
Deressa and Duressa Advances in Difference Equations        (2021) 2021:174 
https://doi.org/10.1186/s13662-021-03334-8

R E S E A R C H Open Access

Analysis of Atangana–Baleanu
fractional-order SEAIR epidemic model with
optimal control
Chernet Tuge Deressa1 and Gemechis File Duressa1*

*Correspondence:
gammeef@yahoo.com
1Department of Mathematics,
College of Natural Sciences, Jimma
University, Jimma, Ethiopia

Abstract
We consider a SEAIR epidemic model with Atangana–Baleanu fractional-order
derivative. We approximate the solution of the model using the numerical scheme
developed by Toufic and Atangana. The numerical simulation corresponding to
several fractional orders shows that, as the fractional order reduces from 1, the spread
of the endemic grows slower. Optimal control analysis and simulation show that the
control strategy designed is operative in reducing the number of cases in different
compartments. Moreover, simulating the optimal profile revealed that reducing the
fractional-order from 1 leads to the need for quick starting of the application of the
designed control strategy at the maximum possible level and maintaining it for the
majority of the period of the pandemic.

Keywords: SEAIR model; Atangana–Baleanu fractional derivative; Basic reproductive
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1 Introduction
Epidemiological mathematical models provide several aspects for understanding the dy-
namics of the spread of an epidemic and suggestions of effective control strategies. The
insight that the transmission dynamics of endemic diseases can be formulated using math-
ematical language dates back to 1766 when Daniel Bernoulli published a paper where he
described the effects of smallpox variolation on life expectancy [1]. Other early mathe-
matical models in epidemiology were introduced in 1927 when Kermack and McKendrick
published a series of papers that described the dynamics of disease transmission in terms
of a system of differential equations [2].

Since the beginning of the widespread use of mathematical models for public health
making, a large number of studies and publications have been made on modeling and
analysis of epidemiological diseases. However, the majority of the studies were restricted
to integer-order differential equations. For instance, the global stability of the SEIR and
SEIAHR epidemic models with integer derivatives and different saturating contact rates
were investigated in [3–6]. A delayed SIRS epidemic model with integer-order derivative
involving saturation incidence and temporary immunity is studied in [7]. An epidemic
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stochastic mathematical model with integer order is used to predict the spread of coro-
navirus in [8]. A mathematical model is used to study correlation between the weather
conditions and the COVID-19 pandemic in India by Borah et al. [9].

It has recently been turned out that fractional differential equations can successfully
be used to model several phenomena in different fields including epidemiology [1]. Frac-
tional calculus is a branch of mathematical analysis that studies calculus of derivatives and
integrals of arbitrary orders.

The advantage of describing mathematical models using fractional derivatives is their
nonlocal property in the sense that the nth derivative of a function g(x) at x is a local
property only when n is an integer, whereas a noninteger fractional derivative of g(x) at
x = b depends on all values of g(x) including those far away from b. In other words, in the
case of fractional-order derivative, since it involves derivatives and integrals of arbitrary
real or complex orders, the future state depends on the present and previous states. Using
fractional-order derivatives in modeling, a dynamic system helps to describe the heredi-
tary properties and efficacy (effectiveness, usefulness) of the memory as essential features
in many biological mechanisms [10].

Many authors contributed to the development of fractional calculus starting from 1695
when L’Hospital asked Leibniz, what if the order of a derivative is n = 1/2? Some of the
other contributors include Euler in 1730 and Lagrange in 1849. In 1812, Laplace defined a
fractional derivative using an integral, and in 1819 the derivative of arbitrary order appears
in a text by Lacroix. Other prominent names in fractional derivatives and integrals include
Reimann–Liouville, Hadamard, Caputo, Caputo–Fabrizio, and more recently Atangana–
Baleanu. More historical notes and the nature of fractional calculus can be obtained in
[11, 12] and the references therein.

In his recent publication, Atangana [13] exposed several previous mistakes and made
corrections to the use of fractional calculus related to the fundamental theorem of cal-
culus. Baleanu et al. [14] developed a fractional model for a tumor-immune surveillance
mechanism and investigated the effect of chemotherapy treatment on the model. The re-
sult showed that the optimal control strategy was efficient. Sene [15] considered a frac-
tional diffusion equation in the context of the fractional operator with Rabotnov fractional
exponential kernel and determined the form of the analytical solution of the equation.

In [16] the Black–Scholes equation with Caputo–Fabrizio fractional derivative and a
Mittag-Leffler fractional derivative is used to determine the value of an option, which plays
an important role in finance. Analysis of a four-dimensional hyperchaotic system with
Caputo–Liouville fractional derivative addressing the chaotic, hyperchaotic, and periodic
behaviors of the system is considered in [17]. Kahan et al. [18] investigated a COVID-19
mathematical model with a fractal-fractional model in the sense of Atangana–Baleanu
fractional operator. The issue of image processing with an Atangana–Baleanu fractional
derivative in the sense of Caputo is pondered in [19]. New understandings in the existence
of solution for Atangana–Baleanu Willis Aneurysm system and singular perturbation of
boundary value problems for the nonlinear fuzzy differential equation are discussed by
Panda et al. [20]. An insight on the existence and uniqueness of the solution to a COVID-19
mathematical model using fractional and fractional-fractal operators and fixed point theo-
rem is performed in [21]. In [22, 23] a fractional-order mathematical model for COVID-19
is developed, and an investigation of the dynamics of the pandemic is performed. In [24]
a fractal-fractional differentiation mathematical model is used for the analysis of diarrhea
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that occurred in Ghana during 2008–2018. Kahan et al. [10] analyzed HIV-TB coinfected
mathematical model in the sense of Atangana–Baleanu fractional derivative.

Numerical computations of different ordinary and fractional derivatives were consid-
ered in [25–29]. Kolade and Owolabi [30] performed analysis and numerical simulation
of a system using a two-step family of Adams–Bashforth method to approximate the
Atangana–Baleanu fractional derivative. A SEIR fractional model with its stability anal-
ysis is considered in [31]. The Atangana–Baleanu fractional derivative operator involving
the Mittag-Leffler kernel is used to analyze SEIRA mathematical model in [32].

From the above-surveyed works of the literature we can say that fractional derivatives
have many applications in mathematical modeling and analysis of real phenomena. In par-
ticular, the recently developed Atangana–Baleanu fraction operator has earned popularity
and respect due to its immense applications in biological, physical, medical engineering,
and several other nonlinear analyses.

