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Abstract
In this paper, we investigate the dynamical behavior of a two-group SVIR epidemic
model with random effect. Firstly, the two-group SVIR epidemic model with random
perturbation of natural death rate is established. The existence and uniqueness of
positive solution are proved by using stopping time theory and the Lyapunov analysis
method. Secondly, a property of the system solution is obtained by using the law of
strong numbers and the continuous local martingale. Finally, a new combination of
Lyapunov functions is applied. The solution of the model we obtained is oscillating
around a steady state if the basic reproduction number is less than one, which is the
disease-free equilibrium of the corresponding deterministic model. A numerical
simulation is presented to verify our theoretical results.
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1 Introduction
The epidemic is one of the most important diseases which are caused by various pathogens
and are harmful to the health of humans. It can be spread from person to person, from per-
son to animal, or from animal to animal. Infectious diseases have always been the enemy
of human survival and development. For a long time, human beings have been fighting
with infectious diseases. For example, in 1988, a Malaysian village named Sungai Nipah
was infected with an infectious disease called Nipah virus (Niv) [1]. The continued emer-
gence of new major infectious diseases in the new century (such as SARS in 2003, A/H1H1
flu in 2009, MERS in 2012) and the epidemic of the novel coronavirus (COVID-19) have
had a tremendous influence on the normal social life and people’s health. Therefore, the
research on the transmission mechanism of infectious diseases has always been the focus
of academia.

In the theory of epidemics, the main mathematical models used for a long time have been
“chamber” models, which are still used widely and developed continuously. The classic
“chamber” models, such as SIS, SIR, SIRS, etc., have been studied by many scholars [2–8].
Facts have proved that in order to control infectious diseases, prevention is one of the main
means, and vaccination is the most effective way to prevent infectious diseases. Therefore,
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the model of an infectious disease with vaccinated SVIR is of great significance. In recent
years, some scholars have proposed the SVIR model based on the original classical model
and studied its dynamic behavior. Kribs-Zaleta and Velasco-Hernandez [9] added a cham-
ber “V” to the SIS model, which represents that the population recovering from the disease
return to the immune class rather than directly to the susceptible persons. Next, Lin and
Takeuchi [10] built an SVIR model with a continuous vaccination strategy on this basis,
the specific model is the following:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS
dt = � – βSI – μS – θS,
dV
dt = θS – β1VI – γ1V – μV ,
dI
dt = βSI + β1VI – γ I – μI,
dR
dt = γ1V + γ I – μR.

Later, Ashrafu and Zou established a vaccine distribution model with vaccination pri-
ority [11]. However, the vaccination strategy model is not perfect. Biologically speaking,
they ignored the situation where the vaccinees are not fully immune, that is, the vaccinees
can still become infected again. In the real life, vaccination sometimes does not stop being
infected completely, it just greatly reduces the possibility of being infected [12]. There-
fore, it is necessary to consider the case of incomplete immunity in the model of infec-
tious diseases. Reference [13] considered a basic SVIR epidemic model with age of vac-
cination and proposed that the model allows the vaccinated individuals to become sus-
ceptible again when the vaccine loses its protective properties over time. On this basis,
the SVIR infectious disease model is studied, and the methods of combining Itô’s for-
mula, the Lyapunov method, the LaSalle invariance principle, and a numerical simula-
tion are introduced to analyze the global dynamics of the SVIR model [14]. In addition,
Geng and Xu also applied the Mickens nonstandard finite difference format to the cor-
responding continuous model [15]. Many scholars have also considered age and time lag
on the basis of this model [16, 17]. The optimal control of the basic deterministic SVIR
model was analyzed by Liao and Yang [18]. Wang and Xu incorporated the nonlinear inci-
dence into the SVIR epidemiological model of infected age and studied the local stability
of each steady state of the model by analyzing the corresponding characteristic equation
[19].

There have been many results which are about the dynamic behavior of the SVIR in-
fectious disease model. In fact, we should consider the different connections and geo-
graphical locations of individuals when infectious diseases occur in life. Individuals in
the population are not equally likely to be cured or be infected, and these inconsisten-
cies among infectious disease populations are determined by a variety of factors. As
a result, many scholars have begun to work on a multi-group epidemiological model
of SVIR. Reference [20] used a multi-group infectious disease model to describe the
spread of viruses in epidemiology. Toshikazu Kuniya and Yoshiki Muroya [21] pro-
posed a global dynamic model of a multi-population SIS epidemic model with thresh-
old parameter changes and analyzed its dynamic behavior. The global stability of the
multi-group SVIR epidemic model based on the recently developed Lyapunov func-
tion and graph theory was described in [22]. In order to analyze the asymptotic stabil-
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ity at the two equilibrium points of a multi-group epidemiological model with variable
separation of incidence and time lag, reference [23] proposed that the Liapunov func-
tion and the LaSalle invariance principles also apply to the multi-group epidemiological
model.

The above research works are based on the deterministic SVIR epidemic model. In the
real world, infectious disease models are naturally subject to random interference from the
external environment. Therefore, it is more and more important to study the properties
of infectious disease models under the influence of random factors. In recent years, some
scholars have used the random driving force of Brownian motion as a random factor to
join the infectious disease model to establish a random infectious disease model [24, 25].
The use of differential equation theory to study the stochastic epidemic model mainly
draws dynamic conclusions such as global existence and uniqueness, stochastic stability,
and progressive behavior of solutions [26, 27]. On this basis, the deterministic model and
the corresponding random model are compared to analyze the changes that occur under
the interference of random factors and then to grasp the trend of disease development,
and provide important analysis for the study of the spread of diseases, disease prevention,
and control departments [28].

However, it is well known that epidemic models are inevitably affected by the environ-
mental noise. Due to the continuous fluctuation in the environment, the birth rates, death
rates, transmission coefficient, and other parameters involved in the system should ex-
hibit random fluctuation to a greater or lesser extent. However, because of the complexity
of stochastic dynamics, there are not many results on the disturbance of mortality param-
eter. In this paper, based on the deterministic two-group SVIR infectious disease model in
[29], as an extension of the deterministic system, we adopt a different approach to intro-
duce random perturbation into it by replacing the natural mortality rate parameters, and
a random two-group SVIR infectious disease model is established.

The model is developed in Sect. 2. The global positive solution is verified in Sect. 3, and
the properties of the system solutions are studied in Sect. 4. The asymptotic behavior of
the disease-free equilibrium is analyzed in Sect. 5. In Sect. 6, a numerical simulation is
carried out to illustrate the results. The epidemiological ramifications of the results are
presented in Sect. 7.

2 Model building
The reference [29] investigates the consequences of vaccine implementation strategies for
infectious diseases by a mathematical model. For an infectious disease, the degree of in-
fection may vary from individual to individual. Reports show that individuals belonging
to certain groups possess considerably higher risk of infection. In order to measure the
outcome of the vaccination, the host is categorized into different groups by incorporating
this phenomenon into vaccination strategies. And a mathematical model is proposed and
analyzed to evaluate this measure.

