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Abstract
A Kirchhoff-type problem with concave-convex nonlinearities is studied. By
constrained variational methods on a Nehari manifold, we prove that this problem
has a sign-changing solution with least energy. Moreover, we show that the energy
level of this sign-changing solution is strictly larger than the double energy level of
the ground state solution.
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1 Introduction
We study the following Kirchhoff-type equation with concave-convex nonlinearities:

⎧
⎪⎪⎨

⎪⎪⎩

(a + λ
∫

R3 |∇u|2 + λb
∫

R3 u2)(–�u + bu)

= Q(x)|u|p–1u + κG(x)|u|q–1u, x ∈R
3,

u ∈ H1
r (R3),

(1.1)

where a > 0, b > 0, λ > 0, κ < 0, p ∈ (3, 5), q ∈ (0, 1), and Q, G ∈ C(R3,R+) satisfying the
following conditions:

(Q1) There exists β ∈ [0, p – 2) such that lim supx→+∞
Q(x)
|x|β < +∞;

(G1) G(x) ∈ L2(R3,R+).
In recent years, the following elliptic problem has been investigated by many researchers

[1, 3, 6, 9, 17, 20]:

⎧
⎨

⎩

–(a + b
∫

R3 |∇u|2)�u = f (x, u), x ∈R
3,

u ∈ H1(R3),
(1.2)

where f ∈ C(R3 × R,R) and a > 0, b > 0. The term
∫

R3 |∇u|2 in (1.2) has an interesting
physical application. Moreover, this problem is related to the stationary analogue of the
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following equation proposed by Kirchhoff [10]:

utt –
(

a + b
∫

�

|∇u|2
)

�u = f (x, u). (1.3)

Inspired by the variational framework given by Lions [12], problem (1.3) has been inves-
tigated by many researchers, and the reader is referred to [5, 7, 11, 13, 19, 22] and the
references therein for more details.

Shuai [16] studied the ground state sign-changing solution of problem (1.2) by using
Brouwer degree theory, where f (x, u) is replaced with f (u) with the following hypotheses:

(f ′
1): f (s) = o(|s|) as s → 0;

(f ′
2): For some constant p ∈ (4, 2∗), lims→∞ f (s)

sp–1 = 0, where 2∗ = +∞ for N = 1, 2 and 2∗ = 6
for N = 3;

(f ′
3): lims→∞ F(s)

s4 = +∞, where F(s) =
∫ s

0 f (t) dt;
(f ′

4): f (s)
|s|3 is an increasing function with respect to s ∈R \ {0}.

Huang and Liu [8] obtained the ground state sign-changing solutions of problem (1.4)
with accurately two nodal domains

–
(

1 + λ

∫

RN

(|∇u|2 + V (x)u2)
)

[
�u + V (x)u

]
= |u|p–1u, x ∈R

N , (1.4)

where p ∈ (3, 5), λ > 0 and V ∈ C(RN ,R) is to ensure the establishment of compactness.
Deng et al. [4] showed the existence of radial sign-changing solutions ub

k of problem (1.5)

⎧
⎨

⎩

–(a + b
∫

R3 |∇u|2)�u + V (x)u = f (x, u), x ∈R
3,

u ∈ H1
r (R3),

(1.5)

by constrained minimization on the Nehari manifold, where k is any positive integer. Ye
[21] studied the existence of least energy sign-changing solutions for problem (1.5), where
f (x, u) is replaced with f (u).

Shao and Mao [15] got at least one sign-changing solution of problem (1.6) with concave-
convex nonlinearities

⎧
⎨

⎩

–(a + b
∫

�
|∇u|2)�u = μg(x, u) + f (x, u), in �,

u = 0, on ∂�,
(1.6)

by using the method of invariant sets of descending flow.
Motivated by the aforementioned works, we prove the existence of sign-changing so-

lutions with least energy for problem (1.1) with concave-convex nonlinearities and un-
bounded potential by constrained variational methods on a Nehari manifold.

Now we will give the main results by Theorems 1.1 and 1.2.

Theorem 1.1 Assume that (Q1) and (G1) hold, then, for a > 0, b > 0, λ > 0, and κ < 0, prob-
lem (1.1) has one least energy sign-changing solution with accurately two nodal domains.