Motivated by the aforementioned arguments, in this paper, we study a SEAIR (Suscep-
tible–Exposed–Asymptomatic–Symptomatic–Recovered cases) mathematical model in-
volving a saturating contact rate. The recently developed Atangan–Baleanu fractional
derivative and Toufic–Atangana numerical scheme [27] are used to develop the fractional
derivative version of the model and estimate its numerical solution. To the best of the au-
thors’ knowledge, the SEAIR endemic model applying the Atangana–Baleanu fractional
derivative is not yet investigated. The authors also argue that optimal control analysis of
mathematical models in the sense of Atangana–Baleanu fractional operators is uncom-
mon in the existing literature. As a result, in this study, we consider an optimal control
analysis of the SEAIR model. The rest of this paper is organized as follows. In Sect. 2,
we accomplish the description and formulation of the model. In Sect. 3, we establish the
existence and uniqueness of the solution of the model including the positivity and bound-
edness in the sense of the Atangana–Baleanu fractional operator. Section 4 deals with the
diseases-free and endemic equilibrium points and the corresponding global stability anal-
ysis. The numerical solution of the SEAIR model via Atangana–Baleanu numerical scheme
and simulation is detailed Sect. 5. In the last section, we consider an optimal control anal-
ysis of the fractional model by incorporating a control parameter in the model. Moreover,
in this section, we perform a numerical simulation verifying the effect of the designed
control strategy for different values of fractional order and different compartments of the
model.

2 Model description and formulation
In this section, we develop the Atangana–Baleanu fractional derivative representation
of the SEAIR endemic mathematical model. Let us first recall the basic definitions of
Atangana–Baleanu fractional operators.

Definition 1 Let g ∈ C1(a, b), a < b, be a function, and let η ∈ [0, 1]. The Atangana-
Baleanu (AB) fractional derivative in Caputo type of order η is given by [25, 26, 33]

ABC
a Dη

t g(t) =
F(η)
1 – η

∫ t

a

dg
dk

Eη

[
–

η

1 – η
(t – k)η

]
dk, (1)

where F(η) is the normalization function given by F(η) = 1 – η + η/�(η), characterized
by F(0) = F(1) = 1, and the Mittag-Leffler function Eη(z) with C the set of the complex
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number is given by

Eη(z) =
∞∑

β=0

zβ

�(1 + ηβ)
, η, z ∈C,�(η) > 0.

Definition 2 The AB fractional integral of the function g ∈ C1(a, b) is given by [25, 26, 33]

AB
a Iη

t g(t) =
1 – η

F(η)
g(t) +

η

F(η)�(η)

∫ t

a
g(k)(t – k)η–1 dk. (2)

Lemma 1 ([34]) The AB fractional derivative and AB fractional integral of the function
g ∈ C1(a, b) satisfies the Newton–Leibniz equality

AB
a Iη

t
(ABC

a Dη
t g(t)

)
= g(t) – g(a).

Lemma 2 ([33, 35]) For two functions f , g ∈ �1(a, b), b > a, the AB fractional derivative
satisfies the following inequality:

∥∥ABC
a Dη

t f (t) – ABC
a Dη

t g(t)
∥∥≤ �

∥∥f (t) – g(t)
∥∥.

Now we proceed with the formulation of the model. The following flow-diagram (Fig. 1)
is used in constructing the mathematical model of this study.

Based on the flow diagram, the mathematical model with integer order used in this study
is expressed by the equation system

dS
dt = � – α1C(N)(I + A)S – α3S,
dE
dt = α1C(N)(I + A)S – (α3 + α4)E,
dA
dt = (1 – ρ)α4E – (α3 + α5)A – α6A,
dI
dt = ρα4E – (α3 + α5)I – α7I,
dR
dt = α6A + α7I – α3R,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3a)

where C(N) = αN/(1 + bN) derived in [36] is the saturating contact rate, α and b are pos-
itive constants, and the total population is given by N(t) = S(t) + E(t) + A(t) + I(t) + R(t).

Figure 1 Flow diagram of SEAIR endemic model
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Table 1 The parameters and their descriptions

Parameter name Symbol

Influx rate �

Transmission rate from S to E due to contact with I and/or A α1

Natural death rate α3

The proportion of symptomatic infectious individuals ρ

Rate of progression from E to A or I α4

Disease induces death rate α5

The recovery rate of asymptomatic cases α6

The recovery rate of symptomatic cases α7

The natural death rate is proportional to the population size N ; the death rate term is
α3N . Thus in the absence of disease the differential equation of the total population size
N is dN/dt = � – α3N , and thus limx→∞ N(t) = �/α3, which implies that the carrying ca-
pacity of the demographic structure under consideration in this study is �/α3. Moreover,
we can see that C(N) ≈ αN for small N and C(N) ≈ α/b for large N ; C(N) is nondecreas-
ing, and C(N)/N is nonincreasing. We also consider the disease-induced death rate. We
assume that once a patient is recovered, he/she develops a permanent immune, and there
is no chance of returning to the susceptible group.

Thus the mathematical model taking into account the assumptions, the saturating con-
tact rate, the flow diagram (Fig. 1), and the AB derivative is described by the system of
differential equations

ABC
0 Dη

t S(t) = G1(t, S),
ABC
0 Dη

t E(τ ) = G2(t, E),
ABC
0 Dη

t A(t) = G3(t, A),
ABC
0 Dη

t I(t) = G4(t, I),
ABC
0 Dη

t R(t) = G5(t, R),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3b)

where the kernels are given by

G1(t, S) = � – b0
(I+A)S
k(N) – α3S,

G2(t, E) = b0
(I+A)S
k(N) – (α3 + α4)E,

G3(t, A) = (1 – ρ)α4E – (α3 + α5 + α6)A,
G4(t, I) = ρα4E – (α3 + α5 + α7)I,
G5(t, R) = α6A + α7I – α3R,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

with initial conditions S(0) = S0, E(0) = E0, A(0) = A0, I(0) = I0, R(0) = R0, and b0 = αα1,
k(N) = 1+bN , and α1 is the probability per unit time of transmitting the infection between
two individuals taking part in contact.

In the presence of endemic, we have dN/dt = � – α3N – α5(A + I), which indicates that
the population size is not constant. The parameters used in the model are indicated in
Table 1.

3 Existence and uniqueness of solutions
In this section, existence and uniqueness, nonnegativity, and boundedness of the solutions
of the fractional-order model (3b) is deliberated. To show the existence of the solution to
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model (3b), we use the famous theorem referred to as the Banach fixed point theorem.
For an extensive study on fixed points and contractions, we refer the reader to [21] and
the references therein.

To show the existence and uniqueness of the solution, we proceed as follows. Applying
the AB fractional integral to model (3b), we obtain

S(t) – S(0) = 1–η

F(η) G1(t, S) + η

F(η)�(η)
∫ t

0 G1(k, S)(t – k)η–1 dk,

E(t) – E(0) = 1–η

F(η) G2(t, E) + η

F(η)�(η)
∫ t

0 G2(k, E)(t – k)η–1 dk,

A(t) – A(0) = 1–η

F(η) G3(t, A) + η

F(η)�(η)
∫ t

0 G3(k, A)(t – k)η–1 dk,

I(t) – I(0) = 1–η

F(η) G4(t, I) + η

F(η)�(η)
∫ t

0 G4(k, I)(t – k)η–1 dk,

R(t) – R(0) = 1–η

F(η) G5(t, R) + η

F(η)�(η)
∫ t

0 G5(k, R)(t – k)η–1 dk.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

Consider the set B = H(J) × H(J) × H(J) × H(J) × H(J) where H(J) = C[0, T] is the Ba-
nach space of real-valued continuous functions defined on an interval J = [0, T] with the
corresponding norm defined by ‖(S, E, A, I, R)‖ = ‖S‖ + ‖E‖ + ‖A‖ + ‖I‖ + ‖R‖, where

‖S‖ = sup
t∈J

∣∣S(t)
∣∣, ‖E‖ = sup

t∈J

∣∣E(t)
∣∣, ‖A‖ = sup

t∈J

∣∣A(t)
∣∣,

‖I‖ = sup
t∈J

∣∣I(t)
∣∣, ‖R‖ = sup

t∈J

∣∣R(t)
∣∣.