Sr(t), Sc(t), Ir(t), Ic(t), V r(t), V c(t), Rr(t), Rc(t) represent the number of risky susceptible,
critical susceptible, risky infective, critical infective, risky vaccinated, critical vaccinated,
risky recovered, and critical recovered at moment t, respectively. Reference [29] consid-
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ered the following deterministic model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSr(t)
dt = �r – (βr

r
Ir

1+αrIr + βr
c

Ic

1+αcIc )Sr – (μ + θ r)Sr ,
dSc(t)

dt = �c – (βc
r

Ir

1+αrIr + βc
c

Ic

1+αcIc )Sc – (μ + θ c)Sc,
dIr(t)

dt = (βr
r

Ir

1+αrIr + βr
c

Ic

1+αcIc )Sr + (κr
r

Ir

1+αrIr + κr
c

Ic

1+αcIc )V r – (μ + νr + γ r)Ir ,
dIc(t)

dt = (βc
r

Ir

1+αrIr + βc
c

Ic

1+αcIc )Sc + (κc
r

Ir

1+αrIr + κc
c

Ic

1+αcIc )V c – (μ + νc + γ c)Ic,
dV r(t)

dt = θ rSr – (κr
r

Ir

1+αrIr + κr
c

Ic

1+αcIc )V r – μV r ,
dV c(t)

dt = θ cSc – (κc
r

Ir

1+αrIr + κc
c

Ic

1+αcIc )V c – μV c,
dRr(t)

dt = γ rIr – μRr ,
dRc(t)

dt = γ cIc – μRc,

(1)

where the parameters �i, β j
i , κ

j
i , νi, μ, θ i, γ i are positive constants. Some notable features

of the model are as follows: the influx of individuals into the susceptible is given by a
constant �i; the natural death rates are assumed to be equal (denoted by constant μ),
and individuals in Ii(t) suffer additional death due to disease with rate constant ν i; β j

i and
γ i represent the disease transmission coefficient and the rate of recovery from infection
respectively; κ

j
i represents the rate of contact between contacts and infected persons; θ i

represents the contact rate of the risk group and the critical group (i, j = r, c). According
to various contact methods of the crowd, the following can be obtained [29]:

βr
r � βc

c , βr
r � κr

r , βc
c � κc

c ,

where βr
r � βc

c means that the contact rate between risky susceptible persons and risky
infected persons is much higher than that between critical susceptible persons and critical
infected persons; βr

r � κr
r means that the contact rate between risky susceptible persons

and risky infected persons is much higher than that between risky vaccinated and risky
infected persons; βc

c � κc
c means that the contact rate between critical susceptible and

critical infected persons is much higher than that between critical vaccinated persons and
critical infected persons.

In model (1), except for dRr

dt and dRc

dt , all equations are independent of Rr(t) and Rc(t), so
the following simplified model can be obtained [29]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSr(t)
dt = �r – (βr

r
Ir

1+αrIr + βr
c

Ic

1+αcIc )Sr – (μ + θ r)Sr ,
dSc(t)

dt = �c – (βc
r

Ir

1+αrIr + βc
c

Ic

1+αcIc )Sc – (μ + θ c)Sc,
dIr(t)

dt = (βr
r

Ir

1+αrIr + βr
c

Ic

1+αcIc )Sr + (κr
r

Ir

1+αrIr + κr
c

Ic

1+αcIc )V r – (μ + νr)Ir ,
dIc(t)

dt = (βc
r

Ir

1+αrIr + βc
c

Ic

1+αcIc )Sc + (κc
r

Ir

1+αrIr + κc
c

Ic

1+αcIc )V c – (μ + νc)Ic,
dV r(t)

dt = θ rSr – (κr
r

Ir

1+αrIr + κr
c

Ic

1+αcIc )V r – μV r ,
dV c(t)

dt = θ cSc – (κc
r

Ir

1+αrIr + κc
c

Ic

1+αcIc )V c – μV c,

(2)

basic reproduction number:

R0 = ρ
(
FV –1),
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where

F =

∣
∣
∣
∣
∣
∣

βr
r

�r

μ+θ r + κr
r

θ r�r

μ2+μθ r βr
c

�r

μ+θ r + κr
c

θ r�r

μ2+μθ r

βc
r

�c

μ+θc + κc
r

θc�c

μ2+μθc βc
c

�c

μ+θc + κc
c

θc�c

μ2+μθc

∣
∣
∣
∣
∣
∣
, V =

(
μ + νr 0

0 μ + νc

)

.

When R0 < 1, model (2) has the disease-free equilibrium E0 = ( �r

μ+θ r , �c

μ+θc , 0, 0, θ r�r

μ2+μθ r ,
θc�c

μ2+μθc ) which is globally asymptotically stable. If R0 > 1, endemic equilibrium E∗ =
(Sr∗, Sc∗, Ir∗, Ic∗, V r∗ , vc∗) is globally attractive. We mark

N(t) = �r + �c – μSr(t) – μSc(t) –
(
μ + νr)Ir(t) –

(
μ + νc)Ic(t)

– μV r(t) – μV c(t),

then

Sr(t) ≥ 0, Sc(t) ≥ 0, Ir(t) ≥ 0, Ic(t) ≥ 0, V r(t) ≥ 0, V c(t) ≥ 0,

and


 =
{

Sr(t) + Sc(t) + Ir(t) + Ic(t) + V r(t) + V c(t) ≤ �r + �c

μ

}

.

In fact, the parameters in the system are inevitably affected by random factors in the
environment. Therefore this paper considers the situation where the natural death rate
parameter in system (2) is disturbed. Here we assume that stochastic perturbations are of
a white noise type which are directly proportional to Sr(t), Sc(t), Ir(t), Ic(t), V r(t), V c(t),
influenced on the ˙Sr(t), ˙Sc(t), ˙Ir(t), ˙Ic(t), ˙V r(t), ˙V c(t), in model (2). By this way, model (2)
will be deduced to the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSr(t)
dt = �r – (βr

r
Ir

1+αrIr + βr
c

Ic

1+αcIc )Sr – (μ + θ r)Sr + σ1Sr dB1(t),
dSc(t)

dt = �c – (βc
r

Ir

1+αrIr + βc
c

Ic

1+αcIc )Sc – (μ + θ c)Sc + σ2Sc dB2(t),
dIr(t)

dt = (βr
r

Ir

1+αrIr + βr
c

Ic

1+αcIc )Sr + (κr
r

Ir

1+αrIr + κr
c

Ic

1+αcIc )V r – (μ + νr)Ir

+ σ3Ir dB3(t),
dIc(t)

dt = (βc
r

Ir

1+αrIr + βc
c

Ic

1+αcIc )Sc + (κc
r

Ir

1+αrIr + κc
c

Ic

1+αcIc )V c – (μ + νc)Ic

+ σ4Ic dB4(t),
dV r(t)

dt = θ rSr – (κr
r

Ir

1+αrIr + κr
c

Ic

1+αcIc )V r – μV r + σ5V r dB5(t),
dV c(t)

dt = θ cSc – (κc
r

Ir

1+αrIr + κc
c

Ic

1+αcIc )V c – μV c + σ6V c dB5(t),

(3)

where Bi(t) are independent standard Brownian motions and σ 2
i ≥ 0 represent the inten-

sities of Bi(t), i = 1, 2, 3, . . . , 6.
Obviously, E0 = ( �r

μ+θ r , �c

μ+θc , 0, 0, θ r�r

μ2+μθ r , θc�c

μ2+μθc ) is the disease-free equilibrium point of
the random system (3).

