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Abstract
This paper considers the definition and the properties of the generalized natural
transform on sets of generalized functions. Convolution products, convolution
theorems, and spaces of Boehmians are described in a form of auxiliary results. The
constructed spaces of Boehmians are achieved and fulfilled by pursuing a deep
analysis on a set of delta sequences and axioms which have mitigated the
construction of the generalized spaces. Such results are exploited in emphasizing the
virtual definition of the generalized natural transform on the addressed sets of
Boehmians. The constructed spaces, inspired from their general nature, generalize the
space of integrable functions of Srivastava et al. (Acta Math. Sci. 35B:1386–1400, 2015)
and, subsequently, the extended operator with its good qualitative behavior
generalizes the classical natural transform. Various continuous embeddings of
potential interests are introduced and discussed between the space of integrable
functions and the space of integrable Boehmians. On another aspect as well, several
characteristics of the extended operator and its inversion formula are discussed.
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1 Introduction and preliminaries
The integral transform operators have attained their popularity due to their wide range of
applications in various fields of science and engineering as, in most of cases, the physical
phenomenon is converted into ordinary and partial differential equations. Along with in-
teresting groups of integral transforms arising in literature, the natural transform NT was
introduced by Khan and Khan [2] and renamed recently as the N-transform [3–6]. In addi-
tion to the shift and change of scale properties of the NT, the authors of [5] solved the un-
steady fluid flow problem over a plane wall and highlighted that the transform converges to
the Laplace and Sumudu transforms. Later, Belgacem et al. [3] defined the inverse natural
transform formula and studied some properties and applications on Maxwell’s equation.
When the real sectionwise continuous function ϕ(t) > 0, ϕ(t) = 0 for t < 0 is of exponential
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order defined on A, where

A =
{
ϕ(t)|∃M, ε1, ε2 > 0,

∣∣ϕ(t)
∣∣ < Me

t
εj , if t ∈ (–1)j × [0,∞)

}
,

the natural transform NT is given by [2]

N(ϕ)(u, v) =
∫ ∞

0
e–utϕ(vt) dt, u > 0, v > 0.

For α ∈ C; Re(α) ≥ 0 and k ∈ Z+, the generalized natural transform GNT or the Mα,k

transform of a function ϕ was proclaimed as [1, (1.1)]

Mα,k(ϕ)(u, v) =
∫ ∞

0
ϕ(vt)

e–ut

(tk + vk)α
dt,

provided the integral part exists. The integral part of the preceding equation can be indeed
motivated to yield

Mα,k(ϕ)(u, v) = v–kα–1
∫ ∞

0
ϕ(t)

e– u
v t

(tk + vk)α
dt, (1)

where u and v are the transform variables. The GNT transform corresponds to the NT for
α = 0 [8] and to the Stieltjes transform for u = 0 [9]. On top of that, it corresponds to the
Laplace transform [10]

L(ϕ)(v) =
∫ ∞

0
e–vtϕ(t) dt

for α = 0 and u = 1 and to the Sumudu transform [7]

S(ϕ)(u) =
∫ ∞

0
e–tϕ(ut) dt, u ∈ (–ε1, ε2)

for α = 0 and v = 1, see, e.g., [7, 11–17]. The Parseval type theorem of the GNT transform
is given by [1, Theorem 3.1]

∫ ∞

0

ϕ(vu)
(uk + vk)α1

Mα2,k(g)(t, v) dt =
∫ ∞

0

g(vt)
(tk + vk)α2

Mα1,k(ϕ)(t, v) dt. (2)

The scaling property of the GNT transform for β > 0 is given by [1, (2.4)]

Mα,k
(
ϕ
(
β2t

))
(u, v) = βkα–1Mα,k

(
ϕ(t)

)( u
β

,βv
)

.