Theorem 1 (Lipschitz condition and contraction) For each of the kernels G1, G2, G3, G4,
G5 in (3b), there exists Li > 0, i = 1, 2, 3, 4, 5, such that

∥∥G1(t, S) – G1(t, S1)
∥∥≤ L1

∥∥S(t) – S1(t)
∥∥,

∥∥G2(t, E) – G2(t, E1)
∥∥≤ L2

∥∥E(t) – E1(t)
∥∥,

∥∥G3(t, A) – G3(t, A1)
∥∥≤ L3

∥∥A(t) – A1(t)
∥∥,

∥∥G4(t, E) – G4(t, E1)
∥∥≤ L4

∥∥I(t) – I1(t)
∥∥,

∥∥G5(t, R) – G5(t, R1)
∥∥≤ L5

∥∥R(t) – R1(t)
∥∥,

and are contractions for 0 ≤ Li < 1, i = 1, 2, 3, 4, 5.

Proof

∥∥G1(t, S) – G1(t, S1)
∥∥ =
∥∥∥∥� – b0

(I + A)S
k(N)

– α3S –
(

� – b0
(I + A)S1

k(N)
– α3S1

)∥∥∥∥
=
∥∥∥∥–b0

(I + A)S
k(N)

– α3S + b0
(I + A)S1

k(N)
+ α3S1

∥∥∥∥
=
∥∥∥∥b0

(I + A)
k(N)

(S1 – S) + α3(S1 – S)
∥∥∥∥

≤
(

b0
m2 + m1

k(N)
+ α3

)
‖S1 – S‖

≤ L1‖S1 – S‖,
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where L1 = b0
m2+m1

k(N) + α3,

‖S‖ = sup
τ∈J

∣∣S(t)
∣∣ = m5, ‖E‖ = sup

τ∈J

∣∣E(t)
∣∣ = m4, ‖A‖ = sup

τ∈J

∣∣A(t)
∣∣ = m2,

‖I‖ = sup
τ∈J

∣∣I(t)
∣∣ = m1, ‖R‖ = sup

τ∈J

∣∣R(t)
∣∣ = m3.

It then follows that G1(t, S) satisfies the Lipschitz condition with Lipschitz constant L1 =
b0(m2 + m1)/k(N) + α3. Moreover, if 0 ≤ L1 < 1, then G1(t, S) is a contraction.

In the same manner, we can show the existence of Li, i = 2, 3, 4, 5, and a contraction
principle for G2(t, E), G3(t, A), G1(t, I), G1(t, R), 0 ≤ Li < 1.

Now for t = tn, n = 1, 2, . . . , define the following recursive form of (4):

Sn(t) = 1–η

F(η) G1(t, Sn–1) + η

F(η)�(η)
∫ t

0 G1(k, Sn–1)(t – k)η–1 dk,

En(t) = 1–η

F(η) G2(t, En–1) + η

F(η)�(η)
∫ τ

0 G2(k, En–1)(t – k)η–1 dk,

An(t) = 1–η

F(η) G3(t, An–1) + η

F(η)�(η)
∫ t

0 G3(k, An–1)(t – k)η–1 dk,

In(t) = 1–η

F(η) G4(t, In–1) + η

F(η)�(η)
∫ t

0 G4(k, In–1)(t – k)η–1 dk,

Rn(t) = 1–η

F(η) G5(t, Rn–1) + η

F(η)�(η)
∫ t

0 G5(k, Rn–1)(t – k)η–1 dk,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

with initial conditions S0(t) = S(0), E0(t) = E(0), A0(t) = A(0), I0(t) = I(0), R0(t) = R(0).
The differences between successive terms in (5) are expressed as follows:

A1n(t) = Sn(t) – Sn–1(t)

= 1–η

F(η) (G1(t, Sn–1) – G1(t, Sn–2))

+ η

F(η)�(η)
∫ t

0 (G1(t, Sn–1) – G1(t, Sn–2))(t – k)η–1 dk,

A2n(t) = En(t) – En–1(t)

= 1–η

F(η) (G2(t, En–1) – G2(t, En–2))

+ η

F(η)�(η)
∫ t

0 (G1(t, En–1) – G1(t, En–2))(t – k)η–1 dk,

A3n(t) = An(t) – An–1(t)

= 1–η

F(η) (G3(t, An–1) – G3(t, An–2))

+ η

F(η)�(η)
∫ t

0 (G3(t, An–1) – G3(t, An–2))(t – k)η–1 dk,

A4n(t) = In(t) – In–1(t)

= 1–η

F(η) (G4(t, In–1) – G4(t, In–2))

+ η

F(η)�(η)
∫ t

0 (G1(t, In–1) – G1(t, In–2))(t – k)η–1 dk,

A5n(t) = Rn(t) – Rn–1(t)

= 1–η

F(η) (G5(t, Rn–1) – G5(t, Rn–2))

+ η

F(η)�(η)
∫ t

0 (G5(t, Rn–1) – G5(t, Rn–2))(t – k)η–1 dk.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)
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Taking the norm on both sides of each equation in (6), we have

‖A1n(t)‖ = ‖Sn(t) – Sn–1(t)‖
= 1–η

F(η)‖G1(t, Sn–1) – G1(t, Sn–2)‖
+ η

F(η)�(η)
∫ t

0 ‖G1(t, Sn–1) – G1(t, Sn–2)‖(t – k)η–1 dk,

‖A2n(t)‖ = ‖En(t) – En–1(t)‖
= 1–η

F(η)‖G2(t, En–1) – G2(t, En–2)‖
+ η

F(η)�(η)
∫ t

0 ‖G1(t, En–1) – G1(t, En–2)‖(t – k)η–1 dk,

‖A3n(t)‖ = ‖An(t) – An–1(t)‖
= 1–η

F(η)‖G3(t, An–1) – G3(t, An–2)‖
+ η

F(η)�(η)
∫ t

0 ‖G3(t, An–1) – G3(t, An–2)‖(t – k)η–1 dk,

‖A4n(t)‖ = ‖In(t) – In–1(t)‖
= 1–η

F(η)‖G4(t, In–1) – G4(t, In–2)‖
+ η

F(η)�(η)
∫ t

0 ‖G1(t, In–1) – G1(t, In–2)‖(t – k)η–1 dk,

‖A5n(t)‖ = ‖Rn(t) – Rn–1(t)‖
= 1–η

F(η)‖G5(t, Rn–1) – G5(t, Rn–2)‖
+ η

F(η)�(η)
∫ t

0 ‖G5(t, Rn–1) – G5(t, Rn–2)‖(t – k)η–1 dk.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