3 Global positive solution
In order to investigate the dynamical behavior, the first thing we are concerned with is
whether the solution is global existence. Moreover, for a model of population dynamics,
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whether the value of the solution is nonnegative is also considered. Hence in this section
we show that the solution of system (3) is global and nonnegative. As we know, in order
to make a stochastic differential equation have a unique global (i.e. no explosion in a finite
time) solution for any given initial value, the coefficients of the equation are generally
required to satisfy the linear growth condition and the local Lipschitz condition (cf. [30]).
However, the coefficients of model (3) do not satisfy the linear growth condition, though
they are locally Lipschitz continuous, so the solution of model (3) may explode at a finite
time (cf. [30]). In this section, using the Lyapunov analysis method (mentioned in [30]),
we show that the solution of model (3) is positive and global.

Theorem 3.1 For any given initial value {Sr(0), Sc(0), Ir(0), Ic(0), V r(0), V c(0)} ∈R
6
+, there

is a unique positive solution {Sr(t), Sc(t), Ir(t), Ic(t), V r(t), V c(t)} of model (3) on t ≥ 0 and
the solution will remain in R

6
+ with probability one, namely {Sr(t), Sc(t), Ir(t), Ic(t), V r(t),

V c(t)} ∈R
6
+ for all t ≥ 0 almost surely.

Proof Since the coefficients of the equation are locally Lipschitz continuous, for any given
initial value {Sr(0), Sc(0), Ir(0), Ic(0), V r(0), V c(0)} ∈ R

6
+, there is a unique local solution

{Sr(t), Sc(t), Ir(t), Ic(t), V r(t), V c(t)} on t ∈ [0, τe), where τe is the explosion time. To show
that this solution is global, we need to show that τe = ∞ a.s. We prove that Sr(t), Sc(t), Ir(t),
Ic(t), V r(t), V c(t) do not explode to infinity in a finite time. Set k0 ≥ 1 to be sufficiently
large for Sr(0) ∈ [ 1

k0
, k0], Sc(0) ∈ [ 1

k0
, k0], Ir(0) ∈ [ 1

k0
, k0], Ic(0) ∈ [ 1

k0
, k0], V r(0) ∈ [ 1

k0
, k0],

V c(0) ∈ [ 1
k0

, k0]. For each integer k > k0, define the stopping time

τk = inf

{

t ∈ [0, τe) : Sr(t) /∈
(

1
k

, k
)

or Sc(t) /∈
(

1
k

, k
)

or Ir(t) /∈
(

1
k

, k
)

or Ic(t) /∈
(

1
k

, k
)

or V r(t) /∈
(

1
k

, k
)

or V c(t) /∈
(

1
k

, k
)}

,

where throughout this paper we set inf∅ = ∞ (∅ denotes the empty set). Obviously, τk is
increasing as k → ∞. Set τ∞ = limk→∞ τk , therefore τ∞ < τe a.s. If τ∞ < ∞ a.s. is true, then
τe = ∞ a.s. and {Sr(t), Sc(t), Ir(t), Ic(t), V r(t), V c(t)} ∈ R

6
+ a.s. for t ≥ 0. In other words, to

complete the proof, it is required to show that τ∞ = ∞ a.s. If this statement is false, then
there exist a pair of constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε,

thus there is an integer k1 ≥ k0 such that

P{τk ≤ T} ≥ ε ∀k ≥ k1. (4)

Let us define a C2-function V : R6
+ →R+ as follows:

V
(
Sr , Sc, Ir , Ic, V r , V c) =

(
Sr – 1 – ln Sr) +

(
Sc – 1 – ln Sc) +

(
Ir – 1 – ln Ir)

+
(
Ic – 1 – ln Ic) +

(
V r – 1 – ln V r) +

(
V c – 1 – ln V c).

The nonnegativity of this function can be seen from

u – 1 – ln u ≥ 0 ∀u > 0.
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Let k ≥ k0 and T > 0 be arbitrary. Applying Itô’s formula, we obtain

dV
(
Sr , Sc, Ir , Ic, V r , V c) = LV

(
Sr , Sc, Ir , Ic, V r , V c)dt + σ1

(
Sr – 1

)
dB1(t)

+ σ2
(
Sc – 1

)
dB2(t) + σ3

(
Ir – 1

)
dB3(t) + σ4

(
Ic – 1

)
dB4(t)

+ σ5
(
V r – 1

)
dB5(t) + σ6

(
V c – 1

)
dB6(t),

where LV : R6
+ →R+ is defined by

LV
(
Sr , Sc, Ir , Ic, V r , V c)

=
(

1 –
1
Sr

)[

�r –
(

βr
r

Ir

1 + αrIr + βr
c

Ic

1 + αcIc

)

Sr

–
(
μ + θ r)Sr

]

+
(

1 –
1
Sc

)[

�c –
(

βc
r

Ir

1 + αrIr + βc
c

Ic

1 + αcIc

)

Sc –
(
μ + θ c)Sc

]

+
(

1 –
1
Ir

)[(

βr
r

Ir

1 + αrIr + βr
c

Ic

1 + αcIc

)

Sr +
(

κr
r

Ir

1 + αrIr + κr
c

Ic

1 + αcIc

)

V r

–
(
μ + νr)Ir

]

+
1
2
σ 2

1 +
1
2
σ 2

2 +
1
2
σ 2

3 +
(

1 –
1
Ic

)[(

βc
r

Ir

1 + αrIr + βc
c

Ic

1 + αcIc

)

Sc

+
(

κc
r

Ir

1 + αrIr + κc
c

Ic

1 + αcIc

)

V c –
(
μ + νc)Ic

]

+
1
2
σ 2

4 +
1
2
σ 2

5 +
1
2
σ 2

6

+
(

1 –
1

V r

)[

θ rSr –
(

κr
r

Ir

1 + αrIr + κr
c

Ic

1 + αcIc

)

V r – μV r
]

+
(

1 –
1

V c

)[

θ cSc –
(

κc
r

Ir

1 + αrIr + κc
c

Ic

1 + αcIc

)

V c – μV c
]

.

Therefore

LV
(
Sr , Sc, Ir , Ic, V r , V c) ≤

{

�r +
βr

r Ir

1 + αrIr +
βr

c Ic

1 + αcIc +
(
μ + θ r) + �c +

βc
r Ir

1 + αrIr

+
βc

c Ic

1 + αcIc +
(
μ + θ c) +

(
μ + νr) +

(
μ + νc) + θ rSr

+ θ cSc +
κr

r Ir

1 + αrIr +
κr

c Ic

1 + αcIc + μ +
κc

r Ir

1 + αrIr +
κc

c Ic

1 + αcIc

+ μ +
1
2
(
σ 2

1 + σ 2
2 + σ 2

3 + σ 2
4 + σ 2

5 + σ 2
6
)
}

dt.

By simplifying x
1+αix

(i = c, r) to x then

LV
(
Sr , Sc, Ir , Ic, V r , V c) ≤ �r + �c +

(
βr

r + βr
c + βc

r + βc
c
)

+
(
θ r + θ c) +

(
νr + νc) + 6μ

+
(
κr

r + κr
c + κc

r + κc
c
)

+
1
2
(
σ 2

1 + σ 2
2 + σ 2

3 + σ 2
4 + σ 2

5 + σ 2
6
)

:= K ,
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where K ∈ N+, so

dV
(
Sr , Sc, Ir , Ic, V r , V c) ≤ K dt +

[
σ1

(
Sr – 1

)
dB1(t) + σ2

(
Sc – 1

)
dB2(t)

+ σ3
(
Ir – 1

)
dB3(t) + σ4

(
Ic – 1

)
dB4(t)

+ σ5
(
V r – 1

)
dB5(t) + σ6

(
V c – 1

)
dB6(t)

]
.