Theorem 1.2 Assume that (Q1) and (G1) hold, then, for a > 0, b > 0, λ > 0, and κ < 0,
problem (1.1) has one least energy solution. Moreover mλ > 2cλ, where mλ and cλ are defined
by (2.3) and (2.5) respectively.
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Remark 1.3 Comparing with Shuai [16], Huang and Liu [8], Deng et al. [4], and Ye [21], the
difference is to consider Kirchhoff-type equation with concave and convex terms, where
Q(x) is unbounded at infinity. Moreover, since H1

r (R3) ↪→ Lq+1(R3) is not compact for
q ∈ (0, 1), this means that the appearance of concave and convex terms has greatly in-
creased the difficulty of problem (1.1). Shao and Mao [15] got sign-changing solutions for
Kirchhoff equation with concave and convex terms by using the method of invariant sets
of descending flow. However, we want to obtain ground state sign-changing solutions of
(1.1) by variational methods and constrained minimization on the sign-changing Nehari
manifold. It should be addressed that our methods are different to those in [15].

The rest of the paper is organized as follows. In Sect. 2 we give some notations and the
main lemmas related to the proof of our main results. Sections 3 and 4 give the proofs of
Theorems 1.1 and 1.2, respectively.

2 Some notations and preliminary lemmas
Here are some notations to be used in this paper.

• C denotes a positive constant;
• H1(R3) denotes the usual Sobolev space with the norm ‖u‖2 =

∫

R3 (|∇u|2 + b|u|2);
• | · | denotes the usual norm Lq̄(R3) for q̄ ∈ [1,∞);
• H1

r (R3) := {u : u ∈ H1(R3), u(x) = u(|x|)};
• u+ := max{u, 0} and u– := min{u, 0}.

Lemma 2.1 (see Berestycki and Lions [2]) Let N ≥ 2 and u ∈ H1
r (RN ), Then

∣
∣u(r)

∣
∣ ≤ C0‖u‖r

1–N
2 for r ≥ 1,

where C0 > 0 is only related to N .

Remark 2.2 For any u ∈ H1
r (R3), by (Q1), (G1), and Lemma 2.1, we have

0 ≤
∫

R3
Q(x)|u|p+1 ≤ C1‖u‖p+1

and

∣
∣
∣
∣

∫

R3
G(x)|u|q+1

∣
∣
∣
∣ ≤

∫

R3

∣
∣G(x)

∣
∣|u|q+1 ≤ ∣

∣G(x)
∣
∣
2|u|q+1

2(q+1) ≤ C1‖u‖q+1.

The energy functional Jλ ∈ C1(H1
r (R3),R) is well defined by

Jλ(u) =
1
2

a‖u‖2 +
1
4
λ‖u‖4 –

1
p + 1

∫

R3
Q(x)|u|p+1 –

1
q + 1

κ

∫

R3
G(x)|u|q+1. (2.1)

For each u, v ∈ H1
r (R3),

〈
J ′
λ(u), v

〉
= a(u, v) + λ‖u‖2(u, v) –

∫

R3
Q(x)|u|p–1uv – κ

∫

R3
G(x)|u|q–1uv. (2.2)
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In order to get a sign-changing solution u± �= 0 of (1.1), the following functionals need to
be established:

Jλ(u) = Jλ
(
u+)

+ Jλ
(
u–)

+
λ

2
∥
∥u+∥

∥2∥∥u–∥
∥2,

〈
J ′
λ(u), u+〉

=
〈
J ′
λ

(
u+)

, u+〉
+ λ

∥
∥u–∥

∥2∥∥u+∥
∥2,

〈
J ′
λ(u), u–〉

=
〈
J ′
λ

(
u–)

, u–〉
+ λ

∥
∥u+∥

∥2∥∥u–∥
∥2.

