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Abstract
The article is based on the study of hepatitis transmission dynamics using a stochastic
epidemic model. We discuss the stochastic perturbations of our proposed model by
considering the effect of environmental fluctuation and distribute the transmission
rate in the form of white noise. Taking into account the Lyapunov function theory, the
uniqueness and existence of the global positive solution are proven. Some sufficient
conditions for the extinction and persistence in the mean are established. The
numerical simulations are given to verify the main theoretical findings.
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1 Introduction
The real-world problem shows the distinct effect of environmental noise on the biological
phenomenon. The variations of environment have an ultimate impact on the epidemic
development [1, 2]. Due to these ranges of perturbation and the unpredictable individual
to individual contacts and population, the form of an epidemic outbreak for disease in
humans is naturally random [3, 4]. So the nature of the epidemic is inevitably determined
by variation and randomness of the surroundings. Modeling with a deterministic approach
has a limitation, and it is very difficult to accurately predict the dynamics of a system.
This occurs because deterministic models do not incorporate the effect of a fluctuating
environment.

Hepatitis B virus is considered as one of the fatal infections due to which millions of peo-
ple have died. Hepatitis B virus infects the liver of the human body and is the main cause
of liver cancer. The transmission of hepatitis B virus from infected to susceptible people
is vertical as well horizontal. Hepatitis B is divided into two stages i.e. acute and chronic.
The acute stage consists of the first few months normally considered as six months after
exposure to the virus, during which the immune system of the human body is capable of
controlling the infection. Feeling sick and high temperature are the two main symptoms
of the acute stage, which fade away after some weeks due to the immune system. The
chronic stage is the worst stage in which the liver fails to function properly and cancer
cells develop. The treatment of a person in the chronic stage takes several years. Many
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deterministic epidemic models have been developed for the description of viral dynamics
of hepatitis B (see for details [5–10])

Mathematical modeling is considered to be an effective tool for describing the dynamic
behavior of infections. For realizing and controlling the outbreak of transmissible diseases
in a group, many researchers have formulated models. The application of mathematical
modeling has been in vogue for the study of transmissible infectious diseases (see e.g.
[11–16]). Epidemic models are mostly studied by two approaches i.e. deterministic and
stochastic. The most effective approach for studying an epidemic model is the stochastic
one [17], because it results in a larger degree of realism between evaluation in imitation.
The stochastic one gives us a more valuable output with the comparison to the determin-
istic model. By executing the stochastic model various times, we can make a distribution
of outcomes [18–22]. To study the dynamics of various infectious diseases, mathematical
modeling is considered as one of the best techniques to formulate the phenomenon in
the system of equations. Several researchers have worked on different infectious diseases.
They have developed different mathematical models for epidemic diseases that help in the
prevention of diseases in daily life. Modeling of epidemic models is helpful to academia as
well as to daily life. Epidemic models are broadly classified into two categories i.e. deter-
ministic and stochastic. The stochastic models have an advantage over the deterministic
models as these models are very close to nature and depict exact biological phenomena.
In explicating many fields of natural and engineering sciences, the role of stochastic mod-
els is pivotal. In medical and biological processes, the inherent variability can be studied
using stochastic models. They can be used to counter (i) the risk effects in managerial
economics (ii) psychological complexities, and (iii) fluctuation in rates. Many researchers
have worked on stochastic epidemic models to analyze and control different diseases for
example hepatitis B, avian influenza, leishmaniasis, tuberculosis, etc. Therefore, motivated
by the aforementioned work, very few attempts have been established by the researchers
using stochastic hepatitis epidemic model with random perturbation.

Here, our objective is to improve a deterministic model [23] by considering environ-
mental interactions in terms of fluctuating environment. We formulate the model for the
dynamics of infectious disease. We subdivide the entire population into the susceptible,
the infected (acute), the chronic, and the recovered. In all these, we distribute the trans-
mission rate by white noise. We study the disease extinction and persistence to find out
sufficient conditions. We also verify our theoretical findings using numerical simulation.

The organization of the manuscript is performed as follows: We present model formu-
lation in Sect. 2. The existence and uniqueness are discussed in Sect. 3. We discuss the
disease extinction and the disease persistence with sufficient conditions in Sect. 4. Finally,
in Sect. 5, we present numerical simulation of the proposed model.

