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Abstract
In this article, we present the continuity analysis of the 3D models produced by the
tensor product scheme of (m + 1)-point binary refinement scheme. We use
differences and divided differences of the bivariate refinement scheme to analyze its
smoothness. The C0, C1 and C2 continuity of the general bivariate scheme is analyzed
in our approach. This gives us some simple conditions in the form of arithmetic
expressions and inequalities. These conditions require the mask and the complexity
of the given refinement scheme to analyze its smoothness. Moreover, we perform
several experiments by using these conditions on established schemes to verify the
correctness of our approach. These experiments show that our results are easy to
implement and are applicable for both interpolatory and approximating types of the
schemes.
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1 Introduction
Refinement schemes are used for curve and surface modeling. These schemes require the
initial data or initial polygons/mesh as input, smooth the data several times by its recur-
sive refinement rules and give smooth limiting shapes as output. The goodness of the
refinement scheme can be measured by the order of its smoothness. For instance, a C2-
continuous refinement scheme is superior over a C1-continuous scheme. In the literature,
the order of smoothness of the refinement schemes has been analyzed by various methods.

In the literature, inequalities have been used to present many important results. For in-
stant, Agarwal et al. [1] presented a strategy to prove some new Pólya–Szegö type integral
inequalities. They used these inequalities to formulate some fractional integral inequal-
ities of Chebyshev type. Zhang et al. [2] gave the sufficient conditions for the existence
and uniqueness of solutions for fractional differential systems by applying the general-
ized Gronwall inequality. Saoudi et al. [3] used inequalities to present the existence of
solutions to the boundary value problem for the nonlinear fractional differential equa-
tions. Sitho et al. [4] presented some new non-instantaneous impulsive inequalities us-
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ing the conformable fractional calculus. Jain et al. [5] discussed various estimates by the
Hermite–Hadamard inequality for functions whose absolute values of the second deriva-
tives to positive real powers are log-convex. Tomar et al. [6] established some generalized
Hermite–Hadamard inequalities for generalized convex functions. They also presented
certain interesting inequalities involving generalized arithmetic and logarithmic means.

The representation of the subdivision mask in form of the Laurent polynomials was in-
troduced in [7]. The well-known Laurent polynomial method was firstly introduced by
Dyn [7] to analyze the convergence and smoothness of the curves and surfaces gener-
ated by linear uniform refinement schemes. This method requires the subdivision mask
and factorization of the Laurent polynomial of the given refinement scheme. The Laurent
polynomial method with several modifications was used to analyze the smoothness of the
non-uniform linear binary refinement scheme by Levin [8]. Dyn and Wallner [9] analyzed
the smoothness of the subdivision curves produced by linear and its corresponding non-
linear refinement schemes. He used conditions on the smoothness of the linear scheme to
analyze the smoothness of its corresponding nonlinear refinement scheme.

Qu [10–12] introduced the “divided differences” and “cross difference of directional di-
vided differences” techniques to analyze the schemes. The analysis of the convergence
of curve refinement scheme based on the contractiveness of its corresponding difference
scheme was introduced by Dyn et al. [13]. They also give the smoothness analysis of the
univariate refinement schemes based on the “divided difference”. The smoothness analysis
of the parametric refinement schemes was presented by [13–15]. Dyn et al. [15] presented
the analysis for the regular portion of the butterfly scheme. Gregory [16] showed that, for
ω ∈ (0, 1

12 ), the butterfly scheme produces the C1-smooth surfaces on regular grids.
Till then, the Laurent polynomial method was not mature enough to analyze the non-

stationary and non-uniform schemes. Dyn and Levin [17, 18] presented the updated
method based on Laurent polynomial for the analysis of non-stationary schemes. They
have used the “divided difference” technique [19] for the analysis of non-uniform schemes.
Guglielmi et al. [20] analyzed a 2-point Hermite refinement scheme in 2011. They have
used the joint spectral radius of the matrices.

Nowadays, the Laurent polynomial technique is commonly used, but this technique has
some limitations. In this technique, first a sequence of coefficients used in the refinement
rules of the schemes is converted into the polynomial. Secondly, the polynomial is fac-
torized. In this technique, multiplication, division, factorization of the polynomials are
involved. Furthermore, the computation of inequalities and the comparison of the terms
are also involved. In our technique, the comparison of four algebraic expressions is in-
volved to compute the order of continuity. Furthermore, these algebraic expressions are
made up of the constants used in the refinement rules of the schemes. Therefore our tech-
nique is easy to use. Our technique can be used to analyze the (m + 1)2-point Generalized
Tensor Product Binary Refinement Scheme (GTPBRS). It is based on the study of differ-
ences and Generalized Bivariate Divided Difference Refinement Schemes (GBDDRS). It
has been studied in a general setting up to C2-continuity. The extension to higher order
continuities can be done similarly.

The rest of this paper is structured as follows: In Sect. 2, the generalized expressions for
tenor product binary and its corresponding GBDDRS are given. The necessary conditions
for their convergence are also discussed in this section. In Sect. 3, the deviations between
successive levels of polygons are derived. In Sect. 4, the inequalities to estimate the conti-
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nuity analysis of the binary bivariate refinement scheme are presented. Implementation of
the proposed method is presented in Sect. 5. A summary and a conclusion of this research
are presented in Sect. 6.

2 Tensor product binary and its GBDDRSs
We start this section by introducing the GTPBRS. We fix m to be 3 and derive the first and
second order GBDDRSs of the 16-point tensor product refinement scheme. Moreover, we
generalize these GBDDRSs for (m + 1)2 points. Furthermore, we calculate the tensor prod-
uct of the first derivatives of Bernstein polynomials. We also compute the tensor product
of second derivatives of Bernstein polynomials. In the last part of the section, we prove
that the tensor product of first derivatives of Bernstein polynomials converges to the first
order GBDDRS. And the tensor product of second derivatives of Bernstein polynomials
converges to the second order GBDDRS.

2.1 The GTPBRS
Let ϕψ be the mesh obtained by joining the points {ϕψ

σ1,σ2 ∈ R
N : σ1,σ2 ∈ Z} where ψ ∈ N

and N is any integer whose value is restricted to be greater than 1. Then, for an arbitrary
m, the GTPBRS which is used to refine the given data is given below

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ
ψ+1
2σ1,2σ2 =

∑m
r=0

∑m
s=0 ρrρsϕ

ψ
σ1+r,σ2+s,

ϕ
ψ+1
2σ1,2σ2+1 =

∑m
r=0

∑m
s=0 ρrχsϕ

ψ
σ1+r,σ2+s,

ϕ
ψ+1
2σ1+1,2σ2 =

∑m
r=0

∑m
s=0 χrρsϕ

ψ
σ1+r,σ2+s,

ϕ
ψ+1
2σ1+1,2σ2+1 =

∑m
r=0

∑m
s=0 χrχsϕ

ψ
σ1+r,σ2+s,

(1)

where

⎧
⎪⎪⎨

⎪⎪⎩

∑m
r=0 ρr =

∑m
r=0 χr = 1,

∑m
r=0

∑m
s=0 ρrρs =

∑m
r=0

∑m
s=0 ρrχs = 1,

∑m
r=0

∑m
s=0 χrρs =

∑m
r=0

∑m
s=0 χrχs = 1,

(2)

and m ∈N\{0}.
The GTPBRS defined in (1) uses three types of points to refine each quadrilateral face.

Thus in (1) ϕ
ψ+1
2σ1,2σ2 is the vertex point, ϕ

ψ+1
2σ1+1,2σ2 & ϕ

ψ+1
2σ1,2σ2+1 are the edge points and

ϕ
ψ+1
2σ1+1,2σ2+1 is the face point. The bivariate refinement scheme (1) refines each quadrilateral

face by inserting nine new points at each refinement step. Four of these are edge points,
four are vertex points and one is the face point as discussed in Fig. 1.

