > 0 such that

y(t) ≤ w(t) < w̃(t) + ε1 (45)
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and

x′(t) = x(t)
(

r
(

1 –
x(t)

k

)
–

βy(t)
a + bx(t) + x2(t)

)

> x(t)
(

r
(

1 –
m3

k

)
–

β

a
(
w̃(t) + ε1

)
)

, t �= nT ,

x
(
t+)

= (1 – p1)x(t), t = nT ,

(46)

for t ≥ T1.
Let k ∈N and kT ≥ T1. Integrating (46) on (nT , (n + 1)T], n ≥ k, we obtain

x
(
(n + 1)T

)
> x

(
nT+)

exp

[∫ (n+1)T

nT

(
r –

rm3

k
–

β

a
(
w̃(t) + ε1

)
)

dt
]

= x(nT)(1 – p1) exp

[
rT –

r
k

m3T

–
β

a
ε1T –

β

a

(
p3(1 – exp(–D1T))

D1(1 – (1 – p2) exp(–D1T))

)]

= x(nT)
,

(47)

where 
 is expressed in Eq. (41). Then x((n + k)T) > x(nT)
k → ∞ as k → ∞, which
contradicts the boundedness of x(t). Hence, there exists a time t1 > 0 such that x(t1) ≥ m3.

Step 2. If x(t) ≥ m3 for all t ≥ t1, then our aim is attained. Otherwise, let t∗ = inft>t1{t :
x(t) < m3}. Next, we consider two possible cases for t∗.

Case 1. t∗ = n1T , n1 ∈N. Then x(t) ≥ m3 for t ∈ [t1, t∗] and

(1 – p1)m3 ≤ (1 – p1)x
(
t∗) = x

(
t∗+)

< m3. (48)

Choose n2, n3 ∈N such that

n2T > T2 ≡ 1
–D1

ln

(
ε1

M + p3

)
,

(1 – p1)n2 exp(n2
1T)
n3 > (1 – p1)n2 exp
(
(n2 + 1)
1T

)

n3 > 1,

(49)

where


1 ≡ r –
rm3

k
–

βM
a

< 0. (50)

Now we let T ′ = n2T + n3T and claim that t2 ∈ (t∗, t∗ + T ′] must exist for which x(t2) > m3.
Otherwise, considering system (43) with w(t∗+) = y(t∗+), we have

w(t) =
(

w
(
t∗+)

–
p3

1 – (1 – p2) exp(–D1T)

)
exp

(
–D1

(
t – t∗)) + w̃(t), (51)

for t ∈ (nT , (n + 1)T], where n1 ≤ n ≤ n1 + n2 + n3.
Using w(t) – w̃(t) < (y(t∗+) – p3) exp(–D1(t – t∗)) and the first inequality of condition (49),

we then have

∣∣w(t) – w̃(t)
∣∣ < (M + p3) exp

(
–D1

(
t – t∗)) < ε1 (52)



Sirisubtawee et al. Advances in Difference Equations        (2021) 2021:160 Page 13 of 26

and

y(t) ≤ w(t) < w̃(t) + ε1, (53)

for t∗ + n2T ≤ t ≤ t∗ + T ′. This implies that (46) holds for t∗ + n2T ≤ t ≤ t∗ + T ′. So as in
Step 1 we have

x
(
t∗ + T ′) ≥ x

(
t∗ + n2T

)

n3 , (54)

where 
 is defined in Eq. (41).
From system (7), we have for t ∈ [t∗, t∗ + n2T]

x′(t) ≥ x(t)
(

r –
rm3

k
–

βM
a

)
= 
1x(t), t �= nT ,

x
(
t+)

= (1 – p1)x(t), t = nT ,
(55)

where 
1 is defined in Eq. (50). Integrating (55) on [t∗, t∗ + n2T], we obtain

x
(
t∗ + n2T

) ≥ x
(
t∗+)

exp

(∫ t∗+n2T

t∗

1 dt

)
= x

(
t∗)(1 – p1) exp(
1n2T). (56)

Since (1 – p1) ≥ (1 – p1)n2 , n2 ∈N and x(t∗) ≥ m3, we have

x
(
t∗ + n2T

) ≥ m3(1 – p1)n2 exp(n2
1T). (57)

From the second condition of (49) along with the inequalities in (54) and (57), we have

x
(
t∗ + T ′) ≥ m3(1 – p1)n2 exp(n2
1T)
n3 > m3, (58)

which contradicts the assumption that x(t) ≤ m3 for all t ∈ (t∗, t∗ + T ′]. Thus, there must
exist t2 ∈ (t∗, t∗ + T ′] so that x(t2) > m3.

