
Duan and Xu Advances in Difference Equations        (2021) 2021:170 
https://doi.org/10.1186/s13662-021-03327-7

R E S E A R C H Open Access

Anti-periodic behavior for
quaternion-valued delayed cellular neural
networks
Zhenhua Duan1 and Changjin Xu2*

*Correspondence: xcj403@126.com
2Guizhou Key Laboratory of
Economics System Simulation,
Guizhou University of Finance and
Economics, Guiyang, 550004, P.R.
China
Full list of author information is
available at the end of the article

Abstract
In this manuscript, quaternion-valued delayed cellular neural networks are studied.
Applying the continuation theorem of coincidence degree theory, inequality
techniques and a Lyapunov function approach, a new sufficient condition that
guarantees the existence and exponential stability of anti-periodic solutions for
quaternion-valued delayed cellular neural networks is presented. The obtained results
supplement some earlier publications that deal with the anti-periodic solutions of
quaternion-valued neural networks with distributed delay or impulse or
state-dependent delay or inertial term. Computer simulations are displayed to check
the derived analytical results.
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1 Introduction
It is well known that cellular neural networks have widely been applied in many areas
such as optimization, associative memories, image processing, psychophysics, and adap-
tive pattern recognition [1–3]. Time delay is unavoidable in neural networks and it often
makes the networks lose their stability and even destroy the periodic behavior of net-
works [4–6]. Therefore it is necessary for us to investigate the dynamics of cellular neural
networks with delays. In recent years, many excellent works on stability, periodic solu-
tion, almost periodic solution, anti-periodic solution, pseudo almost periodic solution and
synchronization of cellular neural networks with delays have been reported. For example,
Wang et al. [7] investigated the global stability of periodic solution of cellular neural net-
works; Li and Wang [8] studied the almost periodic solutions of delayed cellular neural
networks; Aouiti et al. [9] analyzed the exponential stability of piecewise pseudo almost
periodic solution for neutral-type neural networks; Li and Xiang [10] dealt with the anti-
periodic solution of Cohen–Grossberg neural networks; Wang [11] handled the finite-
time synchronization of fuzzy delayed cellular neural networks. For more related studies,
one can see [12–19].

Complex-valued neural networks (CVNNs), which can be regarded as an extension of
real-valued neural networks (RVNNs), play an important role in characterizing the sig-
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nal and information of neural networks. In particular, CVNNs have potential applica-
tion in various waves such as light wave, sonic wave, electron wave and so on. In addi-
tion, quaternion-valued neural networks (QVNNs), which were proposed by Hamilton
[20], are extension form of RVNNs and CVNNs. The skew of a quaternion is denoted by
Q := {h = h0 + ih1 + jh2 + kh3}, where h0, h1, h2, h3 ∈ R and i, j, k satisfy the following rules:

ij = –ji = k, jk = –kj = i, ki = –ik = j, i2 = j2 = k2 = ijk = –1.

∀h ∈Q, we denote the conjugate of h as follows:

h∗ = h = h0 – ih∗
1 – jh∗

2 – kh∗
3.

The norm of h is given by

‖h‖ =
√

hh∗ =
√

(h0)2 +
(
h∗

1
)2 +

(
h∗

2
)2 +

(
h∗

3
)2.

QVNNs have been widely applied in spatial rotation, color night vision, image impression
of three dimension geometrical affine transformation, etc. [21–23]. Recently, some schol-
ars dealt with the dynamical behavior of QVNNs. For example, Tu et al. [23] studied the
stability issue of QVNNs with discrete and distributed delays, Qi et al. [24] discussed the
exponential input-to-state stability of QVNNs. Liu and Jian [25] analyzed the global dis-
sipativity of QVNNs with delays. For more related publications, one can see [22, 26–28].

The signal transmission of neural networks usually displays anti-periodic phenomenon.
Some researchers argued that anti-periodic solutions can effectively depict the dynam-
ical behavior of nonlinear differential equations [29–31]. In particular, the anti-periodic
solution of neural networks plays an important role in designing and controlling neural
networks. Also, the research results on anti-periodic solution of neural networks can be
applied to automatic control, artificial intelligence, disease diagnosis and many engineer-
ing technologies. Therefore it is important for us to discuss the anti-periodic phenomenon
of neural networks. At present, some research results on anti-periodic solution of neural
networks have been available. We refer the reader to [32–39].

Nowadays the anti-periodic solution of QVCNNs can be widely applied in robotics, at-
titude control of satellites, artificial intelligence, ensemble control, image processing, dis-
ease diagnosis in medicine and so on [21–26]. Thus the research on anti-periodic solution
of QVCNNs has become a topic of focus in today’s society. Here we would like to point out
that the report on anti-periodic solution of QVNNs is very rare [10, 40–42]. In order to
make up for this deficiency, in the present manuscript, we will consider the anti-periodic
solution of a class of quaternion-valued cellular neural networks (QVCNNs).