If {ϕ0
σ1,σ2 : σ1,σ2 ∈ Z} defines the initial control points in R

N , then in the limit k → ∞,
the bivariate refinement scheme (1) gives an infinite number of points in R

N . If ϕψ =
{( σ1

2ψ , σ2
2ψ ,ϕψ

σ1,σ2 ) : σ1,σ2 ∈ Z, N > 1,ψ ∈ N} is the mesh at the ψ th refinement step, then
by using GTPBRS (1) one time we get the mesh ϕψ+1 = {( σ1

2ψ+1 , σ2
2ψ+1 ,ϕψ+1

σ1,σ2 ) : σ1,σ2 ∈ Z, N >
1,ψ ∈ N} at the (ψ + 1)th refinement step. For instance, ϕ

ψ+1
2σ1,2σ2 , ϕ

ψ+1
2σ1+2,2σ2 , ϕ

ψ+1
2σ1,2σ2+2 and

ϕ
ψ+1
2σ1+2,2σ2+2 replaces the values ϕψ

σ1,σ2 , ϕ
ψ
σ1+1,σ2 , ϕ

ψ
σ1,σ2+1 and ϕ

ψ
σ1+1,σ2+1 at the mesh points

( σ1
2ψ , σ2

2ψ ), ( σ1+1
2ψ , σ2

2ψ ), ( σ1
2ψ , σ2+1

2ψ ) and ( σ1+1
2ψ , σ2+1

2ψ ), respectively. The control points ϕ
ψ+1
2σ1+1,2σ2 ,

ϕ
ψ+1
2σ1,2σ2+1, ϕ

ψ+1
2σ1+1,2σ2+1, ϕ

ψ+1
2σ1+2,2σ2+1 and ϕ

ψ+1
2σ1+1,2σ2+2 are inserted at the new mesh points

( σ1+1
2ψ+1 , σ2

2ψ+1 ), ( σ1
2ψ+1 , σ2+1

2ψ+1 ), ( σ1+1
2ψ+1 , σ2+1

2ψ+1 ), ( σ1+2
2ψ+1 , σ2+1

2ψ+1 ) and ( σ1+1
2ψ+1 , σ2+2

2ψ+1 ), respectively.
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Figure 1 Subdivision of a surface patch by using GTPBRS

Illustration of the old points and the new points by GTPBRS is shown in Fig. 1. In this
figure, red lines and red bullets represent mesh and points at the ψ th refinement step,
respectively, while black lines and black bullets represent the refined mesh and refined
points by GTPBRS at the (ψ + 1)th refinement step, respectively.

Remark 1 The GTPBRS defined in (1) is the tensor product version of the two univariate
schemes defined by

⎧
⎨

⎩

ϕ
ψ+1
2σ1 =

∑m
r=0 ρrϕ

ψ
σ1+r ,

ϕ
ψ+1
2σ1+1 =

∑m
r=0 χrϕ

ψ
σ1+r ,

(3)

and

⎧
⎨

⎩

ϕ
ψ+1
2σ2 =

∑m
s=0 ρsϕ

ψ
σ2+s,

ϕ
ψ+1
2σ2+1 =

∑m
s=0 χsϕ

ψ
σ2+s.

(4)

The mask of GTPBRS is obtained by taking tensor product of the masks of univariate
schemes (3) and (4). That is, if V = [χ0 ρ0 χ1 ρ1 . . . χm ρm] is a one dimensional array
containing the mask of the scheme (3) (this is also the mask of the scheme (4)), then the
mask V̄ of (1) is a two dimensional array obtained by

V̄ = V ⊗ V = VV T .

2.2 The first and second order GBDDRSs of GTPBRS
In this subsection, we derive first and second order GBDDRSs of the GTPBRS. Firstly, we
find the first and second order GBDDRSs for a fixed m and then for an arbitrary m.
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Lemma 1 Let ϕψ = {( σ1
2ψ , σ2

2ψ ,ϕψ
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈N} be a given mesh. If

Eψ
σ1,σ2 = 22ψ�σ1�σ2ϕ

ψ
σ1,σ2 (5)

is the first order divided difference, then the first order GBDDRS for a fixed m = 3 is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Eψ+1
2σ1,2σ2 = 22 ∑2

l=0(	q1
∑2

t=0 	u1),

Eψ+1
2σ1,2σ2+1 = 22 ∑2

l=0(	q1
∑3

t=0 	u2),

Eψ+1
2σ1+1,2σ2 = 22 ∑2

l=0(	q1
∑3

t=0 	u3),

Eψ+1
2σ1+1,2σ2+1 = 22 ∑3

l=0(	q2
∑3

t=0 	u2),

(6)

where 	q1 =
∑l

q=0(ρl–q –χl–q), 	q2 =
∑l

q=0(χl–q –ρl–q–1), 	u1 =
∑t

u=0(ρt–u –χt–u)Eψ

σ1+l,σ2+t ,
	u2 =

∑t
u=0(χt–u – ρt–u–1)Eψ

σ1+l,σ2+t and 	u3 =
∑t

u=0(χt–u – ρt–u–1)Eψ

σ1+t,σ2+l .

Proof If we replace σ1 by 2σ1 and σ2 by 2σ2 and ψ by ψ + 1 in (5), we obtain

Eψ+1
2σ1,2σ2 = 22(ψ+1)�σ1�σ2ϕ

ψ+1
2σ1,2σ2

= 22(ψ+1)(ϕ
ψ+1
2σ1,2σ2 – ϕ

ψ+1
2σ1,2σ2+1 – ϕ

ψ+1
2σ1+1,2σ2 + ϕ

ψ+1
2σ1+1,2σ2+1

)
.

Now by using (1) for m = 3, we get

Eψ+1
2σ1,2σ2

= 22(ψ+1)[(ρ0ρ0 – χ0ρ0 – ρ0χ0 + χ0χ0)ϕψ
σ1,σ2 + (ρ1ρ0 – χ1ρ0 – ρ1χ0 + χ1χ0)ϕψ

σ1+1,σ2

+ (ρ2ρ0 – χ2ρ0 – ρ2χ0 + χ2χ0)ϕψ
σ1+2,σ2 + (ρ3ρ0 – χ3ρ0 – ρ3χ0 + χ3χ0)ϕψ

σ1+3,σ2

+ (ρ0ρ1 – χ0ρ1 – ρ0χ1 + χ0χ1)ϕψ
σ1,σ2+1 + (ρ1ρ1 – χ1ρ1 – ρ1χ1 + χ1χ1)ϕψ

σ1+1,σ2+1

+ (ρ2ρ1 – χ2ρ1 – ρ2χ1 + χ2χ1)ϕψ
σ1+2,σ2+1 + (ρ3ρ1 – χ3ρ1 – ρ3χ1 + χ3χ1)ϕψ

σ1+3,σ2+1

+ (ρ0ρ2 – χ0ρ2 – ρ0χ2 + χ0χ2)ϕψ
σ1,σ2+2 + (ρ1ρ2 – χ1ρ2 – ρ1χ2 + χ1χ2)ϕψ

σ1+1,σ2+2

+ (ρ2ρ2 – χ2ρ2 – ρ2χ2 + χ2χ2)ϕψ
σ1+2,σ2+2 + (ρ3ρ2 – χ3ρ2 – ρ3χ2 + χ3χ2)ϕψ

σ1+3,σ2+2

+ (ρ0ρ3 – χ0ρ3 – ρ0χ3 + χ0χ3)ϕψ
σ1,σ2+3 + (ρ1ρ3 – χ1ρ3 – ρ1χ3 + χ1χ3)ϕψ

σ1+1,σ2+3

+ (ρ2ρ3 – χ2ρ3 – ρ2χ3 + χ2χ3)ϕψ
σ1+2,σ2+3 + (ρ3ρ3 – χ3ρ3 – ρ3χ3 + χ3χ3)ϕψ

σ1+3,σ2+3
]
.