Let us define

Mλ =
{

u ∈ H1
r
(
R

3) : u± �= 0,
〈
J ′
λ(u), u+〉

=
〈
J ′
λ(u), u–〉

= 0
}

and

mλ := inf
{

Jλ(u) : u ∈Mλ

}
. (2.3)

In addition, we define

Nλ =
{

u ∈ H1
r
(
R

3) \ {0} :
〈
J ′
λ(u), u

〉
= 0

}
(2.4)

and

cλ := inf
{

Jλ(u) : u ∈Nλ

}
. (2.5)

Lemma 2.3 Assume that (Q1), (G1), and un ⇀ u in H1
r (R3) hold, then

lim
n→∞

∫

R3
G(x)|un|q+1 =

∫

R3
G(x)|u|q+1.

In particular,

lim
n→∞

∫

R3
G(x)

∣
∣u±

n
∣
∣q+1 =

∫

R3
G(x)

∣
∣u±∣

∣q+1.

Proof If un ⇀ u in H1
r (R3), then un → u in Lq̄(R3) for q̄ ∈ (2, 6). According to [18, Theo-

rem A.4, p. 134], we can obtain that |un|q+1 → |u|q+1 in L2(R3). By the Hölder inequality,
we have

∣
∣
∣
∣

∫

R3
G(x)|un|q+1 –

∫

R3
G(x)|u|q+1

∣
∣
∣
∣

≤
∫

R3

∣
∣G(x)

∣
∣
∣
∣|un|q+1 – |u|q+1∣∣

≤ ∣
∣G(x)

∣
∣
2

∣
∣|un|q+1 – |u|q+1∣∣

2 → 0.

Thus, limn→∞
∫

R3 G(x)|un|q+1 =
∫

R3 G(x)|u|q+1. Similarly, limn→∞
∫

R3 G(x)|u±
n |q+1 =

∫

R3 G(x)|u±|q+1. �
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Lemma 2.4 Under the assumptions of Theorem 1.1. If u ∈ H1
r (R3) with u± �= 0, there exists

a unique pair (su, tu) ∈ (0, +∞) × (0, +∞) such that suu+ + tuu– ∈Mλ. Moreover,

Jλ
(
suu+ + tuu–)

= max
s,t≥0

Jλ
(
su+ + tu–)

.

Proof Let u ∈ H1(R3) with u± �= 0. Define

g1(s, t) = as2∥∥u+∥
∥2 + λs4∥∥u+∥

∥4 + λs2t2∥∥u+∥
∥2∥∥u–∥

∥2

– sp+1
∫

R3

Q(x)
∣
∣u+∣

∣p+1 – κsq+1
∫

R3

G(x)
∣
∣u+∣

∣q+1, (2.6)

g2(s, t) = at2∥∥u–∥
∥2 + λt4∥∥u–∥

∥4 + λs2t2∥∥u–∥
∥2∥∥u+∥

∥2

– tp+1
∫

R3

Q(x)
∣
∣u–∣

∣p+1 – κtq+1
∫

R3

G(x)
∣
∣u–∣

∣q+1. (2.7)

According to Remark 2.2, for κ < 0, we have gi(s, s) > 0 as s > 0 small and gi(t, t) < 0 as t > 0
large, where i = 1, 2. Then there exists 0 < μ < ν such that

gi(μ,μ) > 0, gi(ν,ν) < 0. (2.8)

By (2.6), (2.7), (2.8), we have that

g1(μ, t) > 0, g1(ν, t) < 0, t ∈ [μ,ν],

g2(s,μ) > 0, g2(s,ν) < 0, s ∈ [μ,ν].

From Miranda’s theorem [14], there exists a pair (su, tu) such that

g1(su, tu) = 0, g2(su, tu) = 0, μ < su, tu < ν.

Thus, suu+ + tuu– ∈Mλ.
Secondly, we prove the uniqueness. Let both (s1, t1) and (s2, t2) satisfy ui = siu+ + tiu– ∈

Mλ (i = 1, 2) and u1 = s1u+ + t1u– = ms2u+ + nt2u– = mu+
2 + nu–

2 , where m = s1
s2

, n = t1
t2

. By
(2.6) and (2.7),

gu1
1 (1, 1) = gu2

1 (m, n) = gu2
1 (1, 1) = 0, (2.9)

gu1
2 (1, 1) = gu2

2 (m, n) = gu2
2 (1, 1) = 0. (2.10)