Next, we let t̃ = inft>t∗{t : x(t) > m3}. Since x(t) is left continuous and x(t+) = (1 – p)x(t) ≤
x(t) when t = nT , we can conclude that x(t) ≤ m3 for t ∈ (t∗, t̃) and x(t̃) = m3. For t ∈ (t∗, t̃),
we assume that t ∈ (t∗ + (l – 1)T , t∗ + lT] where l ∈N and l ≤ n2 + n3. From (55) we have

x(t) ≥ x
(
t∗+)

(1 – p1)l–1 exp
(
(l – 1)
1T

)
exp

(

1

(
t –

(
t∗ + (l – 1)T

)))

= x
(
t∗)(1 – p1)l exp

(
(l – 1)
1T

)
exp

(

1

(
t –

(
t∗ + (l – 1)T

)))

≥ m3(1 – p1)l exp(l
1T)

≥ m3(1 – p1)n2+n3 exp
(
(n2 + n3)
1T

) ≡ m′
1.

(59)

Hence, we can conclude that x(t) ≥ m′
1 for t ∈ (t∗, t̃). For t > t̃, the same arguments can be

continued since x(t̃) ≥ m3. In consequence, when t is sufficiently large, we obtain x(t) ≥
m1 > 0.

Case 2. t∗ �= nT , n ∈ N. Then x(t) ≥ m3 for t ∈ [t1, t∗) and x(t∗) = m3. Suppose t∗ ∈
(n′

1T , (n′
1 + 1)T), n′

1 ∈ N. The following two possible cases for t ∈ (t∗, (n′
1 + 1)T) are consid-

ered.
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Case 2.1. x(t) ≤ m3 for all t ∈ (t∗, (n′
1 + 1)T). We claim that t′

2 ∈ [(n′
1 + 1)T , (n′

1 + 1)T + T ′]
must exist for which x(t′

2) > m3. Otherwise, considering system (43) with w((n′
1 + 1)T+) =

y((n′ + 1)T+), then we have

w(t) =
(

w
((

n′
1 + 1

)
T+)

–
p3

1 – (1 – p2) exp(–D1T)

)

× exp
(
–D1

(
t –

(
n′

1 + 1
)
T

))
+ w̃(t),

(60)

for t ∈ (nT , (n + 1)T] and n′
1 + 1 ≤ n ≤ n′

1 + 1 + n2 + n3.
Similarly to Case 1 of Step 2, we have

x
((

n′
1 + 1 + n2 + n3

)
T

) ≥ x
((

n′
1 + 1 + n2

)
T

)

n3 . (61)

Since x(t) ≤ m3 for t ∈ (t∗, (n′
1 + 1)T), (55) is true on [t∗, (n′

1 + 1 + n2)T]. Thus, we obtain

x
((

n′
1 + 1 + n2

)
T

) ≥ m3(1 – p1)n2 exp
(
(n2 + 1)
1T

)
. (62)

From the second condition of (49) along with the inequalities in (61) and (62), we thus
obtain

x
((

n′
1 + 1 + n2 + n3

)
T

) ≥ m3(1 – p1)n2 exp
(
(n2 + 1)
1T

)

n3 > m3. (63)

The contradiction now emerges.
Next, we let t̄ = inft>t∗{t : x(t) > m3}. For t ∈ (t∗, t̄), we have x(t) ≤ m3 and x(t̄) = m3. Now

we suppose for t ∈ (t∗, t̄) that t ∈ (n′
1T +(l′ –1)T , n′

1T + l′T) where l′ ∈N and l′ ≤ n2 +n3 +1.
From (55), we hence have

x(t) ≥ m3(1 – p1)l′–1 exp
(
l′
1T

)

≥ m3(1 – p1)n2+n3 exp
(
(n2 + n3 + 1)
1T

) ≡ m1,
(64)

where m1 < m′
1. So, x(t) ≥ m1 for t ∈ (t∗, t̄). For t > t̄, the same arguments can be applied

since x(t̄) ≥ m3. We consequently have x(t) ≥ m1 > 0 when t is large enough.
Case 2.2. There exists a time t ∈ (t∗, (n′