2 Model formulation
To develop a mathematical model for the description of the dynamics of the proposed
model with fluctuating environment population, we assume the following:

(A1) The entire population N(t) at time t is divided into four compartments: the suscep-
tible individuals S(t), the acutely infected with hepatitis individuals I1(t), the chron-
ically infected with hepatitis individuals I2(t), and the recovered individuals R(t) i.e.
N(t) = S(t) + I1(t) + I2(t) + R(t) varies with time t.

(A2) All parameters and state variables of the proposed model are nonnegative.



Khan et al. Advances in Difference Equations        (2021) 2021:181 Page 3 of 10

(A3) The vaccine of the disease provides life-time protection. Therefore, successfully vac-
cinated population goes to the removed class.

(A4) For the effect of randomly fluctuating environment, take α → α +σ Ḃ(t), where σ 2 >
0 denotes the intensity of white noise and B(t) represents the standard Brownian
motion satisfying the condition B(0) = 0.

Assumptions (A1)–(A4) lead to the stochastic epidemic model, which is represented by
the following system of four stochastic differential equations:

dS(t) =
(
b – αI1(t)S(t) – αS(t)I2(t) – (v + μ0)S(t)

)
dt – ξαS(t)I1(t) dB(t)

– ξαS(t)I2(t) dB(t),

dI1(t) =
(
αI1(t)S(t) + αS(t)I2(t) – (β + μ0 + γ1)I1(t)

)
dt + ξαS(t)I1(t) dB(t)

– ξαS(t)I2(t) dB(t),

dI2(t) =
(
–(γ2 + μ0 + μ1)I2(t) + βI1(t)

)
dt,

dR(t) =
(
–μ0R(t) + vS(t) + γ2I2(t) + γ1I1(t)

)
dt.

(1)

The description of parameters with their units is presented in Table 1.
If the white noise intensities ξi = 0 for i = 1, 2, 3, 4 in system (1), then the deterministic

epidemic model becomes as follows:

dS
dt

= b – αI1(t)S(t) – αS(t)I2(t) – (v + μ0)S(t),

dI1

dt
= αI1(t)S(t) + αS(t)I2(t) – (β + μ0 + γ1)I1(t),

dI2

dt
= –(γ2 + μ0 + μ1)I2(t) + βI1(t),

dR
dt

= –μ0R(t) + vS(t) + γ2I2(t) + γ1I1(t).

(2)

Moreover, the above model i.e. system (2) has multiple equilibria: E0 = (S0, 0, 0, R0), where
S0 = b

(μ0+v) and R0 = vb
μ0(μ0+v) . In addition, E∗ = (S∗, I∗

1 , I∗
2 , R∗), where

S∗ =
1

αβ
(β + μ0 + γ1)(γ2 + μ0 + μ1),

I∗
1 =

1
αβ

(μ0 + v)(γ2 + μ0 + μ1)[R0 – 1],

Table 1 Parameters used in the model (1)

Notation Parameter description Value Source

b The constant birth rate 0.5 [24]
α The transmission rate 0.6 day–1 [24]
μ0 The natural death rate 0.1 [24]
μ1 The disease induced death rate 0.2 day–1 [24]
v The vaccination rate 0.4, 0.6 assumed
γ1 The constant recovery rate for acutely infected individuals 0.4 day–1 [24]
γ2 The constant recovery rate for chronically infected individuals 0.4 day–1 [24]
β The moving rate of acutely infected individuals to chronic stage 0.4 day–1 [24]
ξ Environmental white noise 0.25 assumed
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I∗ =
1
α

(μ0 + v)[R0 – 1],

R∗ =
1
μ0

[(
γ1

αβ
(μ0 + v)(γ2 + μ0 + μ1) +

γ2

α
(μ0 + v)[R0 – 1]

)

+
v

αβ
(β + μ0 + γ1)(γ2 + μ0 + μ1))

]
,

with

R0 =
αβb

(μ0 + v)(β + μ0 + γ1)(γ2 + μ0 + μ1)
.