In 2018, Li and Qin [43] studied the following QVCNNs:

u̇a(t) = –γaua(t) +
m∑

b=1

αab(t)gb
(
ub(t)

)
+

m∑
b=1

βab(t)gb
(
ub

(
t – �ab(t)

))
+ Ra(t), (1.1)

where a = 1, 2, . . . , m, ua(t) ∈Q represents the state of the ath unit, γa denotes the rate with
which the ath unit will reset its potential to the resting state when disconnected from the
network and external inputs, αab(t) ∈Q stands for the strength of the bth unit on the ath
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unit, �ab(t) denotes the transmission delay along the axon of the bth unit on the ath unit.
βab(t) ∈Q stands for the strength of the bth unit on the ath unit at time t – �ab(t), Ra(t) ∈
Q stands for the external input on the ath unit, g : Q → Q is an activation function of
signal transmission. In details, one can see [43]. With the aid of the continuation theorem
of coincidence degree theory, inequality techniques and Lyapunov function, Li and Qin
[43] established the sufficient conditions to ensure the existence of periodic solutions and
the global exponential stability of periodic solutions for model (1.1). Their work can be
thought of as an important complement to the earlier publications. Notice that the rate γa

will change with the environment, thus the model (1.1) can be modified as follows:

u̇a(t) = –γa(t)ua(t) +
m∑

b=1

αab(t)gb
(
ub(t)

)
+

m∑
b=1

βab(t)gb
(
ub

(
t – �ab(t)

))
+ Ra(t). (1.2)

The key object of this manuscript is to focus on the existence of anti-periodic solutions
and the global exponential stability of anti-periodic solutions for model (1.2). Up to now,
few researchers have discussed the anti-periodic solutions of QVCNNs.

In order to obtain the key results of this manuscript, we make some preparations. Firstly,
we give the following assumptions for model (1.2):

(A1) For a, b = 1, 2, . . . , m, γa ∈ C(R, R+),�ab ∈ BC(R, R), gb ∈ C(Q,Q),αab,βab, Ra ∈
C(R,Q) and ∃ a positive constant � > 0 such that ∀t ∈ R, u ∈Q,

γa

(
t +

�

2

)
= γa(t), αab

(
t +

�

2

)
gb(u) = –αab(t)gb(–u),

βab

(
t +

�

2

)
gb(u) = –βab(t)gb(–u), Ra

(
t +

�

2

)
= –Ra(t).

(A2) For b = 1, 2, . . . , m, ∃ a positive constant Lb such that ∀x, y ∈ Q, ‖gb(x) – gb(y)‖ ≤
Lb‖x – y‖.

(A3) For b = 1, 2, . . . , m, x ∈Q, ∃ positive constants Ga such that ‖ga(x)‖ ≤ Ga.
Let

γ –
a = inf

t∈[0,� ]

{
γa(t)

}
, α+

ab = sup
t∈[0,� ]

{∥∥αab(t)
∥∥}

, β+
ab = sup

t∈[0,� ]

{∥∥βab(t)
∥∥}

,

�+ = max
1≤a,b≤m

{
sup

t∈[0,� ]
�ab(t)

}
, R+

a = sup
t∈[0,� ]

∥∥Ra(t)
∥∥.

We give the initial conditions of (1.2) as follows:

ua(s) = ϑa(s), s ∈ [
–�+, 0

]
, (1.3)

where ϑa ∈ C([–�+, 0], R).
The rest of the manuscript is planned as follows. In Sect. 2 we present some preliminary

results. In Sect. 3, applying coincidence degree theory, we investigate the existence of anti-
periodic solutions of (1.2). In Sect. 4, constructing Lyapunov functional, we establish a new
sufficient condition to ensure the global exponential stability of anti-periodic solutions of
model (1.2). In Sect. 5, numerical simulations are implemented. The conclusion is given
finally in Sect. 6.
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Remark 1.1 In physics, there are many anti-periodic phenomena such as the anti-periodic
wave, anti-periodic vibration, and anti-periodic wavelet. For neural networks, the signal
transmission of the neurons displays anti-periodic behavior.

2 Preliminaries
In this section, we give a definition and three lemmas that are needed in proving the key
results of this manuscript.