Due to [1, Theorem 2.1], the GNT transform of ϕ exists for all 0 < v < μ and Re(u) >
μ

β
, where the function ϕ is either continuous or piecewise continuous on [0,∞) and for

certain given K , T ,β > 0,

∣∣ϕ(t)
∣∣ ≤ KtkRe(α)et/β for all t > T . (3)



Al-Omari and Araci Advances in Difference Equations        (2021) 2021:163 Page 3 of 11

Further, it converges uniformly with respect to the transform variable u provided Re(u) ≥
α > μ

β
. The inversion of the GNT transform is defined by

ϕ(t) =
(

tm

vm + vm
)α

L–1(Mα,k
(
ϕ(t)

)
(u, v)

)( t
v

)
, v ∈ (0,μ)

provided that the involved integral converges absolutely, where L–1 is the inverse Laplace
transform operator. The Mellin-type convolution product of two integrable functions ϕ

and g is defined by [18]

(ϕ � g)(y) =
∫ ∞

0
ϕ(x)g

(
yx–1)dx

x
(4)

when the integral part exists. Consequently, the natural properties of this convolution
product are due to [19] given by

ϕ � g = g � ϕ, (ϕ � g1) � g2 = ϕ � (g1 � g2) and

ϕ � (g1 + g2) = ϕ � g1 + ϕ � g2.
(5)

Evaluations of the GNT transform of various special functions, polynomials, and deriva-
tives are computed in the above citations. In this article we derive a convolution theorem
and establish sets of generalized functions for the considered GNT transform. In Sect. 1,
we have already reviewed certain definitions and preliminaries from literature. In Sect. 2,
we derive the convolution theorem and provide auxiliary results to facilitate our next in-
vestigations. In Sect. 3, we prove axioms and determine spaces of Boehmians and give
the extension of the generalized natural transform to the Boehmian spaces. In Sect. 4, we
derive some characteristics of the transform in a sense of generalized functions.

2 Convolution theorem and auxiliary results
To proceed in this study, we denote by L1(R2

+) the Lebesgue space of integrable functions
over R2

+ = R+ × R+, R+ = (0,∞) and by C∞(R+) the Schwartz space of smooth functions
of compact supports over R+. On the basis of the convolution product �, we present a
convolution formula that is very useful in the sequel.

Definition 1 Let k ∈ Z+ and α ∈ C such that Re(α) ≥ 0. We denote by ⊕ the integral
equation

(ψ ⊕ ϕ)(u, v) =
∫ ∞

0
ϕ(x)ψ(

√
xu,

√
xv)

dx

xkα
(6)

provided the right-hand side of the above equation exists for every u > 0 and v > 0.

By taking into account Eq. (4) and Eq. (6), we derive a convolution theorem as follows.

Theorem 2 Let ϕ ∈ L1(R+), k ∈ Z+, and α ∈C such that Re(α) ≥ 0. Then we have

Mα,k(ϕ � g) = ϕ ⊕ Mα,kg

for every g ∈ C∞(R+).



Al-Omari and Araci Advances in Difference Equations        (2021) 2021:163 Page 4 of 11

Proof Let ϕ ∈ L1(R+), k ∈ Z+, and α ∈ C such that Re(α) ≥ 0. Then invoking Eq. (4), Eq.
(1) gives

Mα,k(ϕ � g)(u, v) = v–kα–1
∫ ∞

0

e– u
v y

(yk + vk)α

∫ ∞

0
ϕ(x)g

(
yx–1)dx

x
dy.

Therefore, Fubini’s theorem leads to

Mα,k(ϕ � g)(u, v) = v–kα–1
∫ ∞

0
ϕ(x)

∫ ∞

0

e– u
v y

(yk + vk)α
g
(
yx–1)dy

dx
x

. (7)

By using the change of variables y = zx, along with simple computations, we get

Mα,k(ϕ � g)(u, v) = v–kα–1
∫ ∞

0
ϕ(x)

∫ ∞

0

e– u
v xz

((zx)k + vk)α
g(z) dz dx

i.e. = v–kα–1
∫ ∞

0
ϕ(x)

∫ ∞

0

e– u
v xz

xkα(zk + ( v√
x )k)α

g(z) dz dx

i.e. = v–kα–1
∫ ∞

0
ϕ(x)

∫ ∞

0

e
– u

√
x

v√
x

z

(zk + ( v√
x )k)α

g(z) dz
dx
xkα

i.e. =
∫ ∞

0
ϕ(x)(Mα,kg)(

√
xu,

√
xv)

dx
xkα

.