Furthermore, the first equality in (7) can be reduced to the following expressions:

∥∥A1n(t)
∥∥ =

∥∥Sn(t) – Sn–1(t)
∥∥

≤ 1 – η

F(η)
∥∥(G1(t, Sn–1) – G1(t, Sn–2)

)∥∥

+
η

F(η)�(η)

∫ τ

0

∥∥(G1(t, Sn–1) – G1(t, Sn–2)
)∥∥(t – k)η–1 dk

≤ 1 – η

F(η)
L1‖Sn–1 – Sn–2‖ +

η

F(η)�(η)
L1

∫ τ

0
‖Sn–1 – Sn–2‖(t – k)η–1 dk

≤ L1
∥∥A1(n–1)(t)

∥∥
∣∣∣∣1 – η

F(η)
+

tη

F(η)�(η)

∣∣∣∣.

As a result, we have

∥∥A1n(t)
∥∥≤ L1

∣∣∣∣1 – η

F(η)
+

tη

F(η)�(η)

∣∣∣∣
∥∥A1(n–1)(t)

∥∥. (8)

Analogously, the remaining expressions of (7) can be reduced to the following expressions:

‖A2n(t)‖ ≤ L2| 1–η

F(η) + tη
F(η)�(η) |‖A2(n–1)(t)‖,

‖A3n(t)‖ ≤ L3| 1–η

F(η) + tη
F(η)�(η) |‖A3(n–1)(t)‖,

‖A4n(t)‖ ≤ L4| 1–η

F(η) + tη
F(η)�(η) |‖A4(n–1)(t)‖,

‖A5n(t)‖ ≤ L5| 1–η

F(η) + tη
F(η)�(η) |‖A5(n–1)(t)‖.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(9)

�
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Theorem 2 The AB fractional model given in (3b) has a solution if we can find M0 satis-
fying the inequality

(
1 – η

F(η)
+

Mη
0

F(η)�(η)

)
Li < 1, i = 1, 2, 3, 4, 5. (10)

Proof From (8) and (9) we have

‖A1n(t)‖ ≤ ‖S(0)‖[( 1–η

F(η) + Mη
0

F(η)�(η) )L1]n,

‖A2n(t)‖ ≤ ‖E(0)‖[( 1–η

F(η) + Mη
0

F(η)�(η) )L2]n,

‖A3n(t)‖ ≤ ‖A(0)‖[( 1–η

F(η) + Mη
0

F(η)�(η) )L3]n,

‖A4n(t)‖ ≤ ‖I(0)‖[( 1–η

F(η) + Mη
0

F(η)�(η) )L4]n,

‖A5n(t)‖ ≤ ‖R(0)‖[( 1–η

F(η) + Mη
0

F(η)�(η) )L5]n.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

The existence of the solution (the existence of a fixed point) is confirmed by Theorem 1,
and we have to show that the functions S(t), E(t), A(t), I(t), R(t) are solutions of model
(3b).

Let us assume that the following are satisfied:

S(t) – S(0) = Sn(t) – a1n(t),
E(t) – E(0) = En(t) – a2n(t),
A(t) – A(0) = An(t) – a3n(t),
I(t) – I(0) = In(t) – a4n(t),
R(t) – R(0) = Rn(t) – a5n(t).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(12)

From (12) we obtain

∥∥a1n(t)
∥∥ ≤ 1 – η

F(η)
∥∥(G1(τ , Sn) – G1(τ , Sn–1)

)∥∥

+
η

F(η)�(η)

∫ τ

0

∥∥(G1(τ , Sn) – G1(τ , Sn–1)
)∥∥(τ – k)η–1 dk,

≤ 1 – η

F(η)
L1‖Sn – Sn–1‖ +

ηn

F(η)�(η)
L1‖Sn – Sn–1‖.

Repeating the process recursively leads to

∥∥a1n(t)
∥∥≤

[
1 – η

F(η)
+

tη

F(η)�(η)

]n+1

Ln
1‖Sn – Sn–1‖n,

which at t = Mη
0 yields

∥∥a1n(t)
∥∥≤

[
1 – η

F(η)
+

Mη
o

F(η)�(η)

]n+1

Ln
1‖Sn – Sn–1‖n,

∥∥a1n(t)
∥∥→ 0.

(13)
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Applying the limit to both sides of (13) as n → ∞, we see that ‖a1n(t)‖ → 0 for

(
1 – η

F(η)
+

tη

F(η)�(η)

)
L1 < 1.

Similarly, we can show that ‖a2n(t)‖ → 0, ‖a3n(t)‖ → 0, ‖a4n(t)‖ → 0, ‖a5n(t)‖ → 0,

(
1 – η

F(η)
+

tη

F(η)�(η)

)
Li < 1, i = 2, 3, 4, 5. �

Theorems 1 and 2 guarantee the existence of the solution of model (3b) by the Banach
fixed point theorem. The uniqueness of the solution is proved in Theorem 3.

Theorem 3 (Uniqueness of solution) The AB fractional model (3b) has a unique solution,
provided that

(
1 – η

F(η)
+

tη

F(η)�(η)

)
Li < 1, i = 2, 3, 4, 5. (14)

Proof Let us assume that S1(t), E1(t), A1(t), I1(t), R1(t) are also solutions to (3b). Then

S(t)–S1(t) =
1 – η

F(η)
(
G1(t, S)–G1(t, S1)

)
+

η

F(η)�(η)

∫ t

0

(
G1(t, S)–G1(t, S1)

)
(t –k)η–1 dk.

Taking the norm of both sides, we obtain

∥∥S(t) – S1(t)
∥∥≤ 1 – η

F(η)
L1‖S – S1‖ +

tη

F(η)�(η)
L1‖S – S1‖.

Since (1 – L1( 1–η

F(η) + tη
F(η)�(η) )) > 0, we obtain ‖S(t) – S1(t)‖ = 0. Thus we have S(t) = S1(t).

Similarly, we can show that E(t) = E1(t), A(t) = A1(t), I(t) = I1(t), R(t) = R1(t), which com-
pletes the proof of Theorem 3. �

Now we define the epidemiologically feasible (nonnegativity and boundedness) region
of this study in Theorem 4 and prove that the region is positively invariant and bounded.

Theorem 4 The epidemiologically feasible region of AB model (3b) is given by

	 =:
{

(S, E, A, I, R) ∈ R5
+ : 0 ≤ S + E + A + I + R ≤ N ≤ �

α3

}
. (15)

The existence and uniqueness of the solution of model (3b) are now proved, and it re-
mains to show that the set 	 defined in (15) is positively invariant. The following lemma
will be used for the proof of Theorem 4.