Definition 2.1 ([40]) Assume that u = (u1, u2, . . . , um)T and ū = (ū1, ū2, . . . , ūm)T are two
arbitrary solutions of model (1.2) with the initial values φ = (φ1,φ2, . . . ,φm)T and φ̄ =
(φ̄1, φ̄2, . . . , φ̄m)T , respectively. If ∃ two positive constants ε and M which satisfy

∥∥u(t) – ū(t)
∥∥
Q ≤M‖φ – φ̄‖0e–εt , t > 0,

where

∥∥u(t) – ū(t)
∥∥
Q =

[ m∑
a=1

∥∥ua(t) – ūa(t)
∥∥2

] 1
2

and

‖φ – φ̄‖0 =

[ m∑
a=1

∥∥∥ sup
s∈[–�+,0]

ϑa(s) – ϑ̄a(s)
∥∥∥

2
] 1

2

,

then every solution of model (1.2) is said to be globally exponentially stable.

Lemma 2.1 ([44]) Assume that v ∈ C1 and v(0) = v(� ), then

‖v – v̄‖L2 ≤ �

2π
‖v̇‖L2 ,

where

‖v‖L2 =
(∫ �

0

∣∣v(t)
∣∣2 dt

) 1
2

, v̄ =
1
�

∫ �

0
v(t) dt.

Lemma 2.2 ([40]) ∀p, q ∈Q, one has p∗q + q∗p ≤ p∗p + q∗q.

Lemma 2.3 ([44]) Assume that X and Y are Banach spaces, L : DomL⊂X → Y is linear
and N : X → Y is continuous. If L is one-to-one and K := L–1N is compact. Furthermore,
suppose that ∃ a bounded and open subset � ⊂ X with 0 ∈ � such that Lν = λN ν has no
solutions in ∂�∩DomL, ∀λ ∈ (0, 1). Then the equation Lν = λN ν has at least one solution
in �̄.

3 Existence of anti-periodic solutions
In view of (A2), one knows that the solution of system (1.2) with the initial condition (1.3)
exists.
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Theorem 3.1 Assume that (A1)–(A3) hold and assume that (A4) 2π > γ +
a � is satisfied,

then model (1.2) has at least one �
2 -anti-periodic solution that remains in

X0 =

{
u ∈X |‖u‖X ≤

m∑
a=1

� [
∑m

b=1((α+
ab + β+

ab)Gb) + R+
a]

1 – γ +
a �

2π

+ 1

}
,

where a = 1, 2, . . . , m.

Proof Let

X =
{

u|u = (u1, u2, . . . , um)T ∈ C(R,Q), u
(

t +
�

2

)
= –u(t),∀t ∈ R

}
,

‖u‖X =
m∑

a=1

|ua|0,

where

|ua|0 = sup
t∈[0,� ]

√
ua(t)u∗

a(t), a = 1, 2, . . . , m.

Obviously,X is a Banach space under the norm ‖.‖X . Define a linear operatorL : DomL⊂
X →X by Lu = u̇, where DomL = {u|u ∈X , u̇ ∈X } and a continuous operator N : X →
X by

N (u)(t) =
(
�1(u, t),�2(u, t), . . . ,�m(u, t)

)T , (3.1)

where

�j(u, t) = –γj(t)uj(t) +
m∑

b=1

αjb(t)gb
(
ub(t)

)
+

m∑
b=1

βjb(t)gb
(
ub

(
t – �jb(t)

))
+ Rj(t), (3.2)

where j = 1, 2, . . . , m. We can easily obtain

KerL = {0}, ImL =
{

v ∈X ,
∫ 2�

0
v(t) dt = 0

}
= X .

Then L : DomL→X is one-to-one. Let K = L–1N . Then K is compact.
Assume that u ∈ X is an arbitrary solution of the equation Lu = λNu, where λ ∈ (0, 1),

then one has

u̇a(t) = λ

[
–γa(t)ua(t)+

m∑
b=1

αab(t)gb
(
ub(t)

)
+

m∑
b=1

βab(t)gb
(
ub

(
t –�ab(t)

))
+Ra(t)

]
, (3.3)

where a = 1, 2, . . . , m. It follows from (3.3) that, for a = 1, 2, . . . , m,

u̇a(t)u∗
a(t) = λu∗

a(t)

[
–γa(t)ua(t) +

m∑
b=1

αab(t)gb
(
ub(t)

)
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+
m∑

b=1

βab(t)gb
(
ub

(
t – �ab(t)

))
+ Ra(t)