(5)

We can now integrate both sides of (5) from to τk ∧ T and then take the expectations

EV {Sr(τk ∧ T), Sc(τk ∧ T), Ir(τk ∧ T), Ic(τk ∧ T), V r(τk ∧ T), V c(τk ∧ T)

≤ V
{

Sr(0), Sc(0), Ir(0), Ic(0), V r(0), V c(0)
}

+ KE(τk ∧ T),

so

EV {Sr(τk ∧ T), Sc(τk ∧ T), Ir(τk ∧ T), Ic(τk ∧ T), V r(τk ∧ T), V c(τk ∧ T)

≤ V
{

Sr(0), Sc(0), Ir(0), Ic(0), V r(0), V c(0)
}

+ KT .
(6)

Let �k = {τk ≤ T} for k ≥ k1 and, by (4), P(�k) ≥ ε. Note that, for every ω ∈ �k , there
is Sr(τk ,ω) or Sc(τk ,ω) or Ir(τk ,ω) or Ic(τk ,ω) or V r(τk ,ω) or V c(τk ,ω) equals either k or
1
k , and therefore V {Sr(τk ,ω), Sc(τk ,ω), Ir(τk ,ω), Ic(τk ,ω), V r(τk ,ω), V c(τk ,ω)} is no less than
either

k – 1 – ln k or
1
k

– 1 – ln
1
k

=
1
k

– 1 + ln k.

Hence

{
Sr(τk ,ω), Sc(τk ,ω), Ir(τk ,ω), Ic(τk ,ω), V r(τk ,ω), V c(τk ,ω)

}

≥ [k – 1 – ln k] ∧
[

1
k

– 1 + ln k
]

.

It then follows from (6) that

V
{

Sr(0), Sc(0), Ir(0), Ic(0), V r(0), V c(0)
}

+ KT

≥ E
[
1�k (ω)V

{
Sr(τk ,ω), Sc(τk ,ω), Ir(τk ,ω), Ic(τk ,ω), V r(τk ,ω), V c(τk ,ω)

}]

≥ ε[k – 1 – ln k] ∧
[

1
k

– 1 + ln k
]

,

where 1�k is the indicator function of �k , letting k → ∞, we have that

∞ > V
{

Sr(0), Sc(0), Ir(0), Ic(0), V r(0), V c(0)
}

+ KT = ∞

is a contradiction, then we must have

τ∞ = ∞.

Therefore, it implies Sr(t), Sc(t), Ir(t), Ic(t), V r(t), V c(t) will not explode in a finite time
with probability one. That is, system (3) has a unique global positive solution. �
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It can be seen from Theorem 3.1 that no matter how big the noise intensity σ1, σ2, σ3,
σ4, σ5, σ6 is there must be a unique global positive solution for any initial value given by
the random model (3).

4 Properties of the solution
In this chapter, we use the law of strong numbers and the properties of continuous local
martingales to study the properties of system solutions, provide some theoretical support
for the future work of the random control of the random model.

Theorem 4.1 Assuming that {Sr(t), Sc(t), Ir(t), Ic(t), V r(t), V c(t)} is a positive solution of
system (3), we have

lim sup
t→∞

{
Sr(t) + Sc(t) + Ir(t) + Ic(t) + V r(t) + V c(t)

}
< ∞ a.s.

and

lim sup
t→∞

〈
Sr(t)

〉 ≤ �r + �c

μ
, lim sup

t→∞
〈
Sc(t)

〉 ≤ �r + �c

μ
a.s.,

lim sup
t→∞

〈
Ir(t)

〉 ≤ �r + �c

μ + νr , lim sup
t→∞

〈
Ic(t)

〉 ≤ �r + �c

μ + νc a.s.,

lim sup
t→∞

〈
V r(t)

〉 ≤ �r + �c

μ
, lim sup

t→∞
〈
V c(t)

〉 ≤ �r + �c

μ
a.s.

and

lim
t→∞

Mi(t)
t

= 0 (i = 1, 2, . . . , 6),

where M1(t) = σ1
∫ t

0 Sr(s) dB1(s), M2(t) = σ2
∫ t

0 Sc(s) dB2(s), M3(t) = σ3
∫ t

0 Ir(s) dB3(s),
M4(t) = σ4

∫ t
0 Ic(s) dB1(s), M5(t) = σ5

∫ t
0 V r(s) dB5(s), M6(t) = σ6

∫ t
0 V c(s) dB6(s).

Proof Order N = Sr + Sc + Ir + Ic + V r + V c, then N satisfies (3)

dN(t) = �r + �c – μN – νrIr – νcIc + σ1Sr dB1(t) + +σ2Sc dB2(t)

+ σ3Ir dB3(t) + σ4Ic dB4(t) + σ5V r dB5(t) + σ6V c dB6(t).

Therefore

N(t) = N(0)e–μt +
(

�r + �c

μ

)
(
1 – e–μt) – νr

∫ t

0
eμ(s–t)Ir(s) ds

– νc
∫ t

0
eμ(s–t)Ic(s) ds + M(t),

where M(t) = σ1
∫ t

0 eμ(s–t)Sr(s) dB1(s) + σ2
∫ t

0 eμ(s–t)Sc(s) dB2(s) + σ3
∫ t

0 eμ(s–t)Ir(s) dB3(s) +
σ4

∫ t
0 eμ(s–t)Ic(s) dB4(s)+σ5

∫ t
0 eμ(s–t)V r(s) dB5(s)+σ6

∫ t
0 eμ(s–t)V c(s) dB6(s) is a continuous lo-

cal martingale that satisfies M(0) = 0, remember

X(t) = X(0) + A(t) – U(t) + M(t),
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where X(0) = N(0), A(t) = ( �r+�c

μ
)(1 – e–μt), U(t) = N(0)(1 – e–μt). Therefore N(t) ≤ X(t).

Obviously A(t) and U(t) are continuous adaptive incremental processes that satisfy A(0) =
U(0) = 0. From Lemma 2.1 [31], limt→∞ X(t) < ∞ a.s. lim supt→∞ N(t) < ∞ a.s. From this
it can be seen that

lim sup
t→∞

〈M1, M1〉
t

= lim sup
t→∞

σ 2
1
t

∫ t

0

(
Sr)2(s) ds ≤ σ 2

1 sup
t≥0

(
Sr)2(t) < ∞,

and then by the law of strong numbers

lim
t→∞

M1(t)
t

= 0 a.s. (7)

The same is true

lim
t→∞

Mi(t)
t

= 0 a.s. (i = 2, 3, . . . , 6). (8)

Obtained by system (3)

dN(t) = �r + �c – μSr – μSc –
(
μ + νr)Ir –

(
μ + νc)Ic – μV r – μV c + σ1Sr dB1(t)

+ σ2Sc dB2(t) + σ3Ir dB3(t) + σ4Ic dB4(t) + σ5V r dB5(t) + σ6V c dB6(t).