Lemma 3 (Generalized mean value theorem, [37]) Let g(x) ∈ C[a, b], and let ABC
0 Dη

t g(x) ∈
C[a, b] when 0 < η ≤ 1. Then we have g(x) = g(a) + 1

�(η)
ABC
0 Dη

t g(ξ )(x – a)η ,when 0 ≤ ξ ≤ x,
∀x ∈ (a, b].
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Note that by Lemma 3, if g(x) ∈ [0, b], ABC
0 Dη

t g(x) ∈ (0, b], and ABC
0 Dη

t g(x) ≥ 0, ∀x ∈ (0, b]
when 0 < η ≤ 1, then the function g(x) is nondecreasing, and if ABC

0 Dη
t g(x) ≤ 0, ∀x ∈ (0, b],

then the function g(x) is nonincreasing ∀x ∈ [0, b].
To show that the set 	 is positively invariant, using Lemma 3, we have

ABC
0 Dη

t S|S=0 = � ≥ 0,
Dη

t E|E=0 = b0
(I+A)S
k(N) ≥ 0,

ABC
0 Dη

t A|A=0 = (1 – ρ)α4E ≥ 0,
ABC
0 Dη

t I|I=0 = ρα4E ≥ 0,
ABC
0 Dη

t R|R=0 = α6A + α7I ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(16)

It follows from (16) that each of the solutions of (3b) is nonnegative and remains in R5
+,

and hence the set 	 defined in (15) is positively invariant for model (3b).
Finally, to establish the boundedness of the solutions of the fractional model (3b), taking

into account that all the parameters are positive, we continue by summing all the equations
of the model, which gives

ABC
0 Dη

t N(t) = � – α3N(t) – α5(A + I) ≤ � – α3N(t).

Applying the Laplace transform leads to

L
(ABC

0 Dη
t N(t) + α3N(t)

)≤ L(�),

L(N)
(

(1 – k)sη –
kη

1 – η

)
– sη–1N(0) ≤ 1 – η

F(η)

(
sη +

η

1 – η

)
�

s
,

L(N) ≤
(

1 –
kη

(1 – k)(1 – η)
s–η

)–1[ 1 – η

(1 – k)F(η)

(
1 +

η

1 – η
s–η

)
�

s
+ N(0)

1
(1 – k)s

]
,

where

k =
–α3(1 – η)

F(η)
.

Following the work [38] and applying the inverse Laplace transform, the solution is given
by

N(t) =
�

α3
–

�

α3(1 – k)
d
dt

∫ t

0
Eη

(
kη

(1 – k)(1 – η)
(t – x)η dx

)

+
1

1 – k
Eη

(
kη

(1 – k)(1 – η)
tη

)
N(0),

where Eα,β refers to the Mittag-Leffler function. Taking into account the fact that the
Mittag-Leffler function has the asymptotic behavior

Eα,β (z) ≈
ω∑

K=1

z–K /�(β – αK) + O
(|z|–1–ω

)
, |z| → ∞,

απ

2
<
∣∣arg(z)

∣∣≤ π ,

it is not difficult to observe that N(t) → �/α3 as t → ∞. Hence (15) is the biologically
feasible region of model (3b).
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4 Equilibrium points and stability analysis
I. The disease-free equilibrium point (DFE)

The disease-free equilibrium of (3b) is given by N0 = (�/α3, 0, 0, 0, 0) ∈ ∂	. The global
stability of the disease-free equilibrium point is proved in Theorem 5 after defining the
basic reproductive number.

II. The basic reproductive number R0

The basic reproductive number is obtained using the next-generation matrix [39] and
is the spectral radius �(–TV –1), where

T =

⎡
⎢⎣

0 b0�

α3k(N)
b0�

α3k(N)
0 0 0
0 0 0

⎤
⎥⎦ , –V –1 =

⎡
⎢⎣

1
α4+α3

0 0
α4(1–ρ)

l1(α4+α3)
1
l1

0
α4ρ

l2(α4+α3) 0 1
l2

⎤
⎥⎦ ,

�
(
–TV –1) =

(1 – ρ)�b0α4l2 + ρ�b0α4l1

l1l2(α3 + b�)(α3 + α4)
= R0 = R0I + R0A,

R0I =
ρ�b0α4

(b� + α3)l2(α3 + α4)
, R0A =

(1 – ρ)�b0α4

l1(α3 + b�)(α3 + α4)
,

l1 = α3 + α5 + α6, l2 = α3 + α5 + α7.

Theorem 5 The DFE; N0 = (�/α3, 0, 0, 0, 0) is globally asymptotically stable when R0 ≤ 1.

Proof Consider a Lyapunov function candidate

V (S, E, A, I, R) = α4E + (α3 + α4)
(
(1 – ρ)A + ρI

)
.

The derivative of V in the direction of the solution of (3b) is given as

dV
dt

= α4
dE
dt

+ (α3 + α4)
(

(1 – ρ)
dA
dt

+ ρ
dI
dt

)

=
(

b0α4
A(N – E – A – I – R)

k(N)

)
+
(

b0α4
I(N – E – A – I – R)

k(N)

)

–
(
(α3 + α4 + α6)(α3 + α4)A + (α3 + α4 + α7)(α3 + α4)I

)

= b0α4(A + I)
N

k(N)
–

b0α4A(E + A + I + R)
k(N)

–
b0α4I(E + A + I + R)

k(N)
.

–
(
(α3 + α4 + α6)(α3 + α4)A + (α3 + α4 + α7)(α3 + α4)I

)

≤ b0α4(A + I)
N

k(N)
–
(
(α3 + α4 + α6)(α3 + α4)A + (α3 + α4 + α7)(α3 + α4)I

)

≤ b0α4A
N

k(N)
–
(
(α3 + α4 + α6)(α3 + α4)A

)
+ b0α4(I)

N
k(N)

–
(
(α3 + α4 + α7)(α3 + α4)I

)

≤ (α3 + α4 + α6)(α3 + α4)A
(

R0A
C(N)

C(�/α3)
– 1
)

+ (α3 + α4 + α7)(α3 + α4)I
(

R0I
C(N)

C(�/α3)
– 1
)

.
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Thus

dV
dτ

≤ (α3 + α4 + α6)(α3 + α4)A
(

R0A
C(N)

C(�/α3)
– 1
)

+ (α3 + α4 + α7)(α3 + α4)I
(

R0I
C(N)

C(�/α3)
– 1
)

≤ 0,

for R0A ≤ 1, R0I ≤ 1 and R0 = R0A + R0I ≤ 1.
Since in the set 	 we have N = �/α3 at the DFE and C(N) = αN/(1 + bN) is nonde-

creasing, dV
dt ≤ 0 for R0A ≤ 1, R0I ≤ 1 and R0 = R0A + R0I ≤ 1. Moreover, the Lyapunov–

Lasalle theorem [40] implies that all trajectories in 	 approach the largest positively in-
variant subset of the set M where dV /dt = 0. In this work, M is the set where I = A = 0.
On the boundary of 	, where I = A = 0, we have E = 0, R(t) = c0e–t → 0 as t → +∞, and
N(t) = �/α3 + (N(0) – �/α3)e–t → �/α3 as t → +∞. �

Hence all the trajectories in the domain 	 approach the disease-free equilibrium point
N0 = (�/α3, 0, 0, 0, 0), for R0 ≤ 1.