]
, (3.4)

which leads to

∫ �

0

∥∥u̇a(t)
∥∥2 dt ≤ γ +

a

∫ �

0

∥∥ua(t)u̇a(t)
∥∥dt +

[ m∑
b=1

((
α+

ab + β+
ab

)
Gb

)
+ R+

a

]∫ �

0

∥∥u̇a(t)
∥∥dt

≤ γ +
a

(∫ �

0

∥∥ua(t)
∥∥2 dt

) 1
2
(∫ �

0

∥∥u̇a(t)
∥∥2 dt

) 1
2

+
√

�

[ m∑
b=1

((
α+

ab + β+
ab

)
Gb

)
+ R+

a

](∫ �

0

∥∥u̇a(t)
∥∥2 dt

) 1
2

, (3.5)

where a = 1, 2, . . . , m. Hence

(∫ �

0

∥∥u̇a(t)
∥∥2 dt

) 1
2 ≤ γ +

a

(∫ �

0

∥∥ua(t)
∥∥2 dt

) 1
2

+
√

�

[ m∑
b=1

((
α+

ab +β+
ab

)
Gb

)
+ R+

a

]
. (3.6)

Notice that ua(t) ∈ C1 is �
2 -anti-periodic, in view of Lemma 2.1, one has

(∫ �

0

∥∥ua(t)
∥∥2 dt

) 1
2 ≤ �

2π

(∫ �

0

∥∥u̇a(t)
∥∥2 dt

) 1
2

. (3.7)

In view of (3.6) and (3.7), one gets

(∫ �

0

∥∥u̇a(t)
∥∥2 dt

) 1
2

≤ γ +
a �

2π

(∫ �

0

∥∥u̇a(t)
∥∥2 dt

) 1
2

+
√

�

[ m∑
b=1

((
α+

ab + β+
ab

)
Gb

)
+ R+

a

]
. (3.8)

Then

(∫ �

0

∥∥u̇a(t)
∥∥2 dt

) 1
2 ≤

√
� [

∑m
b=1((α+

ab + β+
ab)Gb) + R+

a]
1 – γ +

a �

2π

. (3.9)

We assume that

ua(t) = uR
a (t) + iuI

a(t) + juJ
a(t) + kuK

a (t)

and

uR
a

(
t +

�

2

)
= uR

a (t), uI
a

(
t +

�

2

)
= uI

a(t),

uJ
a

(
t +

�

2

)
= uJ

a(t), uK
a

(
t +

�

2

)
= uK

a (t),
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where uR
a , uI

a, uJ
a, uK

a ∈ C(R, R), a = 1, 2, . . . , m. Notice that uR
a , uI

a, uJ
a, uK

a are �
2 -anti-periodic

real-valued functions, then ∃ ϑR
a ,ϑ I

a,ϑ J
a,ϑK

a ∈ [0,� ] such that

uR
a
(
ϑR

a
)

= uI
a
(
ϑ I

a
)

= uJ
a
(
ϑ J

a
)

= uK
a
(
ϑK

a
)

= 0, a = 1, 2, . . . , m.

Then one has

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|uR
a |∞ = supt∈[0,� ] |uR

a (t)| = supt∈[0,� ] |uR
a (ϑR

a ) +
∫ t
ϑR

a
u̇R

a (s) ds|
≤ √

� (
∫ �

0 ‖u̇R
a (t)‖2 dt) 1

2 ,

|uI
a|∞ = supt∈[0,� ] |uI

a(t)| = supt∈[0,� ] |uI
a(ϑ I

a) +
∫ t
ϑ I

a
u̇I

a(s) ds|
≤ √

� (
∫ �

0 ‖u̇I
a(t)‖2 dt) 1

2 ,

|uJ
a|∞ = supt∈[0,� ] |uJ

a(t)| = supt∈[0,� ] |uJ
a(ϑ J

a) +
∫ t
ϑ

J
a

u̇J
a(s) ds|

≤ √
� (

∫ �

0 ‖u̇J
a(t)‖2 dt) 1

2 ,

|uK
a |∞ = supt∈[0,� ] |uK

a (t)| = supt∈[0,� ] |uK
a (ϑK

a ) +
∫ t
ϑK

a
u̇K

a (s) ds|
≤ √

� (
∫ �

0 ‖u̇K
a (t)‖2 dt) 1

2 ,

(3.10)

where a = 1, 2, . . . , m. Then

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|uR
a |2∞ ≤ �

∫ �

0 ‖u̇R
a (t)‖2 dt,

|uI
a|2∞ ≤ �

∫ �

0 ‖u̇I
a(t)‖2 dt,

|uJ
a|2∞ ≤ �

∫ �

0 ‖u̇J
a(t)‖2 dt,

|uK
a |2∞ ≤ �

∫ �

0 ‖u̇K
a (t)‖2 dt,

(3.11)

where a = 1, 2, . . . , m. According to (3.9) and (3.11), one gets

‖u‖X ≤
m∑

a=1

√∣∣uR
a
∣∣2
∞ +

∣∣uI
a
∣∣2
∞ +

∣∣uJ
a
∣∣2
∞ +

∣∣uK
a
∣∣2
∞

≤
m∑

a=1

√
�

(∫ �

0

∥∥u̇a(t)
∥∥2 dt

) 1
2

≤
m∑

a=1

� [
∑m

b=1((α+
ab + β+

ab)Gb) + R+
a]