1 + 1)T) such that x(t) > m3. Let ť = inft>t∗{t : x(t) >
m3}. Therefore, x(t) ≤ m3 for t ∈ (t∗, ť) and x(ť) = m3. We see that (55) holds for t ∈ (t∗, ť).
Integrating (55) on (t∗, ť), we then have

x(t) ≥ x
(
t∗) exp

(

1

(
t – t∗)) ≥ m3 exp(
1T) > m1. (65)

The above arguments can be applied again for t > ť using the fact that x(ť) ≥ m3. Hence,
x(t) ≥ m1 for all t ≥ t1. In other words, x(t) ≥ m1 > 0 when t is sufficiently large.

Finally, we can choose m̂ = min{m1, m2} so that x(t), y(t) ≥ m̂ > 0. So, the system is per-
manent if condition (32) holds. The proof is now complete. �

Remark 3.1 Let

g(T) = rT –
βp3(1 – exp(–dT))

ad(1 – (1 – p2) exp(–dT))
– ln

(
1

1 – p1

)
. (66)
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Since g(0) = – ln ( 1
1–p1

) < 0, g(T) → ∞ as T → ∞ and

g ′′(T) =
βdp2p3 exp(–dT)(1 + (1 – p2) exp(–dT))

a(1 – (1 – p2) exp(–dT))3 > 0, (67)

g(T) = 0 has a unique positive root, denoted by Tmax. From Theorems 3.1 and 3.2 we know
that Tmax is a threshold. If T < Tmax, then the prey-eradication periodic solution (0, ỹ(t)) is
asymptotically stable. However, if T > Tmax, then system (7) is permanent.

3.3 Bifurcation and stability of positive periodic solution
In this section, we will investigate the existence of a nontrivial periodic solution to system
(7) near the prey-eradication periodic solution (0, ỹ(t)) via bifurcation. Such a positive pe-
riodic solution is stable when the prey-eradication loses its stability. To do this, we apply
Theorem 2 of [59] to system (7) by interchanging the state variables x(t), y(t) and giving a
new variable for the period T .

Letting x1(t) = y(t), x2(t) = x(t) and τ = T , system (7) consequently becomes

dx1(t)
dt

=
μβx1x2

a + bx2 + x2
2

– dx1 – η1x1x2, t �= nτ ,

dx2(t)
dt

= rx2

(
1 –

x2

k

)
–

βx1x2

a + bx2 + x2
2

, t �= nτ ,

�x1(t) = –p2x1(t) + p3, t = nτ ,

�x2(t) = –p1x2(t), t = nτ .

(68)

All notations used in this section are the same as those in [59]. Then

F1(x1, x2) ≡ μβx1x2

a + bx2 + x2
2

– dx1 – ηx1x2,

F2(x1, x2) ≡ rx2

(
1 –

x2

k

)
–

βx1x2

a + bx2 + x2
2

,

�1(x1, x2) ≡ (1 – p2)x1 + p3, �2(x1, x2) ≡ (1 – p1)x2,

ς (t) =
(
ỹ(t), 0

)T , X0 =
(
ỹ(τ0), 0

)T ,

(69)

where ỹ is defined in Eq. (18) with T = τ and where τ0 is the root of d′
0 ≡ 1–( ∂�2

∂x2
∂�2
∂x2

)(τ0,X0) =
0 in which � = (�1,�2)T is the flow associated to system (68). It will be notified in a later
step that τ0 = Tmax which is the positive root of g(T) = 0, where g(T) is defined in Eq. (66).