III. Existence and uniqueness of endemic equilibrium point (EEP)
The proof of the global stability of the DFE ensures that when R0 ≤ 1, there is no other

equilibrium point other than N0 = (�/α3, 0, 0, 0, 0). As a result, the study of the endemic
equilibrium point N∗ = (S∗, E∗, A∗, I∗, R∗) is restricted to R0 > 1.

The endemic equilibrium point is given by N∗ = (S∗, E∗, A∗, I∗, R∗), where

A∗ =
(1 – ρ)α4

l1
E∗, I∗ =

ρα4

l2
E∗, R∗ =

(
(1 – ρ)α4α6

α3l1
+

ρα7α4

α3l2

)
E∗,

S∗ =
�

α3
–
(

α3 + α4

α3

)
E∗, E∗ = (R0 – α3)/

(
(α3 + α4)R0

)
,

(17)

and E∗ satisfies the quadratic equation ( R0(α3+α4)
α3

– (α3 + α4))E∗ – R0(α3+α4)2

α3
E∗2 = 0, from

which we have that E∗ is positive only for R0 > max{1,α3}. It is logical to assume that the
natural death rate α3 ≤ 1. Hence we conclude that the EEP is globally asymptotically stable
for R0 > 1.

To show the uniqueness of EEP, with the assumption of E∗ > 0, define

G
(
E∗) =:

(
R0

α3
– 1
)

–
R0(α3 + α4)

α3
E∗,

and then we have dG/dE∗ = –R0(α3 + α4)/α3 < 0, that is, G(E∗) is a decreasing function in
(0,�/α3) ∈ 	, ensuring that E∗ ∈ (0,�/α3) is unique, which leads to Theorem 6.

Theorem 6 For R0 > 1, model (3b) has a unique equilibrium point N∗ = (E∗, A∗, I∗, R∗, S∗)
given by (17). The global stability of the EEP is proved in Theorem 7 using the Lyapunov
function method.

Theorem 7 If R0 > 1, then the endemic equilibrium point N∗ of model (3b) is globally
asymptotically stable in the region 	.
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Proof Define a Lyapunov function candidate by

F(S, E, I, A, R) =
1
2
[(

S – S∗) +
(
E – E∗) +

(
I – I∗) +

(
A – A∗) +

(
R – R∗)]2.

Then F(S, E, I, A, R) ≥ 0 and F(S∗, E∗, I∗, A∗, R∗) = 0. Moreover, dF
dt = [(S + E + I + A + R) –

(S∗ + E∗ + I∗ + A∗ + R∗)] dN
dt .

Since

S∗ + E∗ + I∗ + A∗ + R∗ =
�

�

and

dN
dt

= � – α3N – α5(A + I),

we have

dF
dt

=
(

N –
�

α3

)(
� – α3N – α3(A + I)

)
= –

1
α3

(� – α3N)2 – (� – α3N)(A + I) ≤ 0.

Note that at the EEP we have N ≤ �
α3

. Hence, it follows that dF
dt ≤ 0 and dF

dt = 0 if and only
if S = S∗, E = E∗, I = I∗, A = A∗, R = R∗. Therefore the largest closed and bounded invari-
ant set in {S, E, I, A, R ∈ 	 : Ḟ = 0} is the set {N∗ : N∗ = (S∗, E∗, I∗, A∗, R∗)}. By LaSalle’s in-
variance principle the unique equilibrium point N∗ is globally asymptotically stable when
R0 > 1 in the region 	. �

5 Numerical solution of the model
In this section, we develop a numerical scheme for model (3b) using the Toufik–Atangana
rule detailed in [27].

Now from the first equation of (3b) we have

ABC
0 Dη

t S(t) = G1
(
t, S(t)

)
,

S(0) = S0.
(18)

Based on (4), we obtain the solution for (18) given in (19):

S(t) = S(0) +
1 – η

F(η)
G1
(
t, S(t)

)
+

η

F(η)�(η)

∫ t

0
G1
(
k, S(k)

)
(t – k)η–1 dk. (19)

Applying Lagrange’s interpolation polynomial on the interval [tk , tk+1] to the equality
G1(y, S(y)) = �

α3
– b0

(I(y)+A(y))S(y)
k(N) – S(y) leads to

SK ≈ 1
h
[
(y – tk–1)G1

(
tk , S(tk), I(tk), A(tk)

)

– (y – tk)G1
(
tk–1, S(tk–1), I(tk–1), A(tk–1)

)]
, (20)

where h = tk – tk–1.
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Now substituting (20) into (19), we have

S(tn+1) = S(0) +
1 – η

F(η)
G1
(
tk , S(tk), I(tk), A(tk)

)

+
η

F(η)�(η)

n∑
j=1

⎛
⎝

G1(tj ,S(tj),I(tj),A(tj))
h

∫ tj+1
tj

(y – tj–1)(tn+1 – y)η–1 dy

– G1(tj–1,S(tj–1),I(tj–1),A(tj–1))
h

∫ tj+1
tj

(y – tj–1)(tn+1 – y)η–1 dy

⎞
⎠

= S(0) +
1 – η

F(η)
G1
(
tn, S(tn), I(tn), A(tn)

)

+
η

F(η)�(η)

n∑
j=1

(
G1(tj, S(tj), I(tj), A(tj))

h
ϒj–1

–
G1(tj–1, S(tj–1), I(tj–1), A(tj–1))

h
ϒj

)
, (21)

where

ϒj–1 =
∫ tj+1

tj

(y – tj–1)(tn+1 – y)η–1 dy

= –
1
η

[
(tj+1 – tj–1)(tn+1 – tj+1)η – (tj – tj–1)(tn+1 – tj)η

]

–
1

η(η + 1)
[
(tn+1 – tj+1)η+1(tn+1 – tj+1)η – (tn+1 – tj)η+1], (22)

ϒj =
∫ tj+1

tj

(y – tj–1)(tn+1 – y)η–1 dy

= –
1
η

[
(tj+1 – tj–1)(tn+1 – tj+1)η

]

–
1

η(η + 1)
[
(tn+1 – tj+1)η+1 – (tn+1 – tj)η+1]. (23)

Furthermore, substituting tj = jh into (22) and (23) leads to

ϒj–1 =
hη+1

η(η + 1)
[
(n + 1 – j)η(n – j + 2 + η) – (n – j)η(n – j + 2 + 2η)

]
, (24)

ϒj =
hη+1

η(η + 1)
[
(n + 1 – j)η+1 – (n – j)η(n – j + 1 + η)

]
. (25)