1 – γ +
a �

2π

:= Q. (3.12)

Let � = {u ∈X |‖u‖X < Q+1}, then � ⊂X with 0 ∈ � such thatLu = λNu has no solution
in ∂�∩DomL, ∀λ ∈ (0, 1). It follows from Lemma 2.3 that model (1.2) has at least �

2 -anti-
periodic solution in X0. This ends the proof. �

4 Exponential stability of anti-periodic solution
In this section, we discuss the global exponential stability of anti-periodic solution for
model (1.2) by applying inequality theory and constructing an appropriate Lyapunov func-
tion.

Theorem 4.1 Let (A1)–(A4) be satisfied. Assume that
(A5) �ab ∈ C1(R, R+) and θ = max1≤a,b≤m{supt∈[0,� ] �̇ab(t)} < 1.
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(A6) ∃ a constant ε > 0 such that

δ = max
1≤a≤m

{
(
2ε – 2γ –

a + 2
)

+
m∑

b=1

(
α+

ba
)2(Lb)2 +

m∑
b=1

(
β+)2(Lb)2 e2ε�+

1 – θ

}
< 0,

then system (1.2) possesses a unique �
2 -anti-periodic solution, which is globally exponen-

tially stable.

Proof In view of Theorem 3.1, one knows that model (1.2) possesses a �
2 -anti-periodic so-

lution ū(t) = (ū1(t), ū2(t), . . . , ūm(t))T with the initial value ϑ̄(t) = (ϑ̄1(t), ϑ̄2(t), . . . , ϑ̄m(t))T .
Let u(t) = (u1(t), u2(t), . . . , um(t))T be an arbitrary solution of model (1.2) with the initial
value ψ(t) = (ψ1(t),ψ2(t), . . . ,ψm(t))T . Let vi(t) = ui(t) – ūi(t) (i = 1, 2, . . . , m). Then one has

v̇a(t) = –γa(t)va(t) +
m∑

b=1

[
αab(t)

(
gb

(
ub(t)

)
– gb

(
ūb(t)

))]

+
m∑

b=1

[
βab(t)

(
gb

(
ub

(
t – �ab(t)

))
– gb

(
ūb

(
t – �ab(t)

)))]
, (4.1)

where a = 1, 2, . . . , m. Define the following Lyapunov function:

V(t) =
m∑

a=1

e2εtv∗
a(t)va(t) +

m∑
a=1

m∑
b=1

(
β+)2(Lb)2 e2ε�+

1 – θ

∫ t

t–�ab(t)
e2εsv∗

b(t)vb(t) ds. (4.2)

According to (4.1) and Lemma 2.2, one gets

D+∣∣V(t)
∣∣

≤
m∑

a=1

2εe2εtv∗
a(t)va(t) +

m∑
a=1

e2εt∣∣v̇∗
a(t)va(t) + v∗

a(t)v̇a(t)
∣∣

+ e2εt
m∑

a=1

m∑
b=1

(
β+)2(Lb)2 e2ε�+

1 – θ
v∗

b(t)vb(t) + e2εt

×
m∑

a=1

m∑
b=1

(
β+)2(Lb)2 e2ε�+

1 – θ

(
1 – �̇ab(t)

)
e–2ε�ab(t)v∗

b
(
t – �ab(t)

)
vb

(
t – �ab(t)

)

=
m∑

a=1

2εe2εtv∗
a(t)va(t) +

m∑
a=1

e2εt

{
–γa(t)v∗

a(t) +
m∑

b=1

∣∣αab(t)
(
gb

(
ub(t)

)
– gb

(
ūb(t)

))∣∣∗

+
m∑

b=1

∣∣βab(t)
(
gb

(
u∗

b
(
t – �ab(t)

))
– gb

(
ū∗

b
(
t – �ab(t)

)))∣∣∗
}

va(t)

+
m∑

a=1

e2εt

{
–γa(t)va(t) +

m∑
b=1

∣∣αab(t)
[
gb

(
ub(t)

)
– gb

(
ūb(t)

)]∣∣

+
m∑

b=1

∣∣βab(t)
[
gb

(
ub

(
t – �ab(t)

))
– gb

(
ūb

(
t – �ab(t)

))]∣∣
}

v∗
a(t)

+ e2εt
m∑

a=1

m∑
b=1

(
β+)2(Lb)2 e2ε�+

1 – θ
v∗

b(t)vb(t) – e2εt
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×
m∑

a=1

m∑
b=1

(
β+)2(Lb)2 e2ε�+

1 – θ

(
1 – �̇ab(t)