3 Uniqueness and existence
We prove the uniqueness and existence.

Theorem 1 For the initial data, the solution of (3) is unique for t ≥ 0. Moreover,

N(t) → b
μ0

as t → ∞, (3)

where N(t) symbolizes the total population.

Proof For the initial population, system (3) coefficients are locally Lipschitz continuous.
It gives that a local unique solution on t ∈ [0, τe) exists, in which the temporal explosion
is symbolized by τe [17]. To verify that the solution is global, we only need to show that
τe = ∞ a.s. Let k0 ≥ 0 be sufficiently large. We choose k0 in a way that S(0), I1(0), I2(0), and
R(0) lie in [ 1

k0
, k0]. For each k0 ≤ k, we define

τk =
{

t ∈ [0, τe) : max
{

S(t), I1(t), I2(t), R(t) or k min
{

S(t), I1(t), I2(t), R(t)
} ≤ t

}}
.

We use the notion infφ = ∞, where φ is an empty set, throughout this study. τk increases
as k approaches to ∞. The setting of τ∞ = limk→∞ along with the use of τ∞ ≤ τe a.s. proves
that τ∞ is = ∞ a.s., and the solution of (3) lies in R4

+ a.s. ∀t ≥ 0. Also, for the completion
of conclusion, we will prove τe = ∞ a.s. If this is not true, then a pair of constants exists
for T > 0 and ε ∈ (0, 1),

P{τ∞ ≤ T} > ε. (4)

Therefore, k1 ≥ k0, where k1 and k2 are integers such that

P{T ≥ τk} ≥ ε for all k1 ≤ k.

Since N(t) is the total population, then τk ≤ t, we have

dN(t) =
(
–μ1C(t) – μ0N(t) + b

)
dt ≤ (

–μ0N(t) + b
)

dt. (5)

Solving Eq. (5), we obtain

N(t) ≤
⎧
⎨

⎩

b
μ0

, if N(0) ≤ b
μ0

,

N(0), if N(0) > b
μ0

,
:= M. (6)
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Define a C2-function V : R4
+ → R+ such that

V (t) = ln
(
S(t)I1(t)I2(t)

)
.

Clearly V is nonnegative. Let k ≥ k0 and T > 0 be arbitrary. By Itô’s formula, we have

dV (t) = LV (t) + ξ

(
S(t)
I1(t)

– 1
)

(
I2(t) + I1(t)

)
dB(t),

where

LV (t) = –
(
αI2(t) + αI1(t) + v + μ0

)
–

1
2
ξ 2(I2(t) + I1(t)

)2 – (γ1 + μ0 + β)

–
1
2

S2(t)
I2(t)

ξ 2(I2(t) + I1(t)
)2 – (γ2 + μ0 + μ1).

By definition

V (t) ≥ V (0) +
∫ t

0
LV (s) ds +

∫ t

0
ξ

(
S(t)
I(t)

– 1
)

(
I2(t) + I1(t)

)
dB(s),

– ∞ ≥ V (t) ≥ V (0) +
∫ t

0
LV (s) ds +

∫ t

0
ξ

(
S(t)
I(t)

– 1
)(

I2(t) + I1(t)
)

dB(s) > –∞,
(7)

which is in contradiction with the assumptions. We observe from system (2) that

d
(
N(t)

)
=

(
b – μ0

(
N(t)

)
– μ1I2(t)

)
dt.

The solution of the last equation takes the following form:

N(t) = e–μ0t
(

N(0) +
∫ t

0

(
b – μ1I2(s)

)
eμ0s ds

)
.

The application of the L’Hospital rule yields

lim
t→∞

(
N(t)

)
=

b
μ0

a.s. �

4 Extinction and persistence
To study the extinction as well as persistence, first we introduce the following definitions.

〈
z(t)

〉
=

1
t

∫ t

0
z(r) dr.

Definition 1 ([24]) The proposed system (3) is persistent if

lim
t→∞ inf

∫ t

0
I(r) dr > 0 a.s.

Theorem 2 In the solution of (3) with (S(0), I1(0), I2(0), R(0)) ∈ 
∗, if ξ 2 > α2

2(γ1+μ0+β) , then

I1(t), I2(t), R(t) → 0 a.s and S(t) → b
μ0

a.s as t → ∞.
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Proof The application of Ito’s formula to the second equation of (1) gives

d
(
log I1(t)

)
= –

ξ 2

2

[
S(t)
I1

(
I2(t) + I1(t)

)
–

α

ξ 2

]2

– (γ1 + μ0 + β) +
α2

2ξ 2 dt

+ ξ
S(t)
I1(t)

(
I2(t) + I1(t)

)
dB(t).