Therefore

〈
Sr(t)

〉
=

�r + �c

μ
–

〈
Sc(t)

〉
–

μ + νr

μ

〈
Ir(t)

〉
–

μ + νc

μ

〈
Ic(t)

〉
–

〈
V r(t)

〉
–

〈
V c(t)

〉

+
1
μ

[∫ t
0 N(s) ds + σ1

∫ t
0 Sr dB1(t) + σ2

∫ t
0 Sc dB2(t) + σ3

∫ t
0 Ir dB3(t)

t

]

+
1
μ

[
σ4

∫ t
0 Ic dB4(t) + σ5

∫ t
0 V r dB5(t) + σ6

∫ t
0 V c dB6(t)

t

]

,

so

〈
Sr(t)

〉
=

�r + �c

μ
–

〈
Sc(t)

〉
–

μ + νr

μ

〈
Ir(t)

〉
–

μ + νc

μ

〈
Ic(t)

〉

–
〈
V r(t)

〉
–

〈
V c(t)

〉
+

ϕ(t)
t

,

where

ϕ(t) =
1
μ

{[
N(t) – N(0)

]
+ M1(t) + M2(t) + M3(t) + M4(t) + M5(t) + M6(t)

}
.

We know ϕ(t)
t → 0 (t → ∞) from (7–8), then

lim sup
t→∞

〈
Sr(t)

〉 ≤ �r + �c

μ
.
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By the same token

lim sup
t→∞

〈
Sc(t)

〉 ≤ �r + �c

μ
, lim sup

t→∞
〈
Ir(t)

〉 ≤ �r + �c

μ + νr , lim sup
t→∞

〈
Ic(t)

〉 ≤ �r + �c

μ + νc ,

lim sup
t→∞

〈
V r(t)

〉 ≤ �r + �c

μ
, lim sup

t→∞

〈
V c(t)

〉 ≤ �r + �c

μ
. �

5 Asymptotic behavior of the disease-free equilibrium
Theorem 3.1 shows that the stochastically perturbed system (3) will remain to have a
global positive solution. In the sequel we therefore only need to consider how the solu-
tion varies in R6

+. Since model (3) does not have an explicit solution, the study of asymp-
totic behavior is essential. The asymptotic property of model (3) is given by the following
theorem.

Theorem 5.1 If R0 < 1 and the following conditions are satisfied:

σ 2
1 <

1
1 + p

(
pμ(μ + θ r)

μ + 2θ r –
(
2μ + νr)

)

, σ 2
2 <

1
1 + q

(
qμ(μ + θ c)

μ + 2θ c –
(
2μ + νc)

)

,

σ 2
3 <

(
μ + νr), σ 2

4 <
(
μ + νc),

σ 2
5 <

θ r

pμ + θ r

(
pμ3

2θ r(θ r + μ)
–

(
2μ + νr)

)

,

σ 2
6 <

θ c

qμ + θ c

(
qμ3

2θ c(θ c + μ)
–

(
2μ + νc)

)

,

then for any given initial value {Sr(0), Sc(0), Ir(0), Ic(0), V r(0), V c(0)} ∈ R
6
+, the solution of

model (3) has the property

lim sup
t→∞

1
t

E
∫ t

0

[(

Sr(s) –
�r

μ + θ r

)2

+
(

Sc(s) –
�c

μ + θ c

)2

+
(
Ir)2(s) +

(
Ic)2(s)

+
(

V r(s) –
θ r�r

μ2 + μθ r

)2

+
(

V c(s) –
θ c�c

μ2 + μθ c

)2]

ds

≤ H
K ′ ,

where

K ′ = min

{
pμ(μ + θ r)

μ + 2θ r –
(
2μ + νr) – (1 + P)σ 2

1 ,
qμ(μ + θ c)

μ + 2θ c –
(
2μ + νc) – (1 + q)σ 2

2 ,

1
2
(
μ + νr – σ3

)
,

1
2
(
μ + νc – σ4

)
,

pμ3

2θ r(θ r + μ)
–

(
2μ + νr) –

(
pμ

θ r + 1
)

σ 2
5 ,

qμ3

2θ c(θ c + μ)
–

(
2μ + νc) –

(
pμ

θ c + 1
)

σ 2
6

}

,

H = (1 + p)σ 2
1 a2 + (1 + q)σ 2

2 b2 + ( pμ

θ r + 1)σ 2
5 a2 (θ r)2

μ2 + ( qμ

θc + 1)σ 2
6 b2 (θc)2

μ2 and p, q are positive
constants defined as (13), (14).
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Proof Let xr = Sr – �r

μ+θ r , xc = Sc – �c

μ+θc , yr = Ir , yc = Ic, zr = V r – θ r�r

μ2+μθ r , zc = V c – θc�c

μ2+μθc ,
a = �r

μ+θ r , b = �c

μ+θc , then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxr(t) = [–(βr
r

yr

1+αryr + βr
c

yc

1+αcyc )(xr + a) – (μ + θ r)xr] dt + σ1(a + xr) dB1(t),

dxc(t) = [–(βc
r

yr

1+αryr + βc
c

yc

1+αcyc )(xc + b) – (μ + θ c)xc] dt + σ2(b + xc) dB2(t),

dyr(t) = [(βr
r

yr

1+αryr + βr
c

yc

1+αcyc )(xr + a) + (κr
r

yr

1+αryr + κr
c

yc

1+αcyc )(zr + a θ r

μ
)

– (μ + νr)yr] dt + σ3yr dB3(t),

dyc(t) = [(βc
r

yr

1+αryr + βc
c

yc

1+αcyc )(xc + b) + (κc
r

yr

1+αryr + κc
c

yc

1+αcyc )(zc + b θc

μ
)

– (μ + νc)yc] dt + σ4yc dB4(t),

dzr(t) = [θ r(xr + a) – (κr
r

yr

1+αryr + κr
c

yc

1+αcyc )(zr + a θ r

μ
) – μ(zr + a θ r

μ
)] dt

+ σ5(zr + a θ r

μ
) dB5(t),

dzc(t) = [θ c(xc + b) – (κc
r

yr

1+αryr + κc
c

yc

1+αcyc )(zc + b θc

μ
) – μ(zc + b θc

μ
)] dt

+ σ6(zc + b θc

μ
) dB6(t).

Define a C2-function W : R6
+ →R+ by

W
(
xr , xc, yr , yc, zr , zc) = p

(
1
2
(
xr)2 + c1yr +

1
2

c2
(
zr)2

)

+
1
2
(
xr , yr , zr)2

+ q
(

1
2
(
xc)2 + c3yc +

1
2

c4
(
zc)2

)

+
1
2
(
xc, yc, zc)2

:= pW1 + W2 + qW3 + W4,

where

W1
(
xr , xc, yr , yc, zr , zc) =

(
1
2
(
xr)2 + c1yr +

1
2

c2
(
zr)2

)

,

W2
(
xr , xc, yr , yc, zr , zc) =

1
2
(
xr , yr , zr)2,

W3
(
xr , xc, yr , yc, zr , zc) =

(
1
2
(
xc)2 + c3yc +

1
2

c4
(
zc)2

)

,

W4
(
xr , xc, yr , yc, zr , zc) =

1
2
(
xc, yc, zc)2,

and p, q and c1, c2, c3, c4 are positive constants. From Itô’s formula, we compute

dW1
(
xr , yr , zr) = LW1 dt + σ1xr(xr + a

)
dB1(t) + c1σ3yr dB3(t)

+ c2zrσ5

(

zr + a
θ r

μ

)

dB5(t),

where

LW1 = – xr
(

βr
r

yr

1 + αryr + βr
c

yc

1 + αcyc

)
(
xr + a

)
–

(
μ + θ r)(xr)2

+
1
2
σ 2

1
(
a + xr)2 dB1(t) + c1

(

κr
r

yr

1 + αryr + κr
c

yc

1 + αcyc

)(

zr + a
θ r

μ

)
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+ c1

(

βr
r

yr

1 + αryr + βr
c

yc

1 + αcyc

)
(
xr + a

)
– c1

(
μ + νr)yr + c2zrθ r(xr + a

)

– c2zr
(

κr
r

yr

1 + αryr + κr
c

yc

1 + αcyc

)(

zr + a
θ r

μ

)

– c2zrμ

(

zr + a
θ r

μ

)

+
1
2

c2σ
2
5

(

zr + a
θ r

μ

)2

dB5(t).