This completes the proof of the theorem. �

By � we denote the subset of the Schwartz space C∞(R+) of delta sequences {δ0, δ1, . . . ,
δn, . . .} such that Eq. (8) to Eq. (10) hold

∫ ∞

0
δn(x) dx = 1, ∀n ∈ N, (8)

∫ ∞

0

∥∥δn(x)
∥∥

L1(R2
+) dx ≤ c, for some constant c and all n ∈N, (9)

lim
n→∞

∫

|x|>ε

|x|k∥∥δn(x)
∥∥

L1(R2
+) dx = 0, ∀k ∈N, ε > 0. (10)

Theorem 3 Let U ∈ L1(R2
+) and φ1,φ2 ∈ C∞(R+). Then we have

U ⊕ (φ1 � φ2) = (U ⊕ φ1) ⊕ φ2 in L1(
R

2
+
)
.

Proof Let U ∈ L1(R2
+) and φ1, φ2 ∈ C∞(R+) be given arbitrary. Then, by applying Eq. (6)

and Eq. (4), we assert

(
U ⊕ (φ1 � φ2)

)
(u, v) =

∫ ∞

0
U(

√
xu,

√
xv)(φ1 � φ2)(x)

dx
xkα

=
∫ ∞

0
φ2(t)

∫ ∞

0
U(

√
xu,

√
xv)φ1

(
xt–1) dx

xkα

dt
t
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=
∫ ∞

0
φ2(t)

∫ ∞

0
U(

√
tzu,

√
tzv)φ1(z)

dz
zkα

dt
tkα

=
∫ ∞

0
φ2(t)(U ⊕ φ1)(

√
tu,

√
tv)

dt
tkα

.

Hence, we have obtained

(
U ⊕ (φ1 � φ2)

)
(u, v) =

(
(U ⊕ φ1) ⊕ φ2

)
(u, v).

This proves the first part. To complete the inclusion part of the theorem, we show that

U ⊕ φ ∈ L1(
R

2
+
)

for U ∈ L1(
R

2
+
)

and φ ∈ C∞(R+). (11)

Indeed, from Eq. (6) and Fubini’s theorem, we obtain

‖U ⊕ φ‖L1(R2
+) =

∫

R
2
+

∣∣(U ⊕ φ)(u, v)
∣∣d(u, v)

≤
∫

R
2
+

∫

R+

∣∣U(
√

xu,
√

xv)
∣∣∣∣φ(x)

∣∣dx d(u, v).

The definition of the norm ‖ · ‖L1(R2
+) of L1(R2

+) indeed implies that

‖U ⊕ φ‖L1(R2
+) ≤ ‖U‖L1(R2

+)

∫

R+

∣∣φ(x)
∣∣dx. (12)

Therefore, the right-hand side of Eq. (12) is bounded by the compactness of the support
of φ. Hence, our theorem is completely proved. �

3 The spaces B1 and B2

To proceed in the construction of the abstract Boehmian space, we demand two sets, say
G and S, and two operations, say � and ∗, where G is a topological vector space, S is a
subspace of G and, for α,β ∈ G and x, y ∈ S, the operation � : G × S → G and ∗ satisfy the
axioms: x ∗ y = y ∗ x ∈ S, (α � x) � y = α � (x ∗ y), (α + β) � x = α � x + β � x; and as αn → α

in G, we have αn � y → α � y for sufficiently large values of n. Besides, there should be a
collection � of sequences in S such that:

(i) If {y1, y2, . . . , yn, . . .}, {x1, x2, . . . , xn, . . .} ∈ �, then {x1 ∗ y1, x2 ∗ y2, . . . , xn ∗ yn, . . .} ∈ �.
(ii) If α ∈ G and {y1, y2, . . . , yn, . . .} ∈ �, then α � yn → α in G as n → ∞.
Let {α1,α2, . . . ,αn, . . .} ∈ G and {y1, y2, . . . , yn, . . .} ∈ �, then by A we denote the collection

of all pairs of sequences (αn, yn) such that αn � ym = αm � yn, m, n ∈ N. Each element of A
is said to be a quotient of sequences and is denoted by αn

yn
. We define a relation ∼ on A by

αn/yn ∼ βn/xn if

αn � xm = βm � yn, ∀m, n ∈N.