After collecting the coefficients of ϕψ
σ1,σ2 , we get

Eψ+1
2σ1,2σ2 = 22(ψ+1)[{(ρ0 – χ0)(ρ0 – χ0)ϕψ

σ1,σ2 + (ρ1 – χ1)(ρ0 – χ0)ϕψ
σ1+1,σ2

+ (ρ2 – χ2)(ρ0 – χ0)ϕψ
σ1+2,σ2 + (ρ3 – χ3)(ρ0 – χ0)ϕψ

σ1+3,σ2

}

+
{

(ρ0 – χ0)(ρ1 – χ1)ϕψ
σ1,σ2+1 + (ρ1 – χ1)(ρ1 – χ1)ϕψ

σ1+1,σ2+1

+ (ρ2 – χ2)(ρ1 – χ1)ϕψ
σ1+2,σ2+1 + (ρ3 – χ3)(ρ1 – χ1)ϕψ

σ1+3,σ2+1
}

+
{

(ρ0 – χ0)(ρ2 – χ2)ϕψ
σ1,σ2+2 + (ρ1 – χ1)(ρ2 – χ2)ϕψ

σ1+1,σ2+2

+ (ρ2 – χ2)(ρ2 – χ2)ϕψ
σ1+2,σ2+2 + (ρ3 – χ3)(ρ2 – χ2)ϕψ

σ1+3,σ2+2
}
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+
{

(ρ0 – χ0)(ρ3 – χ3)ϕψ
σ1,σ2+3 + (ρ1 – χ1)(ρ3 – χ3)ϕψ

σ1+1,σ2+3

+ (ρ2 – χ2)(ρ3 – χ3)ϕψ
σ1+2,σ2+3 + (ρ3 – χ3)(ρ3 – χ3)ϕψ

σ1+3,σ2+3
}]

. (7)

We want to find a recursive relation in Eσ1,σ2 of the form

Eψ+1
2σ1,2σ2 = ν00Eψ

σ1,σ2 + ν10Eψ
σ1+1,σ2 + ν20Eψ

σ1+2,σ2 + ν01Eψ
σ1,σ2+1 + ν11Eψ

σ1+1,σ2+1

+ ν21Eψ
σ1+2,σ2+1 + ν02Eψ

σ1,σ2+2 + ν12Eψ
σ1+1,σ2+2 + ν22Eψ

σ1+2,σ2+2. (8)

If we use the first order divided differences in (8), we get

Eψ+1
2σ1,2σ2 = 22ψ

[{
ν00ϕ

ψ
σ1,σ2 + (–ν00 + ν01)ϕψ

σ1,σ2+1 + (–ν01 + ν02)ϕψ
σ1,σ2+2 – ν20ϕ

ψ
σ1+3,σ2

}

+
{

(–ν00 + ν10)ϕψ
σ1+1,σ2 + (ν00 – ν01 – ν10 + ν11)ϕψ

σ1+1,σ2+1 + (ν01 – ν02

– ν11 + ν12)ϕψ
σ1+1,σ2+2 + (ν02 – ν12)ϕψ

σ1+3,σ2+1
}

+
{

(–ν10 + ν20)ϕψ
σ1+2,σ2

+ (ν10 – ν11 – ν20 + ν21)ϕψ
σ1+2,σ2+1 + (ν11 – ν12 – ν21 + ν22)ϕψ

σ1+2,σ2+2

+ (ν12 – ν22)ϕψ
σ1+2,σ2+3

}
+

{
–ν20ϕ

ψ
σ1+3,σ2 + (ν20 – ν21)ϕψ

σ1+3,σ2+1 + (ν21

– ν22)ϕψ
σ1+3,σ2+2 + ν22ϕ

ψ
σ1+3,σ2+3

}]
. (9)

By comparing the coefficients of the ϕψ
σ1,σ2 in (7) and (9), we get

ν00 = 22(ρ0 – χ0)(ρ0 – χ0),

ν10 = 22(ρ0 – χ0)(ρ1 + ρ0 – χ1 – χ0),

ν20 = 22(ρ0 – χ0)(ρ2 + ρ1 + ρ0 – χ2 – χ1 – χ0),

ν01 = 22(ρ1 + ρ0 – χ1 – χ0)(ρ0 – χ0),

ν11 = 22(ρ1 + ρ0 – χ1 – χ0)(ρ1 + ρ0 – χ1 – χ0),

ν21 = 22(ρ1 + ρ0 – χ1 – χ0)(ρ2 + ρ1 + ρ0 – χ2 – χ1 – χ0),

ν02 = 22(ρ2 + ρ1 + ρ0 – χ2 – χ1 – χ0)(ρ0 – χ0),

ν12 = 22(ρ2 + ρ1 + ρ0 – χ2 – χ1 – χ0)(ρ1 + ρ0 – χ1 – χ0),

ν22 = 22(ρ2 + ρ1 + ρ0 – χ2 – χ1 – χ0)(ρ2 + ρ1 + ρ0 – χ2 – χ1 – χ0).

By substituting these values in (8), we get

Eψ+1
2σ1,2σ2 = 22[(ρ0 – χ0)

{
(ρ0 – χ0)Eψ

σ1,σ2 + (ρ1 + ρ0 – χ1 – χ0)Eψ
σ1+1,σ2 + (ρ2 + ρ1 + ρ0 – χ2

– χ1 – χ0)Eψ
σ1+2,σ2

}
+ (ρ1 + ρ0 – χ1 – χ0)

{
(ρ0 – χ0)Eψ

σ1,σ2+1 + (ρ1 + ρ0 – χ1

– χ0)Eψ
σ1+1,σ2+1 + (ρ2 + ρ1 + ρ0 – χ2 – χ1 – χ0)Eψ

σ1+2,σ2+1
}

+ (ρ2 + ρ1 + ρ0 – χ2

– χ1 – χ0)
{

(ρ0 – χ0)Eψ
σ1,σ2+2 + (ρ1 + ρ0 – χ1 – χ0)Eψ

σ1+1,σ2+2

+ (ρ2 + ρ1 + ρ0 – χ2 – χ1 – χ0)Eψ
σ1+2,σ2+2

}]
.
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By simplifying, we obtain the following first refinement rule of the first order GBDDRS:

Eψ+1
2σ1,2σ2 = 22

2∑

l=0

[ l∑

q=0

(ρl–q – χl–q)
2∑

t=0

{ t∑

u=0

(ρt–u – χt–u)Eψ

σ1+l,σ2+t

}]

.

Now, we calculate the second refinement rule of the first order GBDDRS. Therefore, we
replace σ1 by 2σ1, σ2 by 2σ2 + 1 and ψ by ψ + 1 in (5) and obtain

Eψ+1
2σ1,2σ2+1 = 22(ψ+1)�σ1�σ2ϕ

ψ+1
2σ1,2σ2+1.

By adopting the procedure above, we get the following second refinement rule of the first
order GBDDRS:

Eψ+1
2σ1,2σ2+1 = 22

2∑

l=0

[ l∑

q=0

(ρl–q – χl–q)
3∑

t=0

{ t∑

u=0

(χt–u – ρt–u–1)Eψ

σ1+l,σ2+t

}]

.