Finally, we can express (21) in terms of (24) and (25) as follows:

S(tn+1) = S(t0) +
1 – η

F(η)
G1
(
tn, S(tn), I(tn), A(tn)

)
+

η

F(η)�(η)

×
n∑

j=1

⎛
⎜⎜⎜⎜⎝

( G1(tj ,S(tj),I(tj),A(tj))
�(η+2) )

× hη[(n + 1 – j)η(n – j + 2 + η) – (n – j)η(n – j + 2 + 2η)]
– ( G1(tj–1,S(tj–1),I(tj–1),A(tj–1))

�(η+2) )
× hη[(n + 1 – j)η+1 – (n – j)η(n – j + 1 + η)]

⎞
⎟⎟⎟⎟⎠ . (26)
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In the same way, we have the following equations for the remaining state variables:

E(tn+1) = E(t0) +
1 – η

F(η)
G2
(
tn, S(tn), E(tn), I(tn), A(tn), R(tn)

)
+

η

F(η)�(η)

×
n∑

j=1

⎛
⎜⎜⎜⎜⎝

G2(tj ,S(tj),E(tj),I(tj),A(tj),R(tj)
�(η+2)

× hη[(n + 1 – j)η(n – j + 2 + η) – (n – j)η(n – j + 2 + 2η)]
– G2(tj–1,S(tj–1),E(tj–1),I(tj–1),A(tj–1),R(tj–1))

�(η+2)
× hη[(n + 1 – j)η+1 – (n – j)η(n – j + 1 + η)]

⎞
⎟⎟⎟⎟⎠ , (27)

A(tn+1) = A(t0) +
1 – η

F(η)
G3
(
tn, S(tn), E(tn), I(tn), A(tn), R(tn)

)
+

η

F(η)�(η)

×
n∑

j=1

⎛
⎜⎜⎜⎜⎝

G3(tj ,S(tj),E(tj),I(tj),A(tj),R(tj)
�(η+2)

× hη[(n + 1 – j)η(n – j + 2 + η) – (n – j)η(n – j + 2 + 2η)]
– G3(tj–1,S(tj–1),E(tj–1),I(tj–1),A(tj–1),R(tj–1))

�(η+2)
× hη[(n + 1 – j)η+1 – (n – j)η(n – j + 1 + η)]

⎞
⎟⎟⎟⎟⎠ , (28)

I(tn+1) = I(t0) +
1 – η

F(η)
G4
(
tn, S(tn), E(tn), I(tn), A(tn), R(tn)

)
+

η

F(η)�(η)

×
n∑

j=1

⎛
⎜⎜⎜⎜⎝

G4(tj ,S(tj),E(tj),I(tj),A(tj),R(tj)
�(η+2)

× hη[(n + 1 – j)η(n – j + 2 + η) – (n – j)η(n – j + 2 + 2η)]
– G4(tj–1,S(tj–1),E(tj–1),I(tj–1),A(tj–1),R(tj–1))

�(η+2)
× hη[(n + 1 – j)η+1 – (n – j)η(n – j + 1 + η)]

⎞
⎟⎟⎟⎟⎠ , (29)

R(tn+1) = R(t0) +
1 – η

F(η)
G5
(
tn, S(tn), E(tn), I(tn), A(tn), R(tn)

)
+

η

F(η)�(η)

×
n∑

j=1

⎛
⎜⎜⎜⎜⎝

G5(tj ,S(tj),E(tj),I(tj),A(tj),R(tj)
�(η+2)

× hη[(n + 1 – j)η(n – j + 2 + η) – (n – j)η(n – j + 2 + 2η)]
– G5(tj–1,S(tj–1),E(tj–1),I(tj–1),A(tj–1),R(tj–1))

�(η+2)
× hη[(n + 1 – j)η+1 – (n – j)η(n – j + 1 + η)]

⎞
⎟⎟⎟⎟⎠ . (30)

5.1 Numerical simulation I
The purpose of this section is to investigate the impact of different values of fractional
order η in model (3b). To this end, we give several numerical simulations of the model
using a numerical technique developed by Toufic and Atangana as shown in equations
(26)–(30). We took some approximations to the real values of the parameters given as

N = 1,000,000, � = 0.003N , ρ = 0.17, α = 0.00037,

α1 = 0.003, α3 = 0.000037, α4 = 0.0180322, α5 = 0.0002,

α6 = 0.19, α7 = 0.00023, b0 = αα1, b = 0.02, h = 0.1.

The hypothetical initial population used for the numerical simulation is

(S0, E0, A0, I0, R0) = (2,999,979, 20, 1, 0, 0).

The numerical simulations and corresponding descriptions are given below.
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Figure 2 Total number of suspected cases (S) for different values of η

Figure 3 Total number of exposed (E) cases for different values of η

Figure 2 shows that decreasing the fractional order of derivative η from 1 leads to flat-
tening the curves of the suspected cases (S) with a few decreases in the number of cases in
the compartment. As the value η gets smaller and smaller, the number of cases approaches
the constant value S0.

Moreover, from Figs. 3–6 we can say that decreasing the fractional order of derivative
η leads to a decrease in the number of exposed, asymptotically infected, symptomatically
infected, and recovered cases significantly. In other words, the curves for each of the com-
partments E, A, I, and R get flattened as η reduces from 1 to 0.6 as shown in the figures.
We can conclude that as η gets close to zero from the right, the number of cases in E,
A, I, and R gets close to zero. It must also be noted that the EEP for fractional order and
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Figure 4 Total number of asymptomatic cases (A) for different values of η

Figure 5 Total number of symptomatic cases (I) for different values of η

the integer order are the same and the solution of the fractional order tends to the EEP
over a longer time. From Figs. 2–6 it seems that as the fractional derivative gets smaller
and smaller, the time it requires to approach to the EEP gets longer and longer. That is,
when the derivative order is reduced from 1, the memory effect of the dynamic system
increases, and, consequently, the infection in each of the compartments increases slowly
for a long time. Hence the fractional derivative order η affects the dynamics of infection
of model (3b) at least in this work. The peak period of the compartments E, A, R, and I
is prolonged, and the number of cases at the peak is reduced as η reduces from 1 to zero
(see Figs. 3–6).
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Figure 6 Total number of recovered cases (R) for different values of η

6 Optimal control analysis
We consider a generalized form of (3b) by including the control variable u(t), which ranges
from 0 to 1, where zero corresponds to the absence of application of any control mecha-
nism, and one refers to the case where there is a fully controlled scenario, which is nearly
impossible to attain in many endemic disease cases such as COVID-19. The intermedi-
ate values u(t) ∈ (0, 1) quantify the effect of applying the intervention mechanisms. In this
model, the purpose of incorporating the control variable is reducing the number of ex-
posed, asymptomatic, and symptomatic individuals by a factor of (1 – u). Model (3b) is
modified to (31) after incorporating the control variable:

ABC
0 Dη

t S(t) = � – (1 – u)b0
(I+A)S
k(N) – α3S,

ABC
0 Dη

t E(t) = (1 – u)b0
(I+A)S
k(N) – (α3 + α4)E,

ABC
0 Dη

t A(t) = (1 – ρ)α4E – (α3 + α5 + α6)A,
ABC
0 Dη

t I(t) = ρα4E – (α3 + α5 + α7)I,
ABC
0 Dη

t R(t) = α6A + α7I – α3R,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(31)

and the main objective is to find the control optimal unit u(t) such that the following
control objective function is minimized:

Jo(u) =
∫ T

0

(
ab0

(I + A)S
k(N)

+
b
2

u2(t)
)

dt, (32)

where a is a nonnegative weight for the endemic diseases, and b measures the relative cost
of interventions over the range of [0, T].