We only need to prove that m = n = 1. Now, assume that 0 < m ≤ n. By (2.9) and (2.10),

gu2
1 (1, 1) –

gu2
1 (m, n)

m4 = 0 (2.11)

and

gu2
2 (1, 1) –

gu2
2 (m, n)

n4 = 0. (2.12)
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If m < 1, then

(

1 –
1

m2

)

a
∥
∥u+

2
∥
∥2 +

(

1 –
n2

m2

)

λ
∥
∥u–

2
∥
∥2∥∥u+

2
∥
∥2

=
(
1 – mp–3)

∫

R3
Q(x)

∣
∣u+

2
∣
∣p+1 +

(
1 – mq–3)κ

∫

R3
G(x)

∣
∣u+

2
∣
∣q+1,

this is impossible for κ < 0. Then m ≥ 1. Similarly, if n > 1, (2.12) is impossible. Then n ≤ 1.
Thus m = n = 1.

At last, let

Hλ(s, t) = Jλ
(
su+ + tu–)

=
a
2

s2∥∥u+∥
∥2 +

λ

4
s4∥∥u+∥

∥4 –
sp+1

p + 1

∫

R3
Q(x)

∣
∣u+∣

∣p+1 –
sq+1

q + 1
κ

∫

R3

G(x)
∣
∣u+∣

∣q+1

+
a
2

t2∥∥u–∥
∥2 +

λ

4
t4∥∥u–∥

∥4 –
tp+1

p + 1

∫

R3
Q(x)

∣
∣u–∣

∣p+1 –
tq+1

q + 1
κ

∫

R3

G(x)
∣
∣u–∣

∣q+1

+
λ

2
s2t2∥∥u–∥

∥2∥∥u+∥
∥2.

Then, for κ < 0, we have Hλ(s, t) > 0 as |(s, t)| → 0, Hλ(s, t) < 0 as |(s, t)| → ∞, and Hλ

cannot achieve the maximum point on ∂R+2. Without loss of generality, we only prove
that (0, t0) is not a maximum point of Hλ. For s > 0 small enough,

∂Hλ

∂s
(s, t0) = as

∥
∥u+∥

∥2 + λs3∥∥u+∥
∥4 + λst2

0
∥
∥u–∥

∥2∥∥u+∥
∥2

– sp
∫

R3
Q(x)

∣
∣u+∣

∣p+1 – sqκ

∫

R3

G(x)
∣
∣u+∣

∣q+1 > 0,

this implies that Hλ(s, t0) is an increasing function with respect to s, where s > 0 is small
enough, then (0, t0) is not a maximum point of Hλ. Thus, there exists (su, tu) ∈ R

+2 such
that

Jλ
(
suu+ + tuu–)

= max
s,t≥0

Jλ
(
su+ + tu–)

. �

Lemma 2.5 Under the assumptions of Theorem 1.1. If 〈J ′
λ(u), u±〉 ≤ 0, there exists (su, tu) ∈

(0, 1] × (0, 1] such that suu+ + tuu– ∈Mλ for u ∈ H1
r (R3) with u± �= 0.

Proof Let u ∈ H1
r (R3) with u± �= 0, by Lemma 2.4, there exists a pair (su, tu) such that

s2
ua

∥
∥u+∥

∥2 + s4
uλ

∥
∥u+∥

∥4 + s2
ut2

uλ
∥
∥u–∥

∥2∥∥u+∥
∥2

– sp+1
u

∫

R3
Q(x)

∣
∣u+∣

∣p+1 – sq+1
u κ

∫

R3
G(x)

∣
∣u+∣

∣q+1 = 0. (2.13)

Since 〈J ′
λ(u), u±〉 ≤ 0, we have that

a
∥
∥u+∥

∥2 + λ
∥
∥u+∥

∥4 + λ
∥
∥u–∥

∥2∥∥u+∥
∥2 –

∫

R3
Q(x)

∣
∣u+∣

∣p+1 – κ

∫

R3
G(x)

∣
∣u+∣

∣q+1 ≤ 0. (2.14)
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Now, assume that 0 < tu ≤ su. If su > 1, by (2.13) and (2.14),

(

1 –
1
s2

u

)

a
∥
∥u+∥

∥2 +
(

1 –
t2
u

s2
u

)

λ
∥
∥u–∥

∥2∥∥u+∥
∥2

≤ (
1 – sp–3

u
)
∫

R3
Q(x)

∣
∣u+∣

∣p+1 +
(
1 – sq–3

u
)
κ

∫

R3
G(x)

∣
∣u+∣

∣q+1,

which is contradictory for κ < 0. Then su ≤ 1. From 0 < tu ≤ su, we obtain that 0 < tu ≤
su ≤ 1. �

Lemma 2.6 Under the assumptions of Theorem 1.1, mλ > 0 can be achieved.