The relation ∼ is an equivalence relation on A and decomposes it into disjoint equiv-
alence classes. Each equivalence class is said to be a Boehmian. Every Boehmian is de-
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noted by Xαn = ( αn
yn

). The collection of all Boehmians is, for more convenience, denoted by
B(G, S,�,�) or B. Every element α of G is identified uniquely as a member of B by ( α�yn

yn
)

where (yn) ∈ �. The space B is a vector space with

(
αn

yn

)
+

(
βn

xn

)
=

(
αn � xn + βn � xn

yn ∗ xn

)
and μ

(
αn

yn

)
=

(
μαn

yn

)
, μ ∈C.

In what follows, we construct the Boehmian spaces B1 ≈ B(L1(R+), (C∞(R+),�,�),�) and
B2 ≈ B(L1(R2

+), (C∞(R+),�,�),⊕) with the products � (to act as ∗) and ⊕ (to act as �)
that seem to comply with the delta sequences and the operator Mα,k . We refer to [7, 14,
15, 20–34] for an outright description and full details of abstract constructions of various
Boehmian spaces and transform operators.

However, we provide several systematic hypotheses to generate the space B2 of Boehmi-
ans. The following theorem includes a straightforward proof alluded to a simple integral
calculus. Hence it has been detailed.

Theorem 4 Let Un, U , U1, U2 ∈ L1(R2
+) and φ ∈ C∞(R+). Then we have

(U1 + U2) ⊕ φ = U1 ⊕ φ + U2 ⊕ φ, (ζU) ⊕ φ = ζ (U ⊕ φ),

where ζ ∈ C, and, if Un → U in L1(R2
+), then

Un ⊕ φ → U ⊕ φ

as n → ∞ in L1(R2
+).

Theorem 5 If U ∈ L1(R2
+) and (δn) ∈ �, then U ⊕ δn → U as n → ∞.

Proof By the property
∫ ∞

–∞ δn = 1 of delta sequences and the definition of the norm
‖ · ‖L1(R2

+) together with the facts that δn ∈ C∞(R+) and supp δn ⊂ (αn,βn), for all n ∈ N,
we write

‖U ⊕ δn – U‖L1(R2
+)

=
∫

R
2
+

∣∣∣∣

∫

R+

U(
√

xu,
√

xv)δn(x)
dx
xkα

– U(u, v)
∣∣∣∣d(u, v)

=
∫

R
2
+

∣∣∣∣

∫

R+

U(
√

xu,
√

xv)δn(x)
dx

xkα
– U(u, v)

∫

R+

δn(x) dx
∣∣∣∣d(u, v)

≤
∫ βn

αn

∫

R
2
+

∣∣∣∣
U(

√
xu,

√
xv)

xkα
– U(u, v)

∣∣∣∣
∣∣δn(x)

∣∣dx d(u, v).

By applying certain favorable computations and considering the facts

∣∣∣∣
U(

√
xu,

√
xv)

xkα
– U(u, v)

∣∣∣∣ ≤ 2‖U‖L1(R2
+) and

∣∣δn(x)
∣∣ ≤ A for some real number A,
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we end up with

‖U ⊕ δn – U‖L1(R2
+) ≤ 2A‖U‖L1(R2

+)(βn – αn) → 0 as n → ∞.

The proof is therefore ended. �

The trustworthy conclusion which can be drawn from Theorems 3, 4, and 5 is the pres-
ence of the space B2 as a Boehmian space. A Boehmian in B2 is defined as Xϕn = ( ϕn

δn
). In

B2, if Xϕn = ( ϕn
δn

) and Xgn = ( gn
εn

) are two Boehmians, then typically we define

Xϕn + Xgn =
(

ϕn ⊕ δn + gn ⊕ δn

δn � εn

)
, βXϕn =

(
βϕn

δn

)
for all β ∈ C.

Also, for α ∈R and ω ∈ L1(R2
+), we resp. define ⊕, the differentiation Dα , and the extension

of ⊕ to B2 ⊕ L1(R2
+) in B2 as

Xϕn ⊕ Xgn =
(

ϕn ⊕ gn

δn ⊕ εn

)
, DαXϕn =

(
Dαϕn

δn

)
, and Xϕn ⊕ ω =

ϕn ⊕ ω

δn
.