For the convenience of calculation, we simplify x
1+αix

(i = r, c) to x, then

LW1 = – xr(βr
r yr + βr

c yc)(xr + a
)

–
(
xr)2(

μ + θ r) +
1
2
σ 2

1
(
a + xr)2 dB1(t)

+ c1
(
βr

r yr + βr
c yc)(xr + a

)
+ c1

(
κr

r yr + κr
c yc)

(

zr + a
θ r

μ

)

– c1
(
μ + νr)yr

+ c2zrθ r(xr + a
)

– c2zr(κr
r yr + κr

c yc)
(

zr + a
θ r

μ

)

– c2zrμ

(

zr + a
θ r

μ

)

+
1
2

c2σ
2
5

(

zr + a
θ r

μ

)2

dB5(t).

Assume

Rr
0 = βr

r
�r

(μ + θ r)(μ + νr)
+ κr

r
1

μ + νr
θ r�r

μ2 + μθ r ,

so

Rr
0 ≤ ρ

(
FV –1) = R0 ≤ 1.

Then

LW1 = – βr
r
(
xr)2yr – βr

c
(
xr)2yc – c2κ

r
r yr(zr)2 – c2κ

r
c yc(zr)2 –

(
μ + θ r)(xr)2

+ (c1 – a)βr
r xryr + (c1 – a)βr

c xryc +
(

c1 – c2
aθ r

μ

)

κr
r yrzr +

(

c1 – c2
aθ r

μ

)

κr
c yczr

+ c2θ
rxrzr – c2μ

(
zr)2 – c1

[

βr
r a

(
1

Rr
0

– 1
)

+
aθ rκr

r
μ

(
1

Rr
0

– 1
)]

yr

+
1
2
σ 2

1
(
a + xr)2 dB1(t) +

1
2

c2σ
2
5

(

zr + a
θ r

μ

)2

dB5(t),

(9)

where R0 ≤ 1 is used. Here we choose c1 = a, c2 = μ

θ r , and let h = μ(μ+2θ r )
2θ r(μ+θ r ) , substituting this

into (9) yields

LW1 ≤ –
[
(
μ + θ r) –

μ

h

]
(
xr)2 –

[
μ2

θ r – hμ

]
(
zr)2 + σ 2

1
(
xr)2 +

μ

θ r σ 2
5
(
zr)2

+ σ 2
1 a2 +

μ

θ r σ 2
5 a2 (θ r)2

μ2

= –
μ(μ + θ r)
μ + 2θ r

(
xr)2 –

μ3

2θ r(μ + θ r)
(
zr)2 + σ 2

1
(
xr)2 +

μ

θ r σ 2
5
(
zr)2

+ σ 2
1 a2 +

μ

θ r σ 2
5 a2 (θ r)2

μ2 .
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Similarly, applying Itô’s formula to W2(xr , yr , zr), we get

dW2
(
xr , yr , zr)

= LW2 dt +
(
xr , yr , zr)

[

σ1
(
a + xr)dB1(t) + σ3yr dB3(t) + σ5

(

zr + a
θ r

μ

)

dB5(t)
]

,

where

LW2 =
(
xr , yr , zr)(dxr + dyr + dzr) +

1
2
[(

dxr)2 +
(
dyr)2 +

(
dzr)2]

=
(
xr , yr , zr)

[

–xr(μ + θ r) – yr(μ + νr) – μ

(

zr + a
θ r

μ

)

+ θ r(xr + a
)
]

+
1
2
σ 2

1
(
xr + a

)2 +
1
2
σ 2

3
(
yr)2 +

1
2
σ 2

5

(

zr + a
θ r

μ

)2

≤ (
2μ + νr)(xr)2 –

μ + νr

2
(
yr)2 +

(
2μ + νr)(zr)2 + σ 2

1
(
xr)2 +

1
2
σ 2

3
(
yr)2

+ σ 2
5
(
zr)2 + σ 2

1 a2 + σ 2
5 a2 (θ r)2

μ2 .

Then

dW3
(
xc, yc, zc) = LW3 dt + σ2xc(xc + b

)
dB2(t) + c3σ4yc dB4(t)

+ c4zcσ6

(

zc + b
θ c

μ

)

dB6(t).

Assume

Rc
0 = βc

c
�c

(μ + θ c)(μ + νc)
+ κc

c
1

μ + νc
θ c�c

μ2 + μθ c ,

so

Rc
0 ≤ ρ

(
FV –1) = R0 ≤ 1,

then

LW3 = – βc
r
(
xc)2yr – βc

c
(
xc)2yc – c4κ

c
r yr(zc)2 – c4κ

c
c yc(zc)2 –

(
μ + θ c)(xc)2

+ (c3 – b)βc
r xcyr + (c3 – b)βc

c xcyc +
(

c3 – c4
bθ c

μ

)

κc
r yrzc +

(

c3 – c4
bθ c

μ

)

κc
c yczc

+ c4θ
cxczc – c4μ

(
zc)2 – c3

[

βc
c b

(
1

Rc
0

– 1
)

+
bθ cκc

c
μ

(
1

Rc
0

– 1
)]

yc

+
1
2
σ 2

2
(
b + xc)2 dB2(t) +

1
2

c4σ
2
6

(

zc + b
θ c

μ

)2

dB6(t),

(10)

where R0 ≤ 1 is used. Here we choose c2 = b, c4 = μ

θc , and let h′ = μ(μ+2θc)
2θc(μ+θc) , substituting this

into (10) yields

LW3 ≤ –
[
(
μ + θ c) –

μ

h′

]
(
xc)2 –

[
μ2

θ c – h′μ
]
(
zc)2 + σ 2

2
(
xc)2 +

μ

θ c σ 2
6
(
zc)2
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+ σ 2
2 b2 +

μ

θ c σ 2
6 b2 (θ c)2

μ2

= –
μ(μ + θ c)
μ + 2θ c

(
xc)2 –

μ3

2θ c(μ + θ c)
(
zc)2 + σ 2

2
(
xc)2 +

μ

θ c σ
2
6
(
zc)2

+ σ 2
2 b2 +

μ

θ c σ 2
6 b2 (θ c)2

μ2 .

Similarly, applying Itô’s formula to W4(xc, yc, zc), we get

dW4
(
xc, yc, zc)

= LW4 dt +
(
xc, yc, zc)

[

σ2
(
b + xc)dB2(t) + σ4yc dB4(t) + σ6

(

zc + b
θ c

μ

)

dB6(t)
]

,

where

LW4 =
(
xc, yc, zc)(dxc + dyc + dzc) +

1
2
[(

dxc)2 +
(
dyc)2 +

(
dzc)2]

=
(
xc, yc, zc)

[

–xc(μ + θ c) – yc(μ + νc) – μ

(

zc + b
θ c

μ

)

+ θ c(xc + b
)
]

+
1
2
σ 2

2
(
xc + b

)2 +
1
2
σ 2

4
(
yc)2 +

1
2
σ 2

6

(

zc + b
θ c

μ

)2

≤ (
2μ + νc)(xc)2 –

μ + νc

2
(
yc)2 +

(
2μ + νc)(zc)2 + σ 2

2
(
xc)2 +

1
2
σ 2

4
(
yc)2

+ σ 2
6
(
zc)2 + σ 2

2 b2 + σ 2
6 b2 (θ c)2

μ2 .