The objective is minimizing the number of exposed, symptomatically, or asymptomati-
cally infected cases while minimizing the cost of control u(t) : [0, T] → [0, 1].
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To solve (31) and (32), we derive the necessary optimality conditions for the problem.
To do this, we define the scaler Hamiltonian function

H
(
y, u(t),λj, t

)

= ab0
(I + A)S

k(N)
+

b
2

u2(t) + λSh1(t) + λEh2(t) + λAh3(t) + λIh4(t) + λRh6(t), (33)

where

h1(t) = � – (1 – u)b0
(I + A)S

k(N)
– α3S,

h2(t) = (1 – u)b0
(I + A)S

k(N)
– (α3 + α4)E,

h3(t) = (1 – ρ)α4E – (α3 + α5 + α6)A,

h4(t) = ρα4E – (α3 + α5 + α7)I,

h5(t) = α6A + α7I – α3R,

and

λS,λE,λA,λI ,λR are the adjoint variables,

λj = (λS,λE,λA,λI ,λR),

y = (S, E, A, I, R).

Following [14], in equations (34)–(37), we obtain the necessary optimality conditions for
the system of equations (31) and (32):

ABC
0 Dη

t S(t) = ∂H
∂λS

(t), ABC
0 Dη

t E(t) = ∂H
∂λE

(t),
ABC
0 Dη

t A(t) = ∂H
∂λA

(t), ABC
0 Dη

t I(t) = ∂H
∂λI

(t),
ABC
0 Dη

t R(t) = ∂H
∂λR

(t),

⎫⎪⎪⎬
⎪⎪⎭

(34)

ABC
t Dη

TλS(t) = – ∂H
∂S (t), ABC

t Dη

TλE(t) = – ∂H
∂E (t),

ABC
t Dη

TλA(t) = – ∂H
∂A (t), ABC

t Dη

TλI(t) = – ∂H
∂I (t),

ABC
t Dη

TλR(t) = – ∂H
∂R (t),

⎫⎪⎪⎬
⎪⎪⎭

(35)

∂H
∂u

(t) = 0, (36)

with transversality conditions

λj(T) = 0, j ∈ {λS,λE ,λA,λI ,λR}. (37)
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Solving the system of equations (34) is the same as solving (31), and solving the system of
equations (35) is the same as solving the system of adjoint equations given by

ABC
t Dη

TλS(t) = – ab0(A+I)
k(N) + λS(α3 – (b0(u–1)(A+I)

k(N) ) + b0λE(u–1)(A+I)
k(N) ,

ABC
t Dη

TλE(t) = –λA + λE(α3 + α4) + α4ρλI ,
ABC
t Dη

TλA(t) = –α6λR + λA(α3 + α5 + α6) – ab0S
k(N) – b0S(u–1)λE

k(N) + b0S(u–1)λS
k(N) ,

ABC
t Dη

TλI(t) = –α7λR + λI(α3 + α5 + α7) – ab0S
k(N) + b0S(u–1)λE

k(N) – b0S(u–1)λS
k(N) ,

ABC
t Dη

TλR(t) = α3λR.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(38)

Accordingly, the optimal control u ∗ (t) of a dynamic system (31), which minimizes the
objective functional (32), is characterized by

u ∗ (t) = min

[
max

(
0,

b0S(A + I)
bk(N)

(λE – λS)
)

, 1
]

. (39)

Moreover, the fractional derivative state equation (31), the fractional derivative adjoint
equation (38), together with the characterization of the optimal control (39) and the
boundary conditions (37), are the optimality systems. The aforementioned equations of
the optimality system represent the analytic solution of the optimal control system under
discussion. In the next sub-section, we consider the numerical solutions and simulations.

6.1 Numerical simulation II
In this section, we simulate the optimality system given by (31), (38), (37), and (39) using
the Toufik–Atangana numerical scheme and a computational software Matlab2018a. We
apply the numerical scheme to these equations in a similar way we applied the method
to (3b) in Sect. 5.1. The initial conditions and the parameter values used are the same as
those in Sect. 5.1.

As can be seen from Figs. 7, 8, and 9, the number of cases in the compartments of E, A,
and I, declined significantly as compared to Figs. 3–5, which are simulated without appli-
cation of the control strategy. However, the curves exhibit different asymptotic behaviors
for different values of the fractional derivative η. The difference in the asymptotic behav-
ior of the curves for different fractional orders is also observed in the optimal profile of
the control function depicted in Fig. 10 for different values of η. The decrease in the num-
ber of cases in E, A, and I after applying the control strategy verifies the efficiency of the
proposed optimal control strategy.

6.2 Conclusions
In this work, we studied a SEAIR epidemic mathematical model involving the Atangana–
Baleanu fractional derivative. The result of the simulation shows that the reduction of
the order of the fractional derivative from 1 resulted in flattening of the curves, and the
endemic decreases slowly for the suspected (S) cases (Fig. 2). The curves for the compart-
ments E, A, I, and R show that in each of them, as the fractional order decreases from 1,
the spread of the endemic grows slowly, and the number of cases at peak gets relatively
smaller and smaller (Figs. 3–6).

It is of utmost importance to decrease the number of cases in the different compart-
ments of an endemic model, and the result of this study showed that the decrease in the
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Figure 7 Number of exposed cases (E) with control for different values of the fractional derivative order η

Figure 8 Number of asymptomatic cases (A) with control for different values of the fractional derivative order
η

number of cases happens as the fractional order decreases. This important result is at-
tributed to the Atangana–Baleanu fractional operator with the hereditary property. We,
the authors of this paper, claim that the hidden or actual properties of real-world phe-
nomena can be revealed better by mathematical models involving the Atangana–Baleanu
fractional operator. This argument can be substantiated by conducting further studies on
the effect of other fractional operators such as Caputo–Fabrizio fractional derivatives and
comparing the results with the Atangana–Baleanu fractional operator result on the same
model used or other pertinent epidemic models. In this study the absence of comparing
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Figure 9 Number of symptomatic cases (I) with the control for different values of the fractional derivative
order η

Figure 10 The control profile u(t) for different values of the fractional derivative order η

the result obtained in this study for the SEAIR model by using the Atangana–Baleanu
fractional operator with results that could be obtained by applying the other fractional
operators for the same model can be a gap for future work.
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