Similarly, the third and fourth refinement rules of the first order GBDDRS can be obtained.
Hence the lemma is proved. �

From Lemma 1, the following result can be obtained.

Lemma 2 Let ϕψ = {( σ1
2ψ , σ2

2ψ ,ϕψ
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈N} be a given mesh and

Eψ
σ1,σ2 = 22ψ�σ1�σ2ϕ

ψ
σ1,σ2

be the first order divided differences, then the first order GBDDRS for an arbitrary m is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Eψ+1
2σ1,2σ2 = 22 ∑m–1

l=0 (	q1
∑m–1

t=0 	u1),

Eψ+1
2σ1,2σ2+1 = 22 ∑m–1

l=0 (	q1
∑m

t=0 	u2),

Eψ+1
2σ1+1,2σ2 = 22 ∑m–1

l=0 (	q1
∑m

t=0 	u3),

Eψ+1
2σ1+1,2σ2+1 = 22 ∑m

l=0(	q2
∑m

t=0 	u2),

(10)

where 	q1 =
∑l

q=0(ρl–q –χl–q), 	q2 =
∑l

q=0(χl–q –ρl–q–1), 	u1 =
∑t

u=0(ρt–u –χt–u)Eψ

σ1+l,σ2+t ,
	u2 =

∑t
u=0(χt–u – ρt–u–1)Eψ

σ1+l,σ2+t and 	u3 =
∑t

u=0(χt–u – ρt–u–1)Eψ

σ1+t,σ2+l .

Now we calculate second order GBDDRS of the GTPBRS.

Lemma 3 Let ϕψ = {( σ1
2ψ , σ2

2ψ ,ϕψ
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈N} be a given mesh and

Hψ
σ1,σ2 = 24ψ (2!)–2�2

σ1�
2
σ2ϕ

ψ
σ1,σ2 , ∀σ1,σ2 ∈ Z, (11)
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be the second order divided differences, then the second order GBDDRS for a fixed m = 3 is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hψ+1
2σ1,2σ2 = 24 ∑2

l=0[
∑l

q=0{Aq1ρl–q – Aq2χl–q}
× ∑2

t=0{
∑t

u=0{Au1ρt–u – Au2χt–u}Hψ

σ1+l,σ2+t}],
Hψ+1

2σ1+1,2σ2 = 24 ∑2
l=0[

∑l
q=0{Aq1ρl–q – Aq2χl–q}

× ∑2
t=0{

∑t
u=0{Au1χt–u – Au0ρt–u}Hψ

σ1+t,σ2+l}],
Hψ+1

2σ1,2σ2+1 = 24 ∑2
l=0[

∑l
q=0{Aq1ρl–q – Aq2χl–q}

× ∑2
t=0{

∑t
u=0{Au1χt–u – Au0ρt–u}Hψ

σ1+l,σ2+t}],
Hψ+1

2σ1+1,2σ2+1 = 24 ∑2
l=0[

∑l
q=0{Aq1χl–q – Aq0ρl–q}

× ∑2
t=0{

∑t
u=0{Au1χt–u – Au0ρt–u}Hψ

σ1+l,σ2+t}],

(12)

where Aq0 = 2q, Aq1 = 2q + 1, Aq2 = 2q + 2, Au0 = 2u, Au1 = 2u + 1 and Au2 = 2u + 2.

Proof If we replace σ1 by 2σ1, σ2 by 2σ2 and ψ by ψ + 1 in (11), we obtain

Hψ+1
2σ1,2σ2 = 24(ψ+1)2–2�2

σ1�
2
σ2ϕ

ψ+1
2σ1,2σ2 = 24(ψ+1)2–2(ϕ

ψ+1
2σ1,2σ2 – 2ϕ

ψ+1
2σ1+1,2σ2 + ϕ

ψ+1
2σ1+2,2σ2

– 2ϕ
ψ+1
2σ1,2σ2+1 + 4ϕ

ψ+1
2σ1+1,2σ2+1 – 2ϕ

ψ+1
2σ1+2,2σ2+1 + ϕ

ψ+1
2σ1,2σ2+2 – 2ϕ

ψ+1
2σ1+1,2σ2+2

+ ϕ
ψ+1
2σ1+2,2σ2+2

)
.

Now by using (1) for m = 3, we obtain

Hψ+1
2σ1,2σ2 = 24(ψ+1)2–2[(ρ0 – 2χ0)

{
(ρ0 – 2χ0)ϕψ

σ1,σ2 + (ρ1 + ρ0 – 2χ1)ϕψ
σ1,σ2+1

+ (ρ2 + ρ1 – 2χ2)ϕψ
σ1,σ2+2 + (ρ3 + ρ2 – 2χ3)ϕψ

σ1,σ2+3 + ρ3ϕ
ψ
σ1,σ2+4

}

+ (ρ1 + ρ0 – 2χ1)
{

(ρ0 – 2χ0)ϕψ
σ1+1,σ2 + (ρ1 + ρ0 – 2χ1)ϕψ

σ1+1,σ2+1

+ (ρ2 + ρ1 – 2χ2)ϕψ
σ1+1,σ2+2 + (ρ3 + ρ2 – 2χ3)ϕψ

σ1+1,σ2+3 + ρ3ϕ
ψ
σ1+1,σ2+4

}

+ (ρ2 + ρ1 – 2χ2)
{

(ρ0 – 2χ0)ϕψ
σ1+2,σ2 + (ρ1 + ρ0 – 2χ1)ϕψ

σ1+2,σ2+1

+ (ρ2 + ρ1 – 2χ2)ϕψ
σ1+2,σ2+2 + (ρ3 + ρ2 – 2χ3)ϕψ

σ1+2,σ2+3 + ρ3ϕ
ψ
σ1+2,σ2+4

}

+ (ρ3 + ρ2 – 2χ3)
{

(ρ0 – 2χ0)ϕψ
σ1+3,σ2 + (ρ1 + ρ0 – 2χ1)ϕψ

σ1+3,σ2+1

+ (ρ2 + ρ1 – 2χ2)ϕψ
σ1+3,σ2+2 + (ρ3 + ρ2 – 2χ3)ϕψ

σ1+3,σ2+3 + ρ3ϕ
ψ
σ1+3,σ2+4

}

+ ρ3
{

(ρ0 – 2χ0)ϕψ
σ1+4,σ2 + (ρ1 + ρ0 – 2χ1)ϕψ

σ1+4,σ2+1 + (ρ2 + ρ1 – 2χ2)

× ϕ
ψ
σ1+4,σ2+2 + (ρ3 + ρ2 – 2χ3)ϕψ

σ1+4,σ2+3 + ρ3ϕ
ψ
σ1+4,σ2+4

}]
. (13)

We want to find the refinement equation of the second order GBDDRS. Therefore, we are
seeking an equation of the following type:

Hψ+1
2σ1,2σ2 = ν00Hψ

σ1,σ2 + ν10Hψ
σ1+1,σ2 + ν20Hψ

σ1+2,σ2 + ν01Hψ
σ1,σ2+1 + ν11Hψ

σ1+1,σ2+1

+ ν21Hψ
σ1+2,σ2+1 + ν02Hψ

σ1,σ2+2 + ν12Hψ
σ1+1,σ2+2 + ν22Hψ

σ1+2,σ2+2. (14)

By substituting values and simplifying, we get

Hψ+1
2σ1,2σ2 = 24ψ2–2[ν00ϕ

ψ
σ1,σ2 + (–2ν00 + ν01)ϕψ

σ1,σ2+1 + (ν00 – 2ν01 + ν02)ϕψ
σ1,σ2+2
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+ (ν01 – 2ν02)ϕψ
σ1,σ2+3 + ν02ϕ