Definition 6 Let βn,β ∈ B2, n = 1, 2, 3, . . . . Then the sequence {β1,β2, . . . ,βn, . . .} is δ-
convergent to β , denoted by δ – limn→∞ βn = β(βn

δ→ β), provided there can be found
a delta sequence (δn) such that

• (βn ⊕ δk) and (β ⊕ δk) ∈ L1(R2
+) for all n, k ∈N,

• limn→∞ βn ⊕ δk = β ⊕ δk in L1(R2
+) for all k ∈N.

Or, equivalently, δ – limn→∞ βn = β if and only if there are ϕn,k , ϕk ∈ L1(R2
+) and (δk) ∈ �

such that
• βn = ( ϕn,k

δk
), β = ( ϕk

δk
),

• to every k ∈N, we havelimn→∞ ϕn,k = ϕk in L1(R2
+).

Definition 7 Let βn,β ∈ B2 for n = 1, 2, 3, . . . . Then the sequence {β1,β2, . . . ,βn, . . .} is �-
convergent to β , denoted by �-limn→∞ βn = β(βn

�→ β), provided there can be found a
delta sequence {δ1, δ2, . . . , δn, . . .} such that

• (βn – β) ⊕ δn ∈ L1(R2
+) (∀n ∈N)

• limn→∞(βn – β) ⊕ δn = 0 in L1(R2
+).

Similarly, for Un, U , U1, U2 ∈ L1(R+) and φ ∈ C∞(R+), we can easily check the construction
of the space B1 by using the familiar properties of the Mellin type convolution (see Eq. (5)),
which are U � φ = φ � U and (U � φ1) � φ2 = U � (φ1 � φ2) for U ∈ L1(R+) and φ1,φ2 ∈
C∞(R+), and applying analogous techniques in proving the axioms:

(i) (U1 + U2) � φ = U1 � φ + U2 � φ.
(ii) (ζU) � φ = ζ (U � φ), where ζ ∈C.

(iii) If Un → U in L1(R+), then Un � φ → U � φ as n → ∞ in L1(R+).
(iv) If U ∈ L1(R+) and (δn) ∈ �, then U � δn → U as n → ∞.

Operations on B1 can be stated as they have already been defined on the space B2. There-
fore, in B1, if XUn = ( Un

δn
) and XVn = ( Vn

εn
) are two Boehmians, then we define

XUn + XVn =
(

Un � δn + Vn � δn

δn � εn

)
, βXUn =

(
βUn

δn

)
for all β ∈C.
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Also, for α ∈ R and U ∈ L1(R+), we resp. define the application of � to Boehmians, the
differentiation Dα , and the extension of � to B1 � L1(R+) in B1 as

XUn � XVn =
(

Un � Vn

δn � εn

)
, DαXUn =

(
DαUn

δn

)
, and XUn � U =

Un � U
δn

.

Hence we have the following definition.

Definition 8 Let ( Un
δn

) ∈ B1, then we define the generalized Mα,k of XUn = ( Un
δn

) as

M̄α,k

(
Un

δn

)
= M̄α,kXUn =

(
Mα,kUn

δn

)
.

By the fact that Mα,kUn ∈ L1(R2
+), the formula in the above equation is well-defined.

Remark 9 Let {�1,�2, . . . ,�n, . . .} ∈ � and U ∈ L1(R2
+), U = Mα,kψ for some fixed ψ ∈

L1(R2
+), then we have:

(i) If Xψ̃ = ( ψ��n
�n

), then the mapping ψ → Xψ̃ from L1(R+) into B1 is an injective.
(ii) If YŨ = ( U⊕�n

�n
), then the mapping U → YŨ from L1(R2

+) into B2 is an injective.

From Remark 9, it may be said that L1(R+) (resp. L1(R2
+)) can be identified as subspaces

of B1 (resp. B2).

Remark 10
(i) Let (ψn) ∈ �. Then, if fn → f in L1(R+) as n → ∞, then for all k ∈ N,

fn � ψk → f � ψk as n → ∞.