As defined above, we have

∂F1(ς (u))
∂x1

=
(

μβx2

a + bx2 + x2
2

– d – ηx2

)∣
∣∣
∣
ς (u)

= –d,

∂F1(ς (u))
∂x2

=
(

μβx1(a – x2
2)

(a + bx2 + x2
2)2 – ηx1

)∣
∣∣
∣
ς (u)

=
(

μβ

a
– η

)
ỹ(u) =

(
μβ

a
– η

)
p3 exp(–d(u – nτ ))

1 – (1 – p2) exp(–dτ )
,



Sirisubtawee et al. Advances in Difference Equations        (2021) 2021:160 Page 16 of 26

∂F2(ς (u))
∂x2

=
(

r
(

1 –
2x2

k

)
–

(
βx1(a – x2

2)
(a + bx2 + x2

2)2

))∣∣
∣∣
ς (u)

= r –
β

a

(
p3 exp(–d(u – nτ ))

1 – (1 – p2) exp(–dτ )

)
, (70)

∂2F2(ς (u))
∂x1x2

= –
(

β(a – x2
2)

(a + bx2 + x2
2)2

)∣∣
∣∣
ς (u)

= –
β

a
,

∂2F2(ς (u))
∂x2

2
=

(
–

2r
k

+
(

2βx1(ab + 3ax2 – x3
2)

(a + bx2 + x2
2)3

))∣∣
∣∣
ς (u)

=
2bβ ỹ(u)

a2 –
2r
k

=
2bβ

a2

(
p3 exp(–d(u – nτ ))

1 – (1 – p2) exp(–dτ )

)
–

2r
k

.

Next, we obtain the following terms involving the flow � = (�1,�2)T :

∂�1(τ0, X0)
∂τ

= ỹ′(τ0)|(τ0,X0) = –
dp3 exp(–d(τ0 – nτ ))
1 – (1 – p2) exp(–dτ )

∣∣∣
∣
(τ0,X0)

= –
dp3 exp(–dτ0)

1 – (1 – p2) exp(–dτ0)
< 0,

∂�1(τ0, X0)
∂x1

= exp

(∫ τ0

0

∂F1(ς (u))
∂x1

du
)

= exp(–dτ0) > 0,

∂�2(τ0, X0)
∂x2

= exp

(∫ τ0

0

∂F2(ς (u))
∂x2

du
)

= exp

(∫ τ0

0

(
r –

β ỹ(u)
a

)
du

)

= exp

(
rτ0 –

βp3(1 – exp(–dτ0))
ad(1 – (1 – p2) exp(–dτ0))

)

=
1

1 – p1
> 0,

(71)

∂�1(τ0, X0)
∂x2

=
∫ τ0

0
exp

(∫ τ0

υ

∂F1(ς (u))
∂x1

du
)(

∂F1(ς (υ))
∂x2

)

× exp

(∫ υ

0

∂F2(ς (u))
∂x2

du
)

dυ

=
(

μβ

a
– η

)∫ τ0

0
exp

(
–d(τ0 – υ)

)
ỹ(υ)

× exp

(∫ υ

0

(
r –

β ỹ(u)
a

)
du

)
dυ,

∂2�2(τ0, X0)
∂x1∂x2

=
∫ τ0

0
exp

(∫ τ0

υ

∂F2(ς (u))
∂x2

du
)(

∂2F2(ς (υ))
∂x1∂x2

)

× exp

(∫ υ

0

∂F2(ς (u))
∂x2

du
)

dυ

= –
β

a

∫ τ0

0
exp

(∫ τ0

0

(
r –

β ỹ(u)
a

)
du

)
dυ (72)
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= –
βτ0

a
exp

(
rτ0 –

βp3(1 – exp(–dτ0))
ad(1 – (1 – p2) exp(–dτ0))

)

= –
βτ0

a

(
1

1 – p1

)
< 0,

∂2�2(τ0, X0)
∂τ∂x2

=
∂F2(ς (τ0))

x2
exp

(∫ τ0

0

∂F2(ς (u))
∂x2

du
)

=
(

r –
β ỹ(τ0)

a

)
exp

(∫ τ0

0

(
r –

β ỹ(u)
a

)
du

)

=
1

1 – p1

(
r –

βp3 exp(–dτ0)
a(1 – (1 – p2) exp(–dτ0))

)
,

∂2�2(τ0, X0)
∂x2

2
=

∫ τ0

0
exp

(∫ τ0

υ

∂F2(ς (u))
∂x2

du
)(

∂2F2(ς (υ))
∂x2

2

)

× exp

(∫ υ

0

∂F2(ς (u))
∂x2

du
)

dυ

+
∫ τ0

0

[
exp

(∫ τ0

υ

∂F2(ς (u))
∂x2

du
)(

∂2F2(ς (υ))
∂x1∂x2

)]