ψ
σ1,σ2+4 + (–2ν00 + ν10)ϕψ

σ1+1,σ2 + (4ν00

– 2ν10 – 2ν01 + ν11)ϕψ
σ1+1,σ2+1 + (–2ν00 + ν10 + 4ν01 – 2ν11 – 2ν02

+ ν12)ϕψ
σ1+1,σ2+2 + (–2ν01 + ν11 + 4ν02 – 2ν12)ϕψ

σ1+1,σ2+3 + (–2ν02

+ ν12)ϕψ
σ1+1,σ2+4 + (ν00 – 2ν10 + ν20)ϕψ

σ1+2,σ2 + (–2ν00 + 4ν10 – 2ν20

+ ν01 – 2ν11 + ν21)ϕψ
σ1+2,σ2+1 + (ν00 – 2ν10 + ν20 – 2ν01 + 4ν11 – 2

× ν21 + ν02 – 2ν12 + ν22)ϕψ
σ1+2,σ2+2 + (ν01 – 2ν11 + ν21 – 2ν02 + 4

× ν12 – 2ν22)ϕψ
σ1+2,σ2+3 + (ν02 – 2ν12 + ν22)ϕψ

σ1+2,σ2+4 + (ν10 – 2ν20)

× ϕ
ψ
σ1+3,σ2 + (–2ν10 + 4ν20 + ν11 – 2ν21)ϕψ

σ1+3,σ2+1 + (ν10 – 2ν20 – 2

× ν11 + 4ν21 + ν12 – 2ν22)ϕψ
σ1+3,σ2+2 + (ν11 – 2ν21 – 2ν12 + 4ν22)

× ϕ
ψ
σ1+3,σ2+3 + (ν12 – 2ν22)ϕψ

σ1+3,σ2+4 + ν20ϕ
ψ
σ1+4,σ2 + (–2ν20 + ν21)ϕψ

σ1+4,σ2+1

+ (ν20 – 2ν21 + ν22)ϕψ
σ1+4,σ2+2 + (ν21 – 2ν22)ϕψ

σ1+4,σ2+3 + ν22ϕ
ψ
σ1+4,σ2+4

]
. (15)

Comparing coefficients of the ϕψ
σ1,σ2 in (13) and (15), we get

ν00 = 24(ρ0 – 2χ0)(ρ0 – 2χ0),

ν10 = 24(ρ0 – 2χ0)(ρ1 + 3ρ0 – 2χ1 – 4χ0),

ν20 = 24(ρ0 – 2χ0)(ρ2 + 3ρ1 + 5ρ0 – 2χ2 – 4χ1 – 6χ0),

ν01 = 24(ρ1 + 3ρ0 – 2χ1 – 4χ0)(ρ0 – 2χ0),

ν11 = 24(ρ1 + 3ρ0 – 2χ1 – 4χ0)(ρ1 + 3ρ0 – 2χ1 – 4χ0),

ν21 = 24(ρ1 + 3ρ0 – 2χ1 – 4χ0)(ρ2 + 3ρ1 + 5ρ0 – 2χ2 – 4χ1 – 6χ0),

ν02 = 24(ρ2 + 3ρ1 + 5ρ0 – 2χ2 – 4χ1 – 6χ0)(ρ0 – 2χ0),

ν12 = 24(ρ2 + 3ρ1 + 5ρ0 – 2χ2 – 4χ1 – 6χ0)(ρ1 + 3ρ0 – 2χ1 – 4χ0),

ν22 = 24(ρ2 + 3ρ1 + 5ρ0 – 2χ2 – 4χ1 – 6χ0)(ρ2 + 3ρ1 + 5ρ0 – 2χ2 – 4χ1 – 6χ0).

Now we substitute all the above values in (14), we get the first refinement rule of the second
order GBDDRS, i.e.

Hψ+1
2σ1,2σ2 = 24

2∑

l=0

[ l∑

q=0

{
(2q + 1)ρl–q – (2q + 2)χl–q

}

×
2∑

t=0

{ t∑

u=0

{
(2u + 1)ρt–u – (2u + 2)χt–u

}
Hψ

σ1+l,σ2+t

}]

.

By adopting the same procedure as above, we find the following second refinement rule
of the second order GBDDRS:

Hψ+1
2σ1+1,2σ2 = 24

2∑

l=0

[ l∑

q=0

{
(2q + 1)ρl–q – (2q + 2)χl–q

}

×
2∑

t=0

{ t∑

u=0

{
(2u + 1)χt–u – 2uρt–u

}
Hψ

σ1+t,σ2+l

}]

.



Hameed et al. Advances in Difference Equations        (2021) 2021:180 Page 10 of 31

Similarly, the third and fourth refinement rules of the second order GBDDRS can be ob-
tained. Hence our result proved. �

Lemma 4 Let ϕψ = {( σ1
2ψ , σ2

2ψ ,ϕψ
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈N} be a given mesh and

Hψ
σ1,σ2 = 24ψ (2!)–2�2

σ1�
2
σ2ϕ

ψ
σ1,σ2 , ∀σ1,σ2 ∈ Z,

be the second order divided differences, then the second order GBDDRS for an arbitrary m
is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hψ+1
2σ1,2σ2 = 24 ∑m–1

l=0 [
∑l

q=0{Aq1ρl–q – Aq2χl–q}
× ∑m–1

t=0 {∑t
u=0{Au1ρt–u – Au2χt–u}Hψ

σ1+l,σ2+t}],
Hψ+1

2σ1+1,2σ2 = 24 ∑m–1
l=0 [

∑l
q=0{Aq1ρl–q – Aq2χl–q}

× ∑m–1
t=0 {∑t

u=0{Au1χt–u – Au0ρt–u}Hψ

σ1+t,σ2+l}],
Hψ+1

2σ1,2σ2+1 = 24 ∑m–1
l=0 [

∑l
q=0{Aq1ρl–q – Aq2χl–q}

× ∑m–1
t=0 {∑t

u=0{Au1χt–u – Au0ρt–u}Hψ

σ1+l,σ2+t}],
Hψ+1

2σ1+1,2σ2+1 = 24 ∑m–1
l=0 [

∑l
q=0{Aq1χl–q – Aq0ρl–q}

× ∑m–1
t=0 {∑t

u=0{Au1χt–u – Au0ρt–u}Hψ

σ1+l,σ2+t}],

(16)

where Aq0 = 2q, Aq1 = 2q + 1, Aq2 = 2q + 2, Au0 = 2u, Au1 = 2u + 1 and Au2 = 2u + 2.

2.3 Convergence of the bivariate binary and its GBDDRS
In this subsection, firstly we calculate the derivatives of two Bernstein polynomials in r
and t. Secondly, we take the tensor product of these derivatives. Lastly, we prove that the
result converge uniformly to some continuous function. Throughout the article, �[0,n]2

denotes the set of continuous functions on the closed and bounded interval [0, n] × [0, n].

Lemma 5 Let ϕψ = {( σ1
2ψ , σ2

2ψ ,ϕψ
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈ N} be a mesh produced by the GTP-

BRS at the ψ th refinement level and Eψ = {( σ1
2ψ , σ2

2ψ , Eψ
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈ N} be a mesh

produced by the first order GBDDRS at the ψ th refinement level. If limψ→∞ ϕψ = ϕ ∈ �[0,n]2 ,
and ϕ is the limiting model produced by GTPBRS then E = ϕ′.