Proof For all u ∈Mλ, by the Sobolev embedding theorem, we have

a‖u‖2 ≤ a‖u‖2 + λ‖u‖4 =
∫

R3
Q(x)|u|p+1 + κ

∫

R3
G(x)|u|q+1 ≤ C1‖u‖p+1.

Then there exists C ≥ C1 such that ‖u‖ ≥ ( a
C )

1
p–1 > 0. Since

Jλ(u) = Jλ(u) –
1
4
〈
J ′
λ(u), u

〉

=
a
2
‖u‖2 +

λ

4
‖u‖4 –

1
p + 1

∫

R3
Q(x)|u|p+1 –

1
q + 1

κ

∫

R3
G(x)|u|q+1

–
a
4
‖u‖2 –

λ

4
‖u‖4 +

1
4

∫

R3
Q(x)|u|p+1 +

1
4
κ

∫

R3
G(x)|u|q+1

=
a
4
‖u‖2 +

(
1
4

–
1

p + 1

)∫

R3
Q(x)|u|p+1 –

(
1

q + 1
–

1
4

)

κ

∫

R3
G(x)|u|q+1

≥ a
8
‖u‖2 (2.15)

for κ < 0. Then

mλ = inf
u∈Mλ

Jλ(u) > 0.

Let {un} ⊂Mλ and Jλ(un) → mλ. By Remark 2.2, we have

1 + mλ ≥ Jλ(un) –
1

p + 1
〈
J ′
λ(un), un

〉 ≥ a
8
‖un‖2.

This shows that {un} is bounded in H1
r (R3). Then there exists uλ ∈ H1

r (R3) such that u±
n ⇀

u±
λ in H1

r (R3), u±
n → u±

λ in Lq(R3) for q ∈ (2, 6) and u±
n (x) → u±

λ (x) a.e. on R
3. Since {un} ⊂

Mλ, we have

0 < C ≤ a
∥
∥u±

n
∥
∥2 + λ

∥
∥u±

n
∥
∥4 + λ

∥
∥u+

n
∥
∥2∥∥u–

n
∥
∥2 =

∫

R3
Q(x)

∣
∣u±

n
∣
∣p+1 + κ

∫

R3
G(x)

∣
∣u±

n
∣
∣q+1.

By Fatou’s lemma and Lemma 2.3,

a
∥
∥u±

λ

∥
∥2 + λ

∥
∥u±

λ

∥
∥4 + λ

∥
∥u+

λ

∥
∥2∥∥u–

λ

∥
∥2 ≤

∫

R3
Q(x)

∣
∣u±

λ

∣
∣p+1 + κ

∫

R3
G(x)

∣
∣u±

λ

∣
∣q+1,
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this implies that

〈
J ′
λ(uλ), u±

λ

〉 ≤ 0.

By Lemmas 2.4 and 2.5, there exists (suλ
, tuλ

) ∈ (0, 1] × (0, 1] such that ũλ = suλ
u+

λ + tuλ
u–

λ ∈
Mλ. Then

mλ ≤ Jλ (̃uλ) –
1

p + 1
〈
J ′
λ (̃uλ), ũλ

〉

=
(

1
2

–
1

p + 1

)

a‖̃uλ‖2 +
(

1
4

–
1

p + 1

)

λ‖̃uλ‖4 –
(

1
q + 1

–
1

p + 1

)

κ

∫

R3
G(x)|̃uλ|q+1

≤ p – 1
2(p + 1)

a‖uλ‖2 +
p – 3

4(p + 1)
λ‖uλ‖4 –

p – q
(q + 1)(p + 1)