(8)

Integrating the last equation and then dividing it by t gives

log I1(t)
t

≤ α2

2ξ 2 – (γ1 + μ0 + β) +
M(t)

t
+

log I1(0)
t

, (9)

where

M(t) =
∫ t

0
ξ

S(t)
I1(t)

(
I2(t) + I1(t)

)
dB(t),

lim
t→∞ sup

〈M, M〉t

t
≤ ξ 2b2

μ2
0

< ∞.

Applying the large number theorem for martingales, we have

lim
t→∞

M(t)
t

= 0, (10)

lim
t→∞ sup

log I1(t)
t

≤ α2

2ξ 2 – (γ1 + μ0 + β) < 0,

which implies that

lim
t→∞ I1(t) = 0 a.s.

Now solving system (3) for I2(t) gives

I2(t) = e–(γ2+μ0+μ1)t
[

I2(0) +
∫ t

0

(
βI1(s)

)
e(γ2+μ0+μ1)s ds

]

≤ I2(0)e–(γ2+μ0+μ1) + β

∫ t

0

(
I1(s)

)
ds.

This also implies that

lim
t→∞ I2(t) = 0 a.s.

In a similar fashion limt→∞ R(t) = 0 a.s. Since N(t) = S(t) + I1(t) + I2(t) + R(t) and we know
that N(t) → b

μ0
as t → ∞, replacing I1(t), I2(t), R(t) → 0 a.s. t → ∞, we obtain S(t) → b

μ0
a.s. t → ∞. �

Theorem 3 Suppose

K1 = (γ1 + μ0 + β)
(

μ0

2b
–

α

v + μ0

)
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for any initial data in ∈ 
∗ such that

N(t) → b
μ0

as t → ∞.

If K1 �= 0, 1
K1

( b
v+μ0

– 1
2ξ 2 b2

μ2
0

) > 0, then the solution (S(t), I1(t), I2(t), R(t)) satisfies

lim
t→∞ inf

〈
I1(t)

〉 ≥ 1
K1

(
b

v + μ0
–

1
2
ξ 2 b2

μ2
0

)
.

Proof The integration of (3) leads to

–S(0) + S(t)
t

= b – α
〈
S(t)I1(t)

〉
– α

〈
S(t)I2(t)

〉
– (v + μ0)

〈
S(t)

〉

–
ξ

t

∫ t

0

(
I1(t) – I2(t)

)
SdB(r),

I1(t) – I1(0)
t

= α
〈
S(t)I1(t)

〉
+ α

〈
S(t)I2(t)

〉
– (γ1 + β + μ0)

〈
I1(t)

〉

+
ξ

t

∫ t

0

(
I1(t) + I2(t)

)
SdB(r),

I2(t) – I2(0)
t

= β
〈
I1(t)

〉
– (γ2 + μ1 + μ0)

〈
I2(t)

〉
,

R(t) – R(0)
t

= γ1
〈
I1(t)

〉
+ γ2

〈
I2(t)

〉
+ v

〈
S(t)

〉
– μ0

〈
R(t)

〉
.

(11)

Adding the first two equations of system (10), we have

–S(0) + S(t)
t

+
I1(t) – I1(0)

t
= b – (v + μ0)

〈
S(t)

〉
– (γ1 + μ0 + β)

〈
I1(t)

〉
.

From here, we have

〈
S(t)

〉
=

b
v + μ0

–
γ1 + β + μ0

v + μ0

〈
I1(t)

〉
–

K(t)
v + μ0

, (12)

where K(t) is defined by

K(t) =
[

S(t) – S(0)
t

+
I1(t) – I1(0)

t

]
.

Choosing a function

V = log
(
I1(t) + I2(t)

)
.