Proof Bernstein polynomials for r, t ∈ [0, n] are

⎧
⎨

⎩

bψ1 (r) =
∑N

σ1=0
(N
σ1

)
( r

n )σ1 (1 – r
n )N–σ1 ,

bψ2 (t) =
∑N

σ2=0
(N
σ2

)
( t

n )σ2 (1 – t
n )N–σ2 ,

(17)

where N = 2ψn.
Hence the Bernstein polynomial patch for the points {ϕψ

σ1,σ2} on [0, n] × [0, n] is

bψ (r, t) =
[
bψ1 (r) × bψ2 (t)

]
ϕψ

σ1,σ2 . (18)
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If we take derivatives of the first and second equations in (17) with respect to r and t,
respectively, we obtain the following two equations:

b′
ψ1 (r) =

N∑

σ1=0

(
N
σ1

)

σ1

(
1
n

)(
r
n

)σ1–1(

1 –
r
n

)N–σ1

+
N∑

σ1=0

(
N
σ1

)(
r
n

)σ1

(N – σ1)
(

1 –
r
n

)N–σ1–1(

–
1
n

)

, (19)

b′
ψ2 (t) =

N∑

σ2=0

(
N
σ2

)

σ2

(
1
n

)(
t
n

)σ2–1(

1 –
t
n

)N–σ2

+
N∑

σ2=0

(
N
σ2

)(
t
n

)σ2

(N – σ2)
(

1 –
t
n

)N–σ2–1(

–
1
n

)

. (20)

Now we calculate Bψ (r, t) which is the mesh with basis functions b′
ψ1

(r) × b′
ψ2

(t),

Bψ (r, t) =
[
b′

ψ1 (r) × b′
ψ2 (t)

]
ϕψ

σ1,σ2 . (21)

Thus firstly we use (19) and (20) in (21), and then apply some simple algebraic operations
and obtain

Bψ (r, t) = B̄1 + B̄2 + B̄3 + B̄4,

where

B̄1 =
N2

n2

N–1∑

σ1=0

(N – 1)!
σ1!(N – σ1 – 1)!

(
r
n

)σ1(

1 –
r
n

)N–σ1–1

×
N–1∑

σ2=0

(N – 1)!
σ2!(N – σ2 – 1)!

(
t
n

)σ2(

1 –
t
n

)N–σ2–1

ϕ
ψ
σ1+1,σ2+1,

B̄2 = –
N2

n2

N–1∑

σ1=0

N !
σ1!(N – σ1 – 1)!

(
r
n

)σ1(

1 –
r
n

)N–σ1–1

×
N–1∑

σ2=0

(N – 1)!
σ2!(N – σ2 – 1)!

(
t
n

)σ2(

1 –
t
n

)N–σ2–1

ϕ
ψ
σ1,σ2+1,

B̄3 = –
N2

n2

N–1∑

σ1=0

(N – 1)!
σ1!(N – σ1 – 1)!

(
r
n

)σ1(

1 –
r
n

)N–σ1–1

×
N–1∑

σ2=0

N !
σ2!(N – σ2 – 1)!

(
t
n

)σ2(

1 –
t
n

)N–σ2–1

ϕ
ψ
σ1+1,σ2 ,

B̄4 =
N2

n2

N–1∑

σ1=0

N !
σ1!(N – σ1 – 1)!

(
r
n

)σ1(

1 –
r
n

)N–σ1–1

×
N–1∑

σ2=0

N !
σ2!(N – σ2 – 1)!

(
t
n

)σ2(

1 –
t
n

)N–σ2–1

ϕψ
σ1,σ2 .
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This gives us

Bψ (r, t) =
N2

n2

N–1∑

σ1=0

(
N – 1

σ1

)(
r
n

)σ1(

1 –
r
n

)N–σ1–1 N–1∑

σ2=0

(
N – 1

σ2

)

×
(

t
n

)σ2(

1 –
t
n

)N–σ2–1(
ϕ

ψ
σ1+1,σ2+1 – ϕ

ψ
σ1,σ2+1 – ϕ

ψ
σ1+1,σ2 + ϕψ

σ1,σ2

)
.

Since N2 = (2ψ )2n2, we get

Bψ (r, t) =
N–1∑

σ1=0

(
N – 1

σ1

)(
r
n

)σ1(

1 –
r
n

)N–σ1–1 N–1∑

σ2=0

(
N – 1

σ2

)

×
(

t
n

)σ2(

1 –
t
n

)N–σ2–1

Eψ
σ1,σ2 ,

where

Eψ
σ1,σ2 = 22ψ (1!)–2�σ1�σ2ϕ

ψ
σ1,σ2 .

The Bernstein polynomial batches are uniformly convergent, therefore limψ→∞ Bψ = ϕ

and limψ→∞ B′
ψ = E on [0, n] × [0, n]. Hence ϕ′ = E ∈ �[0,n]2 . This completes our proof. �

Similarly, the following lemma can be proved.

Lemma 6 Let ϕψ = {( σ1
2ψ , σ2

2ψ ,ϕψ
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈N} be a mesh produced by the GTPBRS

at the ψ th refinement level and Hψ = {( σ1
2ψ , σ2

2ψ , Hψ
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈ N} be a mesh pro-

duced by the second order GBDDRS at the ψ th refinement level. If limψ→∞ ϕψ = ϕ ∈ �[0,n]2 ,
and ϕ is the limiting model produced by GTPBRS then H = ϕ′′.

3 The deviation of tensor product binary and its DD refinement schemes
In this section, first we introduce the inequalities to compute the deviation between two
consecutive points at the same refinement level. Then we introduce the inequalities to
compute the deviation between successive levels of meshes produced by GTPBRS and its
GDDBRSs.

3.1 The deviation of GTPBRS
In this subsection, we first introduce the inequalities to compute the deviation between
two consecutive points at the (ψ + 1)th refinement level then we introduce the inequalities
to compute the deviation between the ψ th and (ψ + 1)th level of meshes produced by
GTPBRS.

Lemma 7 Let ϕ0 = {(σ1,σ2,ϕ0
σ1,σ2 ) : σ1,σ2 ∈ Z} be an initial mesh and ϕψ+1 = {( σ1

2ψ+1 , σ2
2ψ+1 ,

ϕψ+1
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈ N} be a mesh produced by the GTPBRS at the (ψ + 1)th refinement

level. If we fix m = 3, then the deviations between two consecutive points at the (ψ + 1)th
refinement step are

⎧
⎨

⎩

maxσ1,σ2 ‖ϕψ+1
σ1+1,σ2 – ϕψ+1

σ1,σ2‖ ≤ (T)ψ+1 maxσ1,σ2 ‖ϕ0
σ1+1,σ2 – ϕ0

σ1,σ2‖,

maxσ1,σ2 ‖ϕψ+1
σ1,σ2+1 – ϕψ+1

σ1,σ2‖ ≤ (T)ψ+1 maxσ1,σ2 ‖ϕ0
σ1,σ2+1 – ϕ0

σ1,σ2‖,
(22)
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where

T = max
θ

{Tθ : θ = 1, 2, 3, 4} (23)

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T1 = |∑3
l=0 ρl|∑2

t=0 |∑t
u=0(ρt–u – χt–u)|,

T2 = |∑3
l=0 ρl|∑3

t=0 |∑t
u=0(χt–u – ρt–u–1)|,

T3 = |∑3
l=0 χl|∑2

t=0 |∑t
u=0(ρt–u – χt–u)|,

T4 = |∑3
l=0 χl|∑3

t=0 |∑t
u=0(χt–u – ρt–u–1)|.

(24)

Proof To prove this lemma, we have to calculate distances between every two consecutive
points in σ1 direction and similarly in σ2 direction. So by Fig. 1, we have to calculate 12
differences to prove the required result.