κ

∫

R3
G(x)|uλ|q+1

≤ lim inf
n

{
p – 1

2(p + 1)
a‖un‖2 +

p – 3
4(p + 1)

λ‖un‖4 –
p – q

(q + 1)(p + 1)
κ

∫

R3
G(x)|un|q+1

}

= lim inf
n

(

Jλ(un) –
1

p + 1
〈
J ′
λ(un), un

〉
)

= mλ,

this implies that suλ
= tuλ

= 1. Thus, ũλ = uλ and Jλ(uλ) = mλ. �

3 Sign-changing solutions
Lemma 3.1 Under the assumptions of Theorem 1.1. If uλ ∈ Mλ and Jλ(uλ) = mλ, then
J ′
λ(uλ) = 0.

Proof Suppose that J ′
λ(uλ) �= 0, then there are σ , δ > 0 such that

∥
∥J ′

λ(u)
∥
∥ ≥ σ , ∀‖u – uλ‖ ≤ 3δ.

Let D = (0.5, 1.5) × (0.5, 1.5). By Lemma 2.4, we obtain that

ι := max
(s,t)∈∂D

Jλ
(
su+

λ + tu–
λ

)
< mλ. (3.1)

For ε := min{(mλ – ι)/2,σδ/8} and S := B(uλ, δ), Willem [18, Lemma 2.3] produce a defor-
mation η such that

(i) η(1, u) = u if u /∈ J–1
λ ([mλ – 2ε, mλ + 2ε]) ∩ S2δ ;

(ii) η(1, Jmλ+ε

λ ∩ S) ⊂ Jmλ–ε

λ ;
(iii) Jλ(η(1, u)) ≤ Jλ(u) for all u ∈ H1

r (R3).
At first, we show that

max
(s,t)∈D̄

Jλ
(
η
(
1, su+

λ + tu–
λ

))
< mλ.

For all (s, t) ∈ D̄, by Lemma 2.4, we obtain Jλ(su+
λ + tu–

λ) ≤ mλ < mλ + ε, that is, su+
λ + tu–

λ ∈
Jmλ+ε

λ . Therefore, Jλ(η(1, su+
λ + tu–

λ)) ≤ mλ – ε.
Next, we prove that

η
(
1, su+

λ + tu–
λ

) ∩Mλ �= ∅, ∀(s, t) ∈ D̄.
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Define h(s, t) = η(1, su+
λ + tu–

λ) and ψ : [0, 1] × D̄ →R
2, for any ϑ ∈ [0, 1], we have

ψ
(
ϑ , (s, t)

)
=

(〈
J ′
λ

(
η
(
ϑ , su+

λ + tu–
λ

))
,
(
η
(
ϑ , su+

λ + tu–
λ

))+〉
,

〈
J ′
λ

(
η
(
ϑ , su+

λ + tu–
λ

))
,
(
η
(
ϑ , su+

λ + tu–
λ

))–〉)
.

Let

ψ0 = ψ0(1, ·) =
〈
J ′
λ

(
su+

λ + tu–
λ

)
su+

λ , J ′
λ

(
su+

λ + tu–
λ

)
tu–

λ

〉
,

ψ1 = ψ1(1, ·) =
〈
J ′
λ

(
h(s, t)

)
h+(s, t), J ′

λ

(
h(s, t)

)
h–(s, t)

〉
.

By a simple calculation, deg(ψ0, D, 0) = 1. According to (3.1), we obtain that uλ = h on ∂D
and from homotopy invariance that

deg(ψ1, D, 0) = deg(ψ0, D, 0) = 1.

Then there exists a pair (s0, t0) ∈ D such that ψ1(s0, t0) = 0 and η(1, s0u+
λ + t0u–

λ) = h(s0, t0) ∈
Mλ, which contradicts (3.1). Therefore, uλ is a critical point of Jλ, and so a sign-changing
solution of (1.1). �

Proof of Theorem 1.1 Firstly, by the preceding lemmas, there exists uλ ∈ Mλ such that
Jλ(uλ) = mλ and J ′

λ(uλ) = 0. Thus, problem (1.1) has one least energy sign-changing solution
uλ.