)
e–2ε�ab(t)v∗

b
(
t – �ab(t)

)
vb

(
t – �ab(t)

)

≤
m∑

a=1

(
2ε – 2γ –

a
)
e2εtv∗

a(t)va(t) +
m∑

a=1

e2εt

{ m∑
b=1

∣∣[(αab(t)
(
gb

(
ub(t)

)
– gb

(
ūb(t)

)))∗va(t)

+
(
αab(t)

(
gb

(
ub(t)

)
– gb

(
ūb(t)

)))
v∗

a(t)
]∣∣

+
m∑

b=1

∣∣(βab(t)
[(

gb
(
u∗

b
(
t – �ab(t)

))
– gb

(
ū∗

b
(
t – �ab(t)

))))∗va(t)

+ v∗
a(t)

(
gb

(
u∗

b
(
t – �ab(t)

))
– gb

(
ū∗

b
(
t – �ab(t)

)))
)
]∣∣

}

+ e2εt
m∑

a=1

m∑
b=1

(
β+)2(Lb)2 e2ε�+

1 – θ
v∗

b(t)vb(t) – e2εt

×
m∑

a=1

m∑
b=1

(
β+)2(Lb)2 e2ε�+

1 – θ

(
1 – �̇ab(t)

)
e–2ε�ab(t)v∗

b
(
t – �ab(t)

)
vb

(
t – �ab(t)

)

≤
m∑

a=1

(
2ε – 2γ –

a
)
e2εtv∗

a(t)va(t) +
m∑

a=1

e2εt

{ m∑
b=1

[(
αab(t)

(
gb

(
ub(t)

)
– gb

(
ūb(t)

)))∗

× (
gb

(
ub(t)

)
– gb

(
ūb(t)

))
) + v∗

a(t)va(t)
]

+
m∑

b=1

(
βab(t)

[(
gb

(
u∗

b
(
t – �ab(t)

))
– gb

(
ū∗

b
(
t – �ab(t)

))))∗

× (
gb

(
u∗

b
(
t – �ab(t)

))
– gb

(
ū∗

b
(
t – �ab(t)

)))
) + v∗

a(t)va(t)
]
}

+ e2εt
m∑

a=1

m∑
b=1

(
β+)2(Lb)2 e2ε�+

1 – θ
v∗

b(t)vb(t) – e2εt

×
m∑

a=1

m∑
b=1

(
β+)2(Lb)2 e2ε�+

1 – θ

(
1 – �̇ab(t)

)
e–2ε�ab(t)v∗

b
(
t – �ab(t)

)
vb

(
t – �ab(t)

)

≤
m∑

a=1

εe2εt

[
(
2ε – 2γ –

a + 2
)
v∗

a(t)va(t) +
m∑

b=1

(
α+

ab
)2(Lb)2v∗

b(t)vb(t)

+
m∑

b=1

(
β+

ab
)2(Lb)2v∗

b
(
t – �ab(t)

)
vb

(
t – �ab(t)

)
]

+ e2εt
m∑

a=1

m∑
b=1

(
β+)2(Lb)2 e2ε�+

1 – θ
v∗

b(t)vb(t) – e2εt

×
m∑

a=1

m∑
b=1

(
β+)2(Lb)2 e2ε�+

1 – θ

(
1 – �̇ab(t)

)
e–2ε�ab(t)v∗

b
(
t – �ab(t)

)
vb

(
t – �ab(t)

)

≤
m∑

a=1

εe2εt

[
(
2ε – 2γ –

a + 2
)
v∗

a(t)va(t) +
m∑

b=1

(
α+

ab
)2(Lb)2v∗

b(t)vb(t)
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+
m∑

b=1

(
β+

ab
)2(Lb)2v∗

b
(
t – �ab(t)

)
vb

(
t – �ab(t)

)
]

+ e2εt
m∑

a=1

m∑
b=1

(
β+)2(Lb)2 e2ε�+

1 – θ
v∗

b(t)vb(t) – e2εt

×
m∑

a=1

m∑
b=1

(
β+)2(Lb)2 e2ε�+

1 – θ

(
1 – �̇ab(t)

)
e–2ε�ab(t)v∗

b
(
t – �ab(t)

)
vb

(
t – �ab(t)

)

≤
m∑

a=1

εe2εt

[
(
2ε – 2γ –

a + 2
)
v∗

a(t)va(t) +
m∑

b=1

(
α+

ab
)2(Lb)2v∗

b(t)vb(t)

]

+ e2εt
m∑

a=1

m∑
b=1

(
β+)2(Lb)2 e2ε�+

1 – θ
v∗

b(t)vb(t)