First, we calculate the difference between second and first refinement rules of the GTP-
BRS defined in (1) for a fixed m = 3, thus we get

ϕ
ψ+1
2σ1+1,2σ2 – ϕ

ψ+1
2σ1,2σ2 =

3∑

r=0

3∑

s=0

χrρsϕ
ψ
σ1+r,σ2+s –

3∑

r=0

3∑

s=0

ρrρsϕ
ψ
σ1+r,σ2+s

=
3∑

r=0

3∑

s=0

(χr – ρr)ρsϕ
ψ
σ1+r,σ2+s.

By expanding the above expression, we get

ϕ
ψ+1
2σ1+1,2σ2 – ϕ

ψ+1
2σ1,2σ2 = ρ0

{
ω0

(
ϕ

ψ
σ1+1,σ2 – ϕψ

σ1,σ2

)
+ ω1

(
ϕ

ψ
σ1+2,σ2 – ϕ

ψ
σ1+1,σ2

)
+ ω2

(
ϕ

ψ
σ1+3,σ2

– ϕ
ψ
σ1+2,σ2

)
+ ω3ϕ

ψ
σ1+3,σ2

}
+ ρ1

{
ω0

(
ϕ

ψ
σ1+1,σ2+1 – ϕ

ψ
σ1,σ2+1

)
+ ω1

× (
ϕ

ψ
σ1+2,σ2+1 – ϕ

ψ
σ1+1,σ2+1

)
+ ω2

(
ϕ

ψ
σ1+3,σ2+1 – ϕ

ψ
σ1+2,σ2+1

)
+ ω3

× ϕ
ψ
σ1+3,σ2+1

}
+ ρ2

{
ω0

(
ϕ

ψ
σ1+1,σ2+2 – ϕ

ψ
σ1,σ2+2

)
+ ω1

(
ϕ

ψ
σ1+2,σ2+2

– ϕ
ψ
σ1+1,σ2+2

)
+ ω2

(
ϕ

ψ
σ1+3,σ2+2 – ϕ

ψ
σ1+2,σ2+2

)
+ ω3ϕ

ψ
σ1+3,σ2+2

}
+ ρ3

× {
ω0

(
ϕ

ψ
σ1+1,σ2+3 – ϕ

ψ
σ1,σ2+3

)
+ ω1

(
ϕ

ψ
σ1+2,σ2+3 – ϕ

ψ
σ1+1,σ2+3

)
+ ω2

× (
ϕ

ψ
σ1+3,σ2+3 – ϕ

ψ
σ1+2,σ2+3

)
+ ω3ϕ

ψ
σ1+3,σ2+3

}
,

where

⎧
⎨

⎩

ω0 = (
∑0

l=0 ρl –
∑0

l=0 χl), ω1 = (
∑1

l=0 ρl –
∑1

l=0 χl),

ω2 = (
∑2

l=0 ρl –
∑2

l=0 χl), ω3 = (
∑3

l=0 ρl –
∑3

l=0 χl).
(25)

Since ω3 = 0 by (2), we get

ϕ
ψ+1
2σ1+1,2σ2 – ϕ

ψ+1
2σ1,2σ2 =

3∑

l=0

[

ρl

2∑

t=0

{ t∑

u=0

(ρt–u – χt–u)
(
ϕ

ψ

σ1+t+1,σ2+l – ϕ
ψ

σ1+t,σ2+l
)
}]

.
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Now by calculating the infinity norm, we get

∥
∥ϕ

ψ+1
2σ1+1,2σ2 – ϕ

ψ+1
2σ1,2σ2

∥
∥ ≤ T1 max

σ1,σ2

∥
∥ϕ

ψ
σ1+1,σ2 – ϕψ

σ1,σ2

∥
∥, (26)

where

T1 =

∣
∣
∣
∣
∣

3∑

l=0

ρl

∣
∣
∣
∣
∣

2∑

t=0

∣
∣
∣
∣
∣

t∑

u=0

(ρt–u – χt–u)

∣
∣
∣
∣
∣
.

Similarly, by using (1) for m = 3 and adopting similar procedures to above, we get the
following 11 inequalities:

∥
∥ϕ

ψ+1
2σ1+2,2σ2 – ϕ

ψ+1
2σ1+1,2σ2

∥
∥ ≤ T2 max

σ1,σ2

∥
∥ϕ

ψ
σ1+1,σ2 – ϕψ

σ1,σ2

∥
∥, (27)

where

T2 =

∣
∣
∣
∣
∣

3∑

l=0

ρl

∣
∣
∣
∣
∣

3∑

t=0

∣
∣
∣
∣
∣

t∑

u=0

(χt–u – ρt–u–1)

∣
∣
∣
∣
∣
,

∥
∥ϕ

ψ+1
2σ1+1,2σ2+1 – ϕ

ψ+1
2σ1,2σ2+1

∥
∥ ≤ T3 max

σ1,σ2

∥
∥ϕ

ψ
σ1+1,σ2 – ϕψ

σ1,σ2

∥
∥, (28)

where

T3 =

∣
∣
∣
∣
∣

3∑

l=0

χl

∣
∣
∣
∣
∣

2∑

t=0

∣
∣
∣
∣
∣

t∑

u=0

(ρt–u – χt–u)

∣
∣
∣
∣
∣
,

∥
∥ϕ

ψ+1
2σ1+2,2σ2+1 – ϕ

ψ+1
2σ1+1,2σ2+1

∥
∥ ≤ T4 max

σ1,σ2

∥
∥ϕ

ψ
σ1+1,σ2 – ϕψ

σ1,σ2

∥
∥, (29)

where

T4 =

∣
∣
∣
∣
∣

3∑

l=0

χl

∣
∣
∣
∣
∣

3∑

t=0

∣
∣
∣
∣
∣

t∑

u=0

(χt–u – ρt–u–1)

∣
∣
∣
∣
∣
,

∥
∥ϕ

ψ+1
2σ1+1,2σ2+2 – ϕ

ψ+1
2σ1,2σ2+2

∥
∥ ≤ T1 max

σ1,σ2

∥
∥ϕ

ψ
σ1+1,σ2+1 – ϕ

ψ
σ1,σ2+1

∥
∥, (30)

where

T1 =

∣
∣
∣
∣
∣

3∑

l=0

ρl

∣
∣
∣
∣
∣

2∑

t=0

∣
∣
∣
∣
∣

t∑

u=0

(ρt–u – χt–u)

∣
∣
∣
∣
∣
,

∥
∥ϕ

ψ+1
2σ1+2,2σ2+2 – ϕ

ψ+1
2σ1+1,2σ2+2

∥
∥ ≤ T2 max

σ1,σ2

∥
∥ϕ

ψ
σ1+1,σ2+1 – ϕ

ψ
σ1,σ2+1

∥
∥, (31)

where

T2 =

∣
∣
∣
∣
∣

3∑

l=0

ρl

∣
∣
∣
∣
∣

3∑

t=0

∣
∣
∣
∣
∣

t∑

u=0

(χt–u – ρt–u–1)

∣
∣
∣
∣
∣
,

∥
∥ϕ

ψ+1
2σ1,2σ2+1 – ϕ

ψ+1
2σ1,2σ2

∥
∥ ≤ T1 max

σ1,σ2

∥
∥ϕ

ψ

σ1,σ2+l – ϕψ
σ1,σ2

∥
∥, (32)
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where

T1 =

∣
∣
∣
∣
∣

3∑

l=0

ρl

∣
∣
∣
∣
∣

2∑

t=0

∣
∣
∣
∣
∣

t∑

u=0

(ρt–u – χt–u)