(ii) Let (�n) ∈ �. Then, if Un → U in L1(R2
+) as n → ∞, then for all k ∈N,

Un ⊕ �k → U ⊕ �k as n → ∞.

It follows from above that Xfn → Xf in B1 and YUn → YU in B2 as n → ∞. Moreover, the
following can also be inferred.

Theorem 11 The mappings defined in Remark 10 are continuous embedding of L1(R+)
(resp. L1(R2

+)) into the space B1 (resp. B2).

4 General properties
In this section, we provide certain properties of the generalized natural integral transform.
In fact, the results here are brief and concise, and give the reader a general overview of the
generalized operator as most of similar properties are enumerated in the previous work
of the author.

Theorem 12 Let XUn = ( Un
δn

). Then the mapping XUn → YUn , defined by

UAXUn = YUn ,

is linear and coincides with the classical transform Mα,k : L1(R+) → L1(R2
+).
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Proof Linearity is obvious. To show consistency of the transform Mα,k , let U ∈ L1(R+),
then U can be identified in B1 as XU where XU = ( U�δn

δn
), which is the representation of U

in B1. Indeed, {δ1, δ2, . . . , δn, . . .} is independent of ( U�δn
δn

). Now by the convolution theorem,
we have

M̄α,kXU =
(

Mα,k(U � δn)
δn

)
=

(
Mα,kU ⊕ δn

δn

)
= YU .

Therefore, YU is the identification in B2 of Mα,kU in L1(R2
+).

The proof is therefore finished. �

Theorem 13 Let Xfn = ( Un
δn

) and M̄α,kXUn = YUn . Then the mapping XUn → YUn is one-to-
one, onto, and continuous with respect to the convergence of the Boehmian spaces. A similar
proof for this theorem can be performed by a similar way to that of [27, 28]. Hence it has
been omitted.

We introduce the inverse integral operator of UA as follows.

Definition 14 Let YUn ∈ B2, YUn = M̄α,kXUn = Mα,kχn
δn

, (δn) ∈ �, XUn = ( Un
δn

). We define the
inverse M̄α,k integral operator of YUn as

M̄–1
α,kYUn = XUn . (13)

Theorem 15 The inverse mapping YUn → XUn is linear.

Proof Consider two Boehmians YVn and YUn in B2, where YVn = ( Mα,k Vn
δn

) and YUn =
( Mα,k Un

εn
). Then, for all n ∈ N, the convolution theorem and the linearity of the integral

reveal

YVn + YUn =
(

Mα,kVn ⊕ εn + Mα,kUn ⊕ εn

δn � εn

)
=

(
Mα,k(Vn � εn + Un � δn)

δn � εn

)
.

Hence, Definition 14 yields

M̄–1
α,k(YVn + YUn ) =

(
Vn � εn + Un � δn

δn � εn

)
.

Notion of addition in B1 implies

M̄–1
α,k(YVn + YUn ) = XVn + XUn ,

where XVn = ( Vn
δn

) and XUn = ( Un
εn

). To complete the proof of the theorem, we indeed, for
some η ∈C and all n ∈ N , have

M̄–1
α,k(ηYVn ) = ηM̄–1

α,kYVn .

This finishes the proof of the theorem. �

The generalized convolution theorem can be drawn as follows.
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Theorem 16 Let YUn ∈ B2 and U ∈ D. Then we have
(i) M̄–1

α,k(YUn ⊕ U) = XUn � U ,
(ii) M̄α,k(XUn � U) = YUn ⊕ U .

Proof Assume YUn ∈ B2 and U ∈ D. Then we have

M̄–1
α,k(YUn ⊕ U) = M̄–1

α,k

(
Mα,kUn

εn
⊕ U

)
= M̄–1

α,k

(
Mα,kUn ⊕ U

εn

)
.

By using Theorem 2 and Eq. (13), the above equation reveals

M̄–1
α,k(YUn � U) = M̄–1

α,k

(
Mα,k(Un � U)

εn

)
=

(
Un

εn
� U

)
= XUn � U .

Proof of the part M̄α,k(XUn � U) = YUn ⊕ U is quite similar.
This finishes the proof of the theorem. �
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