Secondly, we prove that uλ has only two nodal domains. Assume that uλ = u1 + u2 + u3

with

ui �≡ 0, u1 ≥ 0, u2 ≤ 0,

supp(ui) ∩ supp(uj) = ∅, i �= j, i, j = 1, 2, 3.

Setting w = u1 + u2 with w+ = u1 and w– = u2, i.e., w± �= 0. Since J ′
λ(uλ) = 0, we get

〈
J ′
λ(w), w+〉

=
〈
J ′
λ(u1 + u2), u1

〉 ≤ 〈
J ′
λ(uλ), u1

〉
= 0,

〈
J ′
λ(w), w–〉

=
〈
J ′
λ(u1 + u2), u2

〉 ≤ 〈
J ′
λ(uλ), u2

〉
= 0.

By Lemma 2.5, there exists (sw, tw) ∈ (0, 1] × (0, 1] such that

sww+ + tww– = swu1 + twu2 ∈Mλ, mλ ≤ Jλ(swu1 + twu2).

Note that 〈J ′
λ(uλ), uλ〉 = 0 and 〈J ′

λ(swu1 + twu2), swu1 + twu2〉 = 0, we have

mλ = Jλ(uλ) –
1

p + 1
〈
J ′
λ(uλ), uλ

〉

=
(

1
2

–
1

p + 1

)

a‖uλ‖2 +
(

1
4

–
1

p + 1

)

λ
(‖uλ‖2)2

–
(

1
q + 1

–
1

p + 1

)

κ

∫

R3
G(x)|uλ|q+1
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>
(

1
2

–
1

p + 1

)

a
(‖u1‖2 + ‖u2‖2)

+
(

1
4

–
1

p + 1

)

λ
(‖u1‖4 + 2‖u1‖2‖u2‖2 + ‖u2‖4)

–
(

1
q + 1

–
1

p + 1

)

κ

∫

R3
G(x)

(|u1|q+1 + |u2|q+1)

≥
(

1
2

–
1

p + 1

)

a
(‖swu1‖2 + ‖twu2‖2)

+
(

1
4

–
1

p + 1

)

λ
(‖swu1‖4 + 2‖swu1‖2‖twu2‖2 + ‖twu2‖4)

–
(

1
q + 1

–
1

p + 1

)

κ

∫

R3
G(x)

(|swu1|q+1 + |twu2|q+1)

=
(

1
2

–
1

p + 1

)

a‖swu1 + twu2‖2 +
(

1
4

–
1

p + 1

)

λ
(‖swu1 + twu2‖2)2

–
(

1
q + 1

–
1

p + 1

)

κ

∫

R3
G(x)|swu1 + twu2|q+1

= Jλ(swu1 + twu2) –
1

p + 1
〈
J ′
λ(swu1 + twu2), swu1 + twu2

〉

= Jλ(swu1 + twu2)

≥ mλ,

which is a contradiction. �

4 Ground state solutions
Lemma 4.1 (Mountain pass theorem [18]) Let X be a Banach space, I ∈ C1(X,R), e ∈ X,
and ρ > 0 such that ‖e‖ > ρ and

inf‖u‖=ρ
I(u) > I(0) ≥ I(e).

If I satisfies the (PS)c condition with

c := inf
γ∈�

max
t∈[0,1]

I
(
γ (t)

)
,

� :=
{
γ ∈ C

(
[0, 1], X

)
: γ (0) = 0,γ (1) = e

}
,

then c is a critical value of I .

Lemma 4.2 Under the assumptions of Theorem 1.2, there exist e ∈ H1
r (R3) and ρ > 0 such

that ‖e‖ > ρ and inf‖u‖=ρ Jλ(u) > Jλ(0) > Jλ(e).

Proof For all u ∈ H1
r (R3), by Remark 2.2,

Jλ(u) =
a
2
‖u‖2 +

λ

4
‖u‖4 –

1
p + 1

∫

R3
Q(x)|u|p+1 –

κ

q + 1

∫

R3
G(x)|u|q+1

≥ a
2
‖u‖2 +

λ

4
‖u‖4 –

C1

p + 1
‖u‖p,
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then there exists ρ > 0 such that

b := inf‖u‖=ρ
Jλ(u) > 0 = Jλ(0).