∣
∣
∣
∣
∣
,

∥
∥ϕ

ψ+1
2σ1,2σ2+2 – ϕ

ψ+1
2σ1,2σ2+1

∥
∥ ≤ T2 max

σ1,σ2

∥
∥ϕ

ψ

σ1,σ2+l – ϕψ
σ1,σ2

∥
∥, (33)

where

T2 =

∣
∣
∣
∣
∣

3∑

l=0

ρl

∣
∣
∣
∣
∣

3∑

t=0

∣
∣
∣
∣
∣

t∑

u=0

(χt–u – ρt–u–1)

∣
∣
∣
∣
∣
,

∥
∥ϕ

ψ+1
2σ1+1,2σ2+1 – ϕ

ψ+1
2σ1+1,2σ2

∥
∥ ≤ T3 max

σ1,σ2

∥
∥ϕ

ψ

σ1,σ2+l – ϕψ
σ1,σ2

∥
∥, (34)

where

T3 =

∣
∣
∣
∣
∣

3∑

l=0

χl

∣
∣
∣
∣
∣

2∑

t=0

∣
∣
∣
∣
∣

t∑

u=0

(ρt–u – χt–u)

∣
∣
∣
∣
∣
,

∥
∥ϕ

ψ+1
2σ1+1,2σ2+2 – ϕ

ψ+1
2σ1+1,2σ2+1

∥
∥ ≤ T4 max

σ1,σ2

∥
∥ϕ

ψ
σ1,σ2+1 – ϕψ

σ1,σ2

∥
∥, (35)

where

T4 =

∣
∣
∣
∣
∣

3∑

l=0

χl

∣
∣
∣
∣
∣

3∑

t=0

∣
∣
∣
∣
∣

t∑

u=0

(χt–u – ρt–u–1)

∣
∣
∣
∣
∣
,

∥
∥ϕ

ψ+1
2σ1+2,2σ2+1 – ϕ

ψ+1
2σ1+2,2σ2

∥
∥ ≤ T1 max

σ1,σ2

∥
∥ϕ

ψ

σ1,σ2+l – ϕψ
σ1,σ2

∥
∥, (36)

where

T1 =

∣
∣
∣
∣
∣

3∑

l=0

ρl

∣
∣
∣
∣
∣

2∑

t=0

∣
∣
∣
∣
∣

t∑

u=0

(ρt–u – χt–u)

∣
∣
∣
∣
∣
,

∥
∥ϕ

ψ+1
2σ1+2,2σ2+2 – ϕ

ψ+1
2σ1+2,2σ2+1

∥
∥ ≤ T2 max

σ1,σ2

∥
∥ϕ

ψ

σ1,σ2+l – ϕψ
σ1,σ2

∥
∥, (37)

where

T2 =

∣
∣
∣
∣
∣

3∑

l=0

ρl

∣
∣
∣
∣
∣

3∑

t=0

∣
∣
∣
∣
∣

t∑

u=0

(χt–u – ρt–u–1)

∣
∣
∣
∣
∣
.

Now by combining (26)–(37), we get

max
σ1,σ2

∥
∥ϕ

ψ+1
σ1+1,σ2 – ϕψ+1

σ1,σ2

∥
∥ ≤ T max

σ1,σ2

∥
∥ϕ

ψ
σ1+1,σ2 – ϕψ

σ1,σ2

∥
∥,

max
σ1,σ2

∥
∥ϕ

ψ+1
σ1,σ2+1 – ϕψ+1

σ1,σ2

∥
∥ ≤ T max

σ1,σ2

∥
∥ϕ

ψ
σ1,σ2+1 – ϕψ

σ1,σ2

∥
∥,

where

T = max{T1, T2, T3.T4}.
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This further implies that

max
σ1,σ2

∥
∥ϕ

ψ+1
σ1+1,σ2 – ϕψ+1

σ1,σ2

∥
∥ ≤ (T)ψ+1 max

σ1,σ2

∥
∥ϕ0

σ1+1,σ2 – ϕ0
σ1,σ2

∥
∥,

max
σ1,σ2

∥
∥ϕ

ψ+1
σ1,σ2+1 – ϕψ+1

σ1,σ2

∥
∥ ≤ (T)ψ+1 max

σ1,σ2

∥
∥ϕ0

σ1,σ2+1 – ϕ0
σ1,σ2

∥
∥.

This completes the proof. �

Lemma 8 Let ϕψ = {( σ1
2ψ , σ2

2ψ ,ϕψ
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈ N} be a mesh at the ψ th refinement

step and ϕψ+1 = {( σ1
2ψ+1 , σ2

2ψ+1 ,ϕψ+1
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈N} be a mesh produced by the GTPBRS

at the (ψ + 1)th refinement level. If we fix m = 3, then the deviation between two consecutive
meshes at the ψ th and (ψ + 1)th refinement steps is

∥
∥ϕψ+1 – ϕψ

∥
∥∞ ≤ δ

{
max
σ1,σ2

∥
∥ϕ

ψ
σ1+1,σ2 – ϕψ

σ1,σ2

∥
∥ + max

σ1,σ2

∥
∥ϕ

ψ
σ1,σ2+1 – ϕψ

σ1,σ2

∥
∥
}

, (38)

where

δ = max
θ

{δθ : θ = 1, 2, 3, 4}, (39)
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

δ1 = |3 – (ρ2 + 2ρ1 + 3ρ0)|,
δ2 = |3 – (ρ2 + 2ρ1 + 3ρ0)|,
δ3 = | 5

2 – (χ2 + 2χ1 + 3χ0)|,
δ4 = | 5

2 – (χ2 + 2χ1 + 3χ0)|.

(40)

Proof To find the deviation between two consecutive meshes at the ψ th and (ψ + 1)th
refinement steps, we have to calculate

∥
∥ϕψ+1 – ϕψ

∥
∥∞ ≤ max

{
Nψ

1 , Nψ
2 , Nψ

3 , Nψ
4

}
, (41)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Nψ
1 = maxσ1,σ2 ‖ϕψ+1

2σ1,2σ2 – ϕψ
σ1,σ2‖,

Nψ
2 = maxσ1,σ2 ‖ϕψ+1

2σ1+1,2σ2 – 1
2 (ϕψ

σ1,σ2 + ϕ
ψ
σ1+1,σ2 )‖,

Nψ
3 = maxσ1,σ2 ‖ϕψ+1

2σ1,2σ2+1 – 1
2 (ϕψ

σ1,σ2 + ϕ
ψ
σ1,σ2+1)‖,

Nψ
4 = maxσ1,σ2 ‖ϕψ+1

2σ1+1,2σ2+1 – 1
4 (ϕψ

σ1,σ2 + ϕ
ψ
σ1+1,σ2 + ϕ

ψ
σ1,σ2+1 + ϕ

ψ
σ1+1,σ2+1)‖.

(42)

By using the refinement rule of (1) for a fixed m = 3, we obtain

ϕ
ψ+1
2σ1,2σ2 – ϕψ

σ1,σ2 =
3∑

r=0

3∑

s=0

ρrρsϕ
ψ
σ1+r,σ2+s – ϕψ

σ1,σ2 .

By expanding the above expression, we get

ϕ
ψ+1
2σ1,2σ2 – ϕψ

σ1,σ2 = M̄1 + M̄2 + M̄3, (43)
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where

M̄1 = (1 – ρ0ρ0)
(
ϕ

ψ
σ1+1,σ2 – ϕψ

σ1,σ2

)
+

(

1 – ρ0

1∑

l=0

ρl

)
(
ϕ

ψ
σ1+2,σ2 – ϕ

ψ
σ1+1,σ2

)

+

(

1 – ρ0

2∑

l=0

ρl

)
(
ϕ

ψ
σ1+3,σ2 – ϕ

ψ
σ1+2,σ