=
m∑

a=1

εe2εt

[
(
2ε – 2γ –

a + 2
)
v∗

a(t)va(t) +
m∑

b=1

(
α+

ba
)2(Lb)2v∗

a(t)va(t)

]

+ e2εt
m∑

a=1

m∑
b=1

(
β+)2(Lb)2 e2ε�+

1 – θ
v∗

a(t)va(t)

=
m∑

a=1

εe2εt

[
(
2ε – 2γ –

a + 2
)

+
m∑

b=1

(
α+

ba
)2(Lb)2 +

m∑
b=1

(
β+)2(Lb)2 e2ε�+

1 – θ

]
v∗

a(t)va(t)

≤ δe2εt
m∑

a=1

v∗
a(t)va(t) ≤ 0, (4.3)

which leads to V(t) ≤ V(0), ∀t ≥ 0. Then

V(t) ≥ e2εt
m∑

a=1

v∗
a(t)va(t) =

(
eεt∥∥u(t) – ū(t)

∥∥
Q

)2 (4.4)

and

V(0) ≤
m∑

a=1

(
sup

s∈[–�+,0]

∥∥va(s)
∥∥2

)
+

m∑
a=1

m∑
b=1

(
β+)2(Lb)2 e2ε�+

1 – θ
�+ sup

s∈[–�+,0]

∥∥va(s)
∥∥2

≤K
∥∥ψa(s) – ϑ̄(s)

∥∥2
0, (4.5)

where

K =
m∑

a=1

{
1 +

m∑
b=1

(
β+)2(Lb)2 e2ε�+

1 – θ
�+

}
> 1.

Then

(
eεt∥∥u(t) – ū(t)

∥∥
Q

)2 ≤K
∥∥φ – φ̄(s)

∥∥2
0. (4.6)

Thus

∥∥u(t) – ū(t)
∥∥
Q ≤ U

∥∥φ – φ̄(s)
∥∥2

0e–εt , ∀t > 0, (4.7)
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where U =
√
K. In view of Definition 2.1, one knows that model (1.2) has a unique �

2 -anti-
periodic solution that is global exponentially stable. This ends the proof. �

Remark 4.1 In [29–39], the authors have studied the anti-periodic solution of different
type RVNNs. They do not investigate the anti-periodic solution of QVNNs. The analy-
sis method to investigate the anti-periodic solution of QVNNs is different from that for
RVNNs. All the results in [29–39] cannot be transferred to model (1.2) to establish the con-
ditions that guarantee the existence and globally exponential stability of the anti-periodic
solutions. In [45], the authors have investigated the anti-periodic solutions of quaternion-
valued neural networks with multiple time-varying delays and the product of multiple
activation functions. The analysis method is more complex and all the results in [45] can-
not be applied to model (1.2) to obtain the results of this manuscript. This manifests that
the results of this manuscript are essentially innovative.

Remark 4.2 In [29, 37, 46–67], the authors dealt with stability of delayed neural networks
or other delayed models, but all the scholars in [29, 37, 46–67] did not investigate the
stability of anti-periodic solution of QVNNs. Moreover, to establish the sufficient condi-
tion to ensure the exponentially stability of involved delayed models, how to construct a
suitable Lyapunov function is a challenging work. In this work, we successfully construct
an appropriate Lyapunov function to establish the sufficient condition to ensure the ex-
ponentially stability of considered delayed QVNNs. So we think that this work has some
novelties.

Remark 4.3 In [43], the authors discussed the periodic solution of quaternion-valued cel-
lular neural networks with time-varying delays. This article did not consider the anti-
periodic solution that this article involved. In [40], the authors investigated the anti-
periodic solution of inertial delayed quaternion-valued high-order Hopfield neural net-
works. The neural networks involved the state-dependent delays which is different from
the neural network with time-varying delays in this article.

Remark 4.4 In this paper, we have skillfully applied some suitable inequalities to establish
our main results except a series of mathematical analysis when we deal with the anti-
periodic solution by applying coincidence degree theory. Also the choice of Lyapunov
function has some novelties.