×
[∫ υ

0
exp

(∫ υ

θ

∂F1(ς (u))
∂x1

du
)(

∂F1(ς (θ ))
∂x2

)

× exp

(∫ θ

0

∂F2(ς (u))
∂x2

du
)

dθ

]
dυ

=
∫ τ0

0
2
(

bβ ỹ(υ)
a2 –

r
k

)
exp

(∫ τ0

0

(
r –

β ỹ(u)
a

)
du

)
dυ

–
β

a

(
μβ

a
– η

)∫ τ0

0
exp

(∫ τ0

υ

(
r –

β ỹ(u)
a

)
du

)

×
[∫ υ

0
exp

(
–d(υ – θ )

)
ỹ(θ ) exp

(∫ θ

0

(
r –

β ỹ(u)
a

)
du

)
dθ

]
dυ

=
2

1 – p1

(
bβp3(1 – exp(–dτ0))

a2d(1 – (1 – p2) exp(–dτ0))
–

rτ0

k

)

–
β

a

(
μβ

a
– η

)∫ τ0

0
exp

(∫ τ0

υ

(
r –

β ỹ(u)
a

)
du

)

×
[∫ υ

0
exp

(
–d(υ – θ )

)
ỹ(θ ) exp

(∫ θ

0

(
r –

β ỹ(u)
a

)
du

)
dθ

]
dυ.

(73)

Consider

bβp3(1 – exp(–dτ0))
a2d(1 – (1 – p2) exp(–dτ0))

–
rτ0

k
=

b
a

[
rτ0 – ln

(
1

1 – p1

)]
–

rτ0

k

=
(

b
a

–
1
k

)
rτ0 –

b
a

ln

(
1

1 – p1

)
.

(74)

It is not difficult to see from (73) and (74) that ∂2�2(τ0,X0)
∂x2

2
< 0 if the condition

bk < a <
μβ

η
(75)

is true.
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In addition, we have

∂�1

∂x1
= 1 – p2,

∂�2

∂x2
= 1 – p1,

∂�1

∂x2
=

∂�2

∂x1
= 0.

(76)

Then we compute

d′
0 ≡ 1 –

(
∂�2

∂x2

∂�2

∂x2

)

(τ0,X0)

= 1 – (1 – p1) exp

(
rτ0 –

βp3(1 – exp(–dτ0))
ad(1 – (1 – p2) exp(–dτ0))

)
.

(77)

If d′
0 = 0, then there is only one positive value of τ0 satisfying the equation

rτ0 –
p3β(1 – exp(–dτ0))

ad(1 – (1 – p2) exp(–dτ0))
= ln

(
1

1 – p1

)
. (78)

Furthermore, we obtain

a′
0 ≡ 1 –

(
∂�1

∂x1

∂�1

∂x1

)

(τ0,X0)
= 1 – (1 – p2) exp(–dτ0) > 0 (79)

and

b′
0 ≡ –

(
∂�1

∂x1

∂�1

∂x2
+

∂�1

∂x2

∂�2

∂x2

)

(τ0,X0)

= –(1 – p2)
(

μβ

a
– η

)

×
∫ τ0

0
exp

(
–d(τ0 – υ)

)
ỹ(υ) exp

(∫ υ

0

(
r –

β ỹ(u)
a

)
du

)
dυ.

(80)

Since

∫ τ0

0
exp

(
–d(τ0 – υ)

)
ỹ(υ) exp

(∫ υ

0

(
r –

β ỹ(u)
a

)
du

)
dυ > 0, (81)

b′
0 < 0 provided that the condition (75) holds.
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Now, we compute

B ≡ –
∂2�2

∂x1∂x2

[
∂�1(τ0, X0)

∂τ
+

∂�1(τ0, X0)
∂x1

1
a′

0

∂�1

∂x1

∂�1(τ0, X0)
∂τ

]

×
(

∂�2(τ0, X0)
∂x2

)

–
∂�2

∂x2

[
∂2�2(τ0, X0)

∂τ∂x2
+

∂2�2(τ0, X0)
∂x1∂x2

1
a′

0

∂�1

∂x1

∂�1(τ0, X0)
∂τ

]

= –
∂�2

∂x2

[
∂2�2(τ0, X0)

∂τ∂x2
+

∂2�2(τ0, X0)
∂x1∂x2

1
a′

0

∂�1

∂x1

∂�1(τ0, X0)
∂τ

]

= –(1 – p1)
[

1
1 – p1

(
r –

βp3 exp(–dτ0)
a(1 – (1 – p2) exp(–dτ0))

)

+
∂2�2(τ0, X0)

∂x1∂x2

1
a′

0

∂�1

∂x1

∂�1(τ0, X0)
∂τ

]
.