Let t ≥ 0, we have

Jλ(tu) =
t2

2
a‖u‖2 +

t4

4
λ‖u‖4 –

tp+1

p + 1

∫

R3
Q(x)|u|p+1 –

tq+1

q + 1
κ

∫

R3
G(x)|u|q+1,

then there exists e := tu such that ‖e‖ > ρ and Jλ(e) < 0. �

Lemma 4.3 Under the assumptions of Theorem 1.2. Jλ satisfies the (PS)c condition.

Proof Let {un} ⊂ H1
r (R3) and Jλ(un) → c, Jλ(un) → 0 as n → ∞. By (2.15) in Lemma 2.6

above, it is easy to see that {un} is bounded in H1
r (R3). Going if necessary to a subsequence,

un ⇀ u in H1
r (R3), un → u in Ls(R3) for s ∈ (2, 6), and un(x) → u(x) a.e. on R

3, then by (G1)
we have

∣
∣
∣
∣

∫

R3
G(x)|un|q(un – u)

∣
∣
∣
∣

≤
∫

R3

∣
∣G(x)

∣
∣
∣
∣|un|q|un – u|∣∣

≤
(∫

R3

∣
∣G(x)

∣
∣2

) 1
2
(∫

R3
|un|2q|un – u|2

) 1
2

≤ ∣
∣G(x)

∣
∣
2

(∫

R3
|un|2q+2

) q
2q+2

(∫

R3
|un – u|2q+2

) 1
2q+2

≤ C
∣
∣G(x)

∣
∣
2‖un‖q|un – u|2q+2 → 0.

Since

〈
J ′
λ(un) – J ′

λ(u), un – u
〉 → 0,

∫

R3
Q(x)

(|un|p – |u|p)(un – u) → 0

and

(
a + λ‖un‖2)‖un – u‖2

=
〈
J ′
λ(un) – J ′

λ(u), un – u
〉
+ λ

(‖u‖2 – ‖un‖2)〈u, un – u〉

+
∫

R3
Q(x)

(|un|p – |u|p)(un – u) +
∫

R3
G(x)

(|un|p – |u|p)(un – u).

Thus, un → u in H1
r (R3). �

Set

c1 = inf
u∈H1

r (R3)\{0}
max
t≥0

Jλ(tu).
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Lemma 4.4 Under the assumptions of Theorem 1.2, we have c = cλ = c1.

Proof Similar to the proof of Lemma 2.4, for all u ∈ H1
r (R3) \ {0}, there exists unique tuu ∈

N such that Jλ(tuu) = maxt≥0 Jλ(tu), this implies that cλ ≤ c1.
For each γ ∈ �, it follows from the property of N that γ (t) crosses N as t varying over

[0, 1]. Since γ (0) = 0, Jλ(γ (1)) < 0, then

max
t∈[0,1]

Jλ
(
γ (t)

) ≥ inf
u∈N

Jλ(u) = cλ.

Therefore c ≥ cλ. On the other hand, for u ∈ H1
r (R3)\{0}, we have that Jλ(tu) < 0 for t large

enough, and then

max
t≥0

Jλ(tu) ≥ max
t∈[0,1]

Jλ(tu) ≥ inf
γ∈�

max
t∈[0,1]

Jλ
(
γ (t)

)
= c.

Therefore c1 ≥ c. �

Proof of Theorem 1.2 According to Lemmas 4.1, 4.2, 4.3, and 4.4, we obtain that problem
(1.1) has one least energy solution.

Now we prove mλ > 2cλ. By the proof of Theorem 1.1, there exists uλ ∈ Mλ such that
Jλ(uλ) = mλ. By Lemmas 2.4 and 4.4, we have

mλ = Jλ(uλ)

≥ Jλ
(
su+

λ + tu–
λ

)

= Jλ
(
su+

λ

)
+ Jλ

(
tu–

λ

)
+

s2t2

2
λ
∥
∥u+

λ

∥
∥2∥∥u–

λ

∥
∥2

> Jλ
(
su+

λ

)
+ Jλ

(
tu–

λ

)

≥ 2cλ. �
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