(11)

Therefore, we can obtain

LW
(
xr , xc, yr , yc, zr , zc)

= pW1 + W2 + qW3 + W4

–
[

p
μ(μ + θ r)
μ + 2θ r –

(
2μ + νr) – (1 + p)σ 2

1

]
(
xr)2 –

[

q
μ(μ + θ c)
μ + 2θ c –

(
2μ + νc)

– (1 + q)σ 2
2

]
(
xc)2 –

1
2
(
μ + νr – σ3

)(
yr)2 –

1
2
(
μ + νc – σ4

)(
yc)2

–
[

p
μ3

2θ r(θ r + μ)
–

(
2μ + νr) –

(
pμ

θ r + 1
)

σ 2
5

]
(
zr)2

–
[

q
μ3

2θ c(θ c + μ)
–

(
2μ + νc) –

(
qμ

θ c + 1
)

σ 2
6

]
(
zc)2 + H ,

(12)

where H = (1 + p)σ 2
1 a2 + (1 + q)σ 2

2 b2 + ( pμ

θ r + 1)σ 2
5 a2 (θ r)2

μ2 + ( qμ

θc + 1)σ 2
6 b2 (θc)2

μ2 . Let us choose

p > max

{
μ(μ + θ r)
μ + 2θ r

(
2μ + νr),

μ3

2θ r(θ r + μ)
(
2μ + νr)

}

, (13)

s.t.

p
μ(μ + θ r)
μ + 2θ r –

(
2μ + νr) > 0, p

μ3

2θ r(θ r + μ)
–

(
2μ + νr) > 0.
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q > max

{
μ(μ + θ c)
μ + 2θ c

(
2μ + νc),

μ3

2θ c(θ c + μ)
(
2μ + νc)

}

, (14)

s.t.

q
μ(μ + θ c)
μ + 2θ c –

(
2μ + νc) > 0, q

μ3

2θ c(θ c + μ)
–

(
2μ + νc) > 0.

Set

K ′ = min

{
pμ(μ + θ r)

μ + 2θ r –
(
2μ + νr) – (1 + p)σ 2

1 ,
qμ(μ + θ c)

μ + 2θ c –
(
2μ + νc) – (1 + q)σ 2

2 ,

1
2
(
μ + νr – σ3

)
,

1
2
(
μ + νc – σ4

)
,

pμ3

2θ r(θ r + μ)
–

(
2μ + νr) –

(
pμ

θ r + 1
)

σ 2
5 ,

qμ3

2θ c(θ c + μ)
–

(
2μ + νc) –

(
qμ

θ c + 1
)

σ 2
6

}

.

Substituting this into (12) yields

dW ≤ [
–K ′(xr)2 – K ′(xc)2 – K ′(yr)2 – K ′(yc)2 – K ′(zr)2 – K ′(zc)2 + H

]
dt

+ σ1
[
(p + 1)xr + yr + zr](a + xr)dB1(t) +

[
xr + yr + zr + c1p

]
σ3yr dB3(t)

+ σ2
[
(q + 1)xc + yc + zc](b + xc)dB2(t) +

[
xc + yc + zc + c3q

]
σ4yc dB4(t)

+
[
xr + yr + zr + c2pzr]σ5

(

zr + a
θ r

μ

)

dB5(t)

+
[
xc + yc + zc + c4qzc]σ6

(

zc + b
θ c

μ

)

dB6(t).

(15)

Integrating this from 0 to t and taking the expectation, we have

EW (t) – EW (0) ≤ – E
∫ t

0

(
K ′(xr)2 + K ′(xc)2 + K ′(yr)2 + K ′(yc)2 + K ′(zr)2

+ K ′(zc)2 + H
)

ds.

Hence

lim sup
t→∞

1
t

E
∫ t

0

[(
xr)2(s) +

(
xc)2(s) +

(
yr)2(s) +

(
yc)2(s) +

(
zr)2(s) +

(
zc)2(s)

]
ds ≤ H

K ′ .

Consequently,

lim sup
t→∞

1
t

E
∫ t

0

[(

Sr(s) –
�r

μ + θ r

)2

+
(

Sc(s) –
�c

μ + θ c

)2

+
(
Ir)2(s) +

(
Ic)2(s)

+
(

V r(s) –
θ r�r

μ2 + μθ r

)2

+
(

V c(s) –
θ c�c

μ2 + μθ c

)2]

ds

≤ H
K ′ . �

Remark 5.1 From Theorem 5.1, we show that the solution of system (3) will oscillate
around the disease-free equilibrium of the deterministic model under some conditions,
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and the disturbance intensity is proportional to the intensity of the white noise. In a bio-
logical view, as the intensity of stochastic perturbations is small, we consider the disease
will die out.

Besides, if σ1 = 0, σ2 = 0, σ5 = 0, and σ6 = 0, then E0 is also the disease-free equilibrium
of system (3). From the proof of Theorem 5.1, we get

LW
(
xr , xc, yr , yc, zr , zc)

≤ –
[

p
μ(μ + θ r)
μ + 2θ r –

(
2μ + νr) – (1 + p)σ 2

1

]
(
xr)2

–
[

q
μ(μ + θ c)
μ + 2θ c –

(
2μ + νc) – (1 + q)σ 2

2

]
(
xc)2 –

1
2
(
μ + νr – σ3

)(
yr)2

–
[

p
μ3

2θ r(θ r + μ)
–

(
2μ + νr) – v

(
pμ

θ r + 1
)

σ 2
5

]
(
zr)2 –

1
2
(
μ + νc – σ4

)(
yc)2

–
[

q
μ3

2θ c(θ c + μ)
–

(
2μ + νc) –

(
qμ

θ c + 1
)

σ 2
6

]
(
zc)2.

Thus, the solution of system (3) is stochastically asymptotically stable in the large.

6 Numerical simulation
In this subsection, in order to show different dynamical results of the deterministic model
(2) and its stochastic description (3) under the same condition of parameter values, we
present some numerical simulations. We use Milstein’s method [32, 33] to simulate the
stochastic model (3). The numerical scheme for the stochastic model (3) is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sr
i = Sr

i–1 + [�r – (βr
r

(Ir )i–1
1+αr(Ir)i–1

+ βr
c

(Ic)i–1
1+αc(Ic)i–1

)(Sr)i–1 – (μ + θ r)(Sr)i–1]�t

+ σ1(Sr)i–1
√

�tξi–1 + σ 2
1
2 (Sr)i–1(ξ 2

i–1 – 1)�t,

Sc
i = Sc

i–1 + [�c – (βc
r

(Ir)i–1
1+αr(Ir )i–1

+ βc
c

(Ic)i–1
1+αc(Ic)i–1

)(Sc)i–1 – (μ + θ c)(Sc)i–1]�t

+ σ2(Sc)i–1
√

�tξi–1 + σ 2
2
2 (Sc)i–1(ξ 2

i–1 – 1)�t,

Ir
i = Ir

i–1 + [(βr
r

(Ir)i–1
1+αr(Ir )i–1

+ βr
c

(Ic)i–1
1+αc(Ic)i–1

)(Sr)i–1 + (κr
r

(Ir )i–1
1+αr(Ir)i–1

+ κr
c

(Ic)i–1
1+αc(Ic)i–1

)