Applying the Itô’s, we get

d log
(
I1(t) + I2(t)

)
=

[
αS(t) –

(γ1 + μ0 + β)I1(t)
I1(t) + I2(t)

–
1
2
ξ 2S2(t)

]
dt + ξS(t) dB(t).
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Integration of the above inequality and then division by t leads to

log(I1(t) + I2(t)) – log(I1(0) + I2(0))
t

≥ α
〈
S(t)

〉
+

μ0

2b
(γ1 + β + μ0)

〈
I1(t)

〉
–

1
2
ξ 2 b2

μ2 +
ξ

t

∫ t

0
S(r) dB(r)

≥ α

[
b

v + μ0
–

γ1 + β + μ0

v + μ0

〈
I1(t)

〉
–

K(t)
v + μ0

]

+
μ0

2b
(γ1 + β + μ0)

〈
I1(t)

〉
–

1
2
ξ 2 b2

μ2
0

+
M(t)

t

≥ αb
v + μ0

+
[

(γ1 + β + μ0)
(

μ0

2b
–

α

v + μ0

)]〈
I1(t)

〉
–

1
2
ξ 2 b2

μ2
0

+
M(t)

t
–

αK(t)
v + μ0

.

It follows

〈
I1(t)

〉 ≥ 1
K1

[
αb

v + μ0
–

1
2

ξ 2b
μ2

0
+

M(t)
t

–
αK(t)
v + μ0

–
log(I1(t) + I2(t)) – log(I1(0) – I2(0))

t

]
, (13)

where K1 = (μ0 + β + γ1)( μ0
2b – α

μ0+v ) and M(t) = ξ
∫ t

0 S(t) dB(t). M(t) is a continuous local

martingale, which satisfies the condition limt→∞ sup 〈M,M〉t
t ≤ ξ2b2

μ2
0

< ∞ a.s. By the appli-

cation of the large number theorem [25], we get limt→∞ M(t)
t = 0 a.s. N(t) ≤ b

μ0
,

–∞ < log
(
I2(t) + I1(t)

)
< log

2b
μ0

.

Furthermore, limt→∞ K(t) = 0. Taking limit inferior to Eq. (11), we get

lim
t→∞ inf

〈
I1(t)

〉 ≥ 1
K1

(
b

v + μ0
–

1
2
ξ 2 b2

μ2
0

)
,

which completes the proof. �

5 Numerical simulation
We present simulations of system (1) to illustrate our theoretical results using the Runge–
Kutta method of stochastic type. To perform the stochastic process influence, we com-
pare the stochastic and deterministic cases with each other, see Fig. 1–Fig. 2. To show
the feasibility of the extinction i.e. Theorem 2, the parameter values are assumed and
given in Table 1 with vaccination rate v = 0.4. Most of parameter values i.e. the experi-
mental values are borrowed from [24], while the values of some one are assumed with
much more biological feasibility. The inequality ξ 2 > α2

2(γ1+μ0+β) from Theorem 2 is satis-
fied: ξ 2 – α2

2(γ1+μ0+β) = 0.425 > 0, see Fig. 1(a). Likewise, in the case of persistence, the same
parameter values with v = 0.6 are used and this ensures the persistence i.e. Theorem 3
holds; 1

K1
( b

v+μ0
– 1

2ξ 2 b2

μ2
0

) = 0.0965 > 0, see Fig. 2(a).
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Figure 1 Simulation of system (3) with time step and initial size of the population �t = 0.01 and
(S(0), I1(0), I2(0),R(0)) = (0.4, 0.3, 0.2, 0.1) respectively

Figure 2 Simulation of system (3) with time step and initial size of the population �t = 0.01 and
(S(0), I1(0), I2(0),R(0)) = (0.7, 0.6, 0.4, 0.2) respectively

6 Conclusion
Most of the real-world problems include stochastic influence. In the current paper, we in-
vestigated the transmission dynamics of the hepatitis stochastic epidemic model. By using
a proper stochastic Lyapunov function, we showed the existence of positive solutions. We
obtained sufficient conditions for the extinction and persistence of hepatitis in terms of
the parameters involved in the model. We also proved that the intensity of the noise has
a significant influence on the transmission of the disease. We showed that the extinction
of the disease increases with the increase in the noise parameter. Similarly, the disease
decreases with the increased noise term. All these theoretical findings are verified using
large scale numerical simulations.
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