5 Computer simulations
In previous section, we have found that under some appropriate parameter conditions, the
quaternion-valued delayed cellular neural networks have a unique anti-periodic solution
that is global exponentially stable. To check the correctness of the theoretical predictions,
we give the following neural networks:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u̇1(t) = –γ1(t)u1(t) +
∑2

b=1 α1b(t)gb(ub(t))

+
∑2

b=1 β1b(t)gb(ub(t – �1b(t))) + R1(t),

u̇2(t) = –γ2(t)u2(t) +
∑2

b=1 α2b(t)gb(ub(t))

+
∑2

b=1 β2b(t)gb(ub(t – �2b(t))) + R2(t),

(5.1)
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where gb(ub) = 0.3 cos uR
b + i0.3 cos uI

a + j0.3 cos uJ
a + k0.3 cos uK

a (b = 1, 2) and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1(t) = 4 – 0.5 sin 6t,

γ2(t) = 3 – 0.2 sin 6t,

�11(t) = 0.5 sin 6t – 0.3,

�12(t) = 0.4 cos 6t – 0.2,

�21(t) = 0.3 cos 6t – 0.1,

�22(t) = 0.5 cos 6t – 0.3,

R1(t) = 1 + i sin 6t + j cos 6t + k sin 6t,

R2(t) = 2 + i cos 6t + j sin 6t + k cos 6t,

α11(t) = 0.5 cos 6t + 0.5i sin 6t + 0.3j cos 6t + 0.3k sin 6t,

α12(t) = 0.2 cos 6t + 0.2i sin 6t + 0.3j cos 6t + 0.3k sin 6t,

α21(t) = 0.3 sin 6t + 0.3i cos 6t + 0.2j sin 6t + 0.2k cos 6t,

α22(t) = 0.1 sin 6t + 0.1i cos 6t + 0.4j sin 6t + 0.4k cos 6t,

β11(t) = 0.3 sin 6t + 0.3i cos 6t + 0.2j sin 6t + 0.2k cos 6t,

β12(t) = 0.1 sin 6t + 0.1i cos 6t + 0.4j sin 6t + 0.4k cos 6t,

β21(t) = 0.5 sin 6t + 0.5i cos 6t + 0.3j cos 6t + 0.3k sin 6t,

β22(t) = 0.2 sin 6t + 0.2i cos 6t + 0.2j sin 6t + 0.2k cos 6t.

(5.2)

Then L1 = L2 = 0.3, G1 = G2 = 0.36,γ –
1 = 3.5,γ –

2 = 2.8,γ +
1 = 4.5,γ +

2 = 3.2,�+ = 0.2, θ =
0.3,α+

11 = 0.5831,α+
12 = 0.3606,α+

21 = 0.3606,α+
22 = 0.4123,β+

11 = 0.3606,β+
12 = 0.4123,β+

21 =
0.5831,β+

22 = 0.2828. Let ε = 0.02, then one has

δ = max
1≤a≤2

{
(
2ε – 2γ –

a + 2
)

+
2∑

b=1

(
α+

ba
)2(Lb)2 +

2∑
b=1

(
β+)2(Lb)2 e2ε�+

1 – θ

}
= –0.56 < 0.

Then one can easily check that all the required assumptions of Theorem 3.1 and The-
orem 4.1 hold true. Thus one knows that model (5.1) possesses at least one π

3 -periodic
solution. Moreover this periodic solution is exponentially stable. The fact can be shown
in Figs. 1–4. The numerical results show that under some suitable conditions, the states
u1, u2 of the two units will exponentially converge to stability. It plays an important role in
designing and optimizing neural networks.

6 Conclusions
During the past decades, the anti-periodic solution of neural networks has been widely
studied [68]. But many works on the anti-periodic solution of neural networks mainly
focus on the CVNNs and RVNNs. In this present manuscript, we mainly handle the anti-
periodic solution of a class of QVNNs. With the aid of inequality techniques, coincidence
degree theory and constructing a suitable Lyapunov function, we discuss the existence
and exponential stability of anti-periodic solutions of the involved QVNNs. The derived
results are helpful in designing and optimizing neural networks. For example, we can ad-
just the parameters and time delays to meet the requirement of the established neural
network models to obtain our desired anti-periodic phenomenon. Then it can be applied
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Figure 1 The anti-periodic solution of model (5.1): t–uR1 and t–uR2. The blue line stands for u
R
1 and the red line

stands for uR2

Figure 2 The anti-periodic solution of model (5.1): t–uI1 and t–uI2. The blue line stands for u
I
1 and the red line

stands for uI2

Figure 3 The anti-periodic solution of model (5.1): t–uJ1 and t–uJ2. The blue line stands for u
J
1 and the red line

stands for uJ2
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Figure 4 The anti-periodic solution of model (5.1): t–uK1 and t–uK2 . The blue line stands for u
K
1 and the red line

stands for uK2

in disease diagnosis for medical science, artificial intelligence, etc. The research method
on anti-periodic solution of QVNNs will enriches the anti-periodic solution theory of dif-
ferential equations. Also, some related results complement some earlier investigations to
some degree. In addition, we point out that the weighted pseudo anti-periodic solutions of
neural networks [52] is a meaningful topic. However, few scholars investigate the weighted
pseudo anti-periodic solutions of QVNNs. In the near future, we will focus on this aspect.
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