(82)

Now, we know from the results obtained above that ∂2�2(τ0,X0)
∂x1∂x2

< 0, a′
0 > 0, ∂�1

∂x1
> 0, and

∂�1(τ0,X0)
∂τ

< 0. Next, we claim that r – βp3 exp(–dτ0)
a(1–(1–p2) exp(–dτ0)) > 0 so that one consequently obtains

B < 0. To verify the claim, we let

ϕ(t) = r –
βp3 exp(–dt)

a(1 – (1 – p2) exp(–dτ0))
. (83)

Then we have

ϕ′(t) =
dβp3 exp(–dt)

a(1 – (1 – p2) exp(–dτ0))
> 0. (84)

Thus, ϕ(t) is strictly increasing. In addition,

∫ τ0

0
ϕ(t) dt = rτ0 –

βp3(1 – exp(–dτ0))
ad(1 – (1 – p2) exp(–dτ0))

= ln

(
1

1 – p1

)
> 0.

(85)

Hence, we can conclude that ϕ(τ0) > 0 according to the computations as shown above.
Finally, we calculate

C ≡ –2
∂2�2

∂x1∂x2

(
–

b′
0

a′
0

∂�1(τ0, X0)
∂x1

+
∂�1(τ0, X0)

∂x2

)
∂�2(τ0, X0)

∂x2

–
∂2�2

∂x2
2

(
∂�2(τ0, X0)

∂x2

)2

+ 2
∂�2

∂x2

b′
0

a′
0

∂2�2(τ0, X0)
∂x1∂x2

–
∂�2

∂x2

∂2�2(τ0, X0)
∂x2

2

= 2
∂�2

∂x2

b′
0

a′
0

∂2�2(τ0, X0)
∂x1∂x2

–
∂�2

∂x2

∂2�2(τ0, X0)
∂x2

2

= 2(1 – p1)
b′

0
a′

0

∂2�2(τ0, X0)
∂x1∂x2

– (1 – p1)
∂2�2(τ0, X0)

∂x2
2

> 0.

(86)
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The above inequality is obtained via the fact that a′
0 > 0, ∂2�2(τ0,X0)

∂x1∂x2
< 0 and b′

0 < 0,
∂2�2(τ0,X0)

∂x2
2

< 0, which can be obtained using the condition (75). From the above notations,
we have the following lemma.

Lemma 3.5 (see [59]) If |1 – a′
0| < 1 and d′

0 = 0, then the following results are obtained.
(a) If BC �= 0, then one has a bifurcation. Specifically, one has a supercritical bifurcation

of a nontrivial periodic solution of system (68) if BC < 0 and a subcritical case if
BC > 0.

(b) If BC = 0, then one has an undetermined case.

Letting Tmax ≡ τ0, where τ0 satisfies Eq. (78) and using Lemma 3.5 with the condition
BC < 0, one can conclude that system (7) has a supercritical bifurcation when T > Tmax

and T is close to Tmax as stated in the following theorem.

Theorem 3.3 System (7) has a positive periodic solution if T > τ0 and T is close to τ0, where
τ0 satisfies Eq. (78) and the nontrivial periodic solution is supercritical case via bifurcation,
which means that the positive periodic solution is stable provided that the condition (75)
holds.

4 Numerical simulations
The algorithm for solving impulsive differential equations is based on well-known nu-
merical schemes [60–62] such as the spline approximation method, the θ -method, the
multistep method and the Runge–Kutta method. However, the adaptive step-size control
should be incorporated as a part of such methods because it can handle an impulsive dif-
ferential equation, considered as a stiff problem involving rapidly changing components
together with slowly changing ones, quite well. Here, numerical simulations for system
(7) are obtained using the built-in function ode15s [63] in MATLAB which is a variable-
order, variable step size and multistep solver based on the backward differentiation for-
mulas [64]. The entire time of investigation is partitioned into equal subintervals. Each of
the subintervals has length T (the impulsive period). The behavior of a solution for sys-
tem (7) is characterized right before a pulse and immediately after the pulse by exploiting
ode15s to numerically solve each subinterval of time. The information, evaluated at the
jump point or the last time of the current subinterval, is used to compute the right limit
of such a point. The right limit is then used as the initial condition of the next consecutive
subinterval. The process is repeated in a similar manner for the rest subintervals and is
terminated when we apply ode15s to perform numerical results for the last subinterval.
The obtained numerical simulations in this section will be carried out to confirm our the-
oretical outcomes reported in Sect. 3. Studying the consequences of the impulsive effect
to the dynamics of the impulsive prey-predator population model (7) will be done by the
numerical experiments through adjusting the values of p1, p2, p3 and T . Some parametric
values for system (7) are exactly taken from the literature [23, 30] but the others are appro-
priately estimated in order to satisfy the relevant conditions. The numerical simulations
are as follows.

Figure 1 displays the simulation results of the impulsive system of Eq. (7) with the pa-
rameter values r = 3.1, k = 2.067, β = 1.083, a = 1.031, b = 0.001, μ = 0.85, d = 0.3, η = 0.01.
Figure 1(a) shows the coexisting circumstance in which the prey and predator densities
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Figure 1 Time series simulations of the impulsive system in Eq. (7) using r = 3.1, k = 2.067, β = 1.083,
a = 1.031, b = 0.001, μ = 0.85, d = 0.3, η = 0.01: (a) without taking any impulsive control strategy
(p1 = p2 = p3 = 0) when (x(0), y(0)) = (0.5, 0.5) and T = 13; (b) with only releasing the predators
(p1 = p2 = 0,p3 = 0.8) when (x(0), y(0)) = (1, 1) and T = 0.8 < Tmax = 0.9; (c) with applying the IPM strategy
(p1 = 0.85,p2 = 0.2,p3 = 0.9) when (x(0), y(0)) = (1, 1) and T = 1 < Tmax = 1.335

are the periodic oscillations starting at (x(0), y(0)) = (0.5, 0.5). This is because the value
of the parameters p1, p2, p3 is all set to be zero, that is, any pest-management strategy
is not yet applied to the system. The following numerical experiments confirm the re-
sult of Theorem 3.1 indicating that the solution of system (7) locally asymptotically con-
verges to the prey-eradication periodic solution (0, ỹ(t)) as T < Tmax. When we simulate
the system with (x(0), y(0)) = (1, 1) and p1 = p2 = 0, p3 = 0.8 (in other words, there is only
a periodic releasing of the predators but without giving pesticide), then the solution tra-
jectory tends toward the oscillatory solution (0, ỹ(t)) when time passes long enough and
T = 0.8 < Tmax = 0.9. This phenomenon can be seen in Fig. 1(b). It can be observed from
Fig. 1(c) that the predator density y(t) oscillates in a stable periodic solution but the prey
population x(t) quickly reduces to zero. This prey-eradication periodic solution occurs
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Figure 2 The numerical simulation of the impulsive system in Eq. (7) tends toward the periodically oscillatory
solution (0, ỹ(t)) using r = 0.8, k = 0.5, β = 0.7, a = 0.3, b = 0.05, μ = 0.85, d = 0.85, η = 0.1, p1 = p2 = p3 = 0.5
when (x(0), y(0)) = (0.1, 0.5) and T = 2 < Tmax = 2.47: (a) the time series simulation of the prey density x(t)
approaching zero as t is sufficiently large; (b) the time series simulation of the predator density y(t)
approaching a positive periodic solution as t is large enough; (c) the trajectory simulation plotted on the
xy-plane

when we set p1 = 0.85, p2 = 0.2, p3 = 0.9, x(0) = y(0) = 1 and T = 1 < Tmax = 1.335 in the
simulation. According to the used parameter values for the last two simulations, one can
verify that condition (22) in Theorem 3.1 is satisfied.

In Fig. 2, the numerical simulation beginning with (x(0), y(0)) = (0.1, 0.5) of the impulsive
system of Eq. (7) locally asymptotically converges to the prey-eradication periodic solution
(0, ỹ(t)) when time sufficiently increases and T = 2 < Tmax = 2.47. The parameter values
used for this computation are r = 0.8, k = 0.5, β = 0.7, a = 0.3, b = 0.05, μ = 0.85, d = 0.85,
η = 0.1, p1 = p2 = p3 = 0.5. With this IPM, the density of prey x(t) converges asymptotically
to zero but the density of predators y(t) tends to a periodic oscillation of period T = 2.
This means that when t is large enough, the prey population tends to extinction, however,
the number of the predators changes in terms of the periodic oscillation. These obtained
results are in good agreement with Theorem 3.1 since the condition (22) in Theorem 3.1
holds.

Next, we utilize the same parameter values and initial condition as used in the simula-
tion for Fig. 2 except using T = 8 > Tmax = 2.47 to simulate the numerical solution of the
impulsive system (7). In consequence, the impulsive system with the use of this IPM is
permanent as shown in Fig. 3. In other words, the prey and predator densities of the sys-
tem are positively bounded as predicted in Theorem 3.2 because the condition (32) holds.
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Figure 3 The numerical simulation shows the permanence of the impulsive system in Eq. (7). Here, the
parameter values and the initial condition are exactly the same as used in Fig. 2 except T = 8 > Tmax = 2.47:
(a) the bounded time series simulation of the prey density x(t); (b) the bounded time series simulation of the
predator density y(t); (c) the trajectory simulation projected on the xy-plane

As a result, Figs. 3(a), (b) and (c) show the bounded time series of the prey density x(t),
the predator density y(t) and their trajectory projected on the xy-plane, respectively.

In order to verify Theorem 3.3 applied for system (7), we must select the values of T , k, β ,
a, b, μ, η to satisfy all of the conditions in Theorem 3.3. Specifically, one can choose the im-
pulsive period T such that T > Tmax and T is close to Tmax. In the final simulation, we here
use the same parameter values and initial condition as used in the simulation for Fig. 2
except using T = 2.7 > Tmax = 2.47. The numerical solution plotted in Fig. 4 shows that
the prey-eradication periodic solution (0, ỹ(t)) becomes unstable and then the preys and
predators can coexist, which this characterization is exhibited in terms of a sustained pos-
itive periodic oscillation when time passes and T = 2.7 > Tmax = 2.47. This phenomenon
allows the system to have a supercritical bifurcation, which can be used to control the
magnitude of the prey population.

5 Discussion and conclusions
We have studied the dynamical behaviors of the mathematical impulsive model for
the predator–prey system as proposed in Eq. (7). The impulsive system consists of the
predator–prey model in which the generalized Holling type IV functional response and
the anti-predator term are included and the impulsive control strategy concerning with
giving pesticide and releasing of predators. Firstly, we have shown that system (7) has a
positive solution which is uniformly ultimately bounded. Secondly, we have proved that
the prey-eradication periodic solution (0, ỹ(t)) is locally asymptotically stable provided
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Figure 4 The numerical simulation demonstrates the occurrence of a stable positive periodic solution of the
impulsive system in Eq. (7). Here, the parameter values and the initial condition are exactly the same as used
in Fig. 2 except T = 2.7 > Tmax = 2.47: (a) the time series simulation of the prey density x(t); (b) the time series
simulation of the predator density y(t); (c) the trajectory simulation plotted on the xy-plane

that the impulsive period T is less than the critical value Tmax, or equivalently the con-
dition (22) holds. Practically, if the impulsive control strategy in system (7) is selected to
push the preys to extinction, then we can determine the impulsive period T based on
the influences of spraying chemical pesticide and releasing natural predators such that
T < Tmax. Of course, an absolute eradication of the prey population is not suitable for a
real ecological system, so the effective prey-control practice should decrease the number
of preys in the system to acceptable levels. In contrast, system (7) is permanent (i.e., the
prey and predator populations are positively bounded) if T > Tmax. Profoundly, the system
can lose the stability of the prey-eradication periodic solution and have a positive periodic
solution when T > Tmax and T is close to Tmax. From the numerical experiments, we can
observe that the narrower duration of T results in the lower number of preys. Thirdly,
system (7) can undergo either supercritical or subcritical bifurcations via choosing the
values of the parameters in such a way that the sign of the discriminant BC in Lemma 3.5
changes. Finally, changing the functional response, the anti-predator term or the IPM in
system (7) could result in obtaining interesting and complicated dynamical behaviors of
the preys and predators.
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