× (V r)i–1 – (μ + νr)(Ir)i–1]�t + σ3(Ic)i–1
√

�tξi–1 + σ 2
3
2 (Ir)i–1(ξ 2

i–1 – 1)�t,

Ic
i = Ic

i–1 + [(βc
r

(Ir )i–1
1+αr(Ir)i–1

+ βc
c

(Ic)i–1
1+αc(Ic)i–1

)(Sc)i–1 + (κc
r

(Ir )i–1
1+αr(Ir)i–1

+ κc
c

(Ic)i–1
1+αc(Ic)i–1

)

× (V c)i–1 – (μ + νc)(Ic)i–1]�t + σ4(Ic)i–1
√

�tξi–1 + σ 2
4
2 (Ic)i–1(ξ 2

i–1 – 1)�t,

V r
i = V r

i–1 + [θ r(Sr)i–1 – (κr
r

(Ir)i–1
1+αr(Ir )i–1

+ κr
c

(Ic)i–1
1+αc(Ic)i–1

)(V r)i–1 – μ(V r)i–1]�t

+ σ5(V r)i–1
√

�tξi–1 + σ 2
5
2 (V r)i–1(ξ 2

i–1 – 1)�t,

V c
i = V c

i–1 + [θ c(Sc)i–1 – (κc
r

(Ir )i–1
1+αr(Ir)i–1

+ κc
c

(Ic)i–1
1+αc(Ic)i–1

)(V c)i–1 – μ(V c)i–1]�t

+ σ6(V c)i–1
√

�tξi–1 + σ 2
6
2 (V c)i–1(ξ 2

i–1 – 1)�t,

where ξi (i = 1, 2, . . . , n) are independent Gaussian random variables N(0, 1).
For the deterministic model (2) and its stochastic description (3), the parameter values

are taken as in Table 1.
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Table 1 Parameter values of numerical experiments for model (2) and model (3)

Parameter Meaning Value

�r Population input for group r 1.005
�c Population input for group c 5
μ Natural death rate 1/70
ν r Disease-induced death rate in group r 0.4
νc Disease-induced death rate in group c 0.1
β r
r Contact rate of risky susceptible and risky infective 9× 10–5

β r
c Contact rate of risky susceptible and critical infective 3× 10–5

βc
r Contact rate of critical susceptible and risky infective 3× 10–5

βc
c Contact rate of critical susceptible and critical infective 1× 10–5

κ r
r Contact rate of risky vaccinated individuals and risky infective 5× 10–7

κ r
c Contact rate of risky vaccinated individuals and critical infective 3× 10–7

κc
r Contact rate of critical vaccinated individuals and risky infective 3× 10–7

κc
c Contact rate of critical vaccinated individuals and critical infective 1× 10–7

αi where parameters αi is positive constant (i = r, c) 1× 10–5

θ i Vaccination rate (i = r, c) 0.5

The initial value in the numerical experiment is (Sr
0, Sc

0, Ir
0, Ic

0, V r
0 , V c

0 ) = (0.1, 0.1, 0.1, 0.1,
0, 0). We first choose p = (99,400) > (3.10434 × 10–3) = max{3.10434 × 10–3, 2.42954 ×
10–6}, q = (99,400) > (9.31301 × 10–4) = max{9.31301 × 10–4, 7.28861 × 10–7}, then R0 ≈
0.0017 < 1, and σ1 = (0.085), σ2 = (0.085), σ3 = (0.63), σ4 = (0.338), σ5 = (6.84 × 10–3), σ6 =
(1.233×10–2). It satisfies the constraint condition of Theorem 5.1 on white noise intensity
(σ 2

1 < 7.24 × 10–3, σ 2
2 < 7.24 × 10–3, σ 2

3 < 0.41429, σ 2
4 < 0.11429, σ 2

5 < 4.74900 × 10–5, σ 2
6 <

1.53087 × 10–4).
(i) Four variables Sr , Sc, Ir , Ic are picked. In Fig. 1(a, b, c, d), it represents the oscillation of

the random model (3) near the disease-free equilibrium point E0 = (1.95417, 9.72222, 0, 0,
68.39591, 340.27814). The result obtained by the numerical simulation is in good agree-
ment with Theorem 5.1. Figure 1(c, d) indicates that the outbreak of disease can be sup-
pressed with moderate intensity of noise, and it can be seen that the probability of extinc-
tion of this disease is one with the increase of time.

(ii) In Fig. 2(a and b), the intensity of other noise is kept constant, while σ1 and σ2 are
changed respectively; this shows that the fluctuation of the random model becomes more
and more obvious with the increase in the intensity of noise. That is to say, the intensity
of the disturbance is proportional to the intensity of noise.

7 Conclusions
Environmental noise can be described to have a significant effect on the advancement
of an epidemic. For this study, we present the dynamics of a stochastic two-group SVIR
model under the noises of environment. We suppose that the stochastic perturbation is of
a white noise sort that disturbs the natural death rate μ.

Compared with the deterministic model (2), we find that the intensity of the noise level
plays a critical role. Therefore, our main results are summarized as follows.

The existence and uniqueness of positive solution is proved by using stopping time the-
ory and the Lyapunov analysis method. We all know that controlling the spread of dis-
ease is a very important task in epidemiology, but it requires some theoretical founda-
tion. So we studied the property of the systematic solution and the asymptotic behav-
ior of that solution around the corresponding deterministic model disease-free equilib-
rium point. We obtain Theorem 4.1, and the solution of model (3) is oscillated randomly
around the disease-free equilibrium point E0. From Theorem 5.1, if R0 < 1 under the small
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(a) (b)

(c) (d)

Figure 1 Trajectories (a, b, c, d) of the deterministic model (2) and the stochastic model (3)

(a) (b)

Figure 2 Trajectories (a, b) of the stochastic model (3) for different white noise intensity

noise intensity case, that is, σ 2
1 < 1

1+p ( pμ(μ+θ r )
μ+2θ r – (2μ + νr)), σ 2

2 < 1
1+q ( qμ(μ+θc)

μ+2θc – (2μ + νc)),

σ 2
5 < θ r

pμ+θ r ( pμ3

2θ r(θ r+μ) – (2μ+νr)), σ 2
6 < θc

qμ+θc ( qμ3

2θc(θc+μ) – (2μ+νc)), σ 2
3 < (μ+νr), σ 2

4 < (μ+νc),
the solution ( �r

μ+θ r , �c

μ+θc , 0, 0, θ r�r

μ2+μθ r , θc�c

μ2+μθc ) is found to be stochastically asymptotically sta-
ble. This reveals that the stochastic model (3) has disease extinction with probability one.
Particularly, the noise intensity is zero when the models become the deterministic model
(2), thereby the disease is extinct too. Finally, the results are verified by a numerical simu-
lation.
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In comparison with our model, the model established by Zhang and Yang [29] is a de-
terministic model without considering the influence of environmental factors. Thus, the
model established by us is more consistent with the real infectious disease dynamic pro-
cess. Based on this, our work seems more precise and further enriches their results.

Nevertheless, only the asymptotic behavior of the model is discussed in this paper. In
our upcoming work, we will further discuss other properties of the model, such as ergodic
property and the existence of an invariant distribution. And we would build some model
with time delay, age composition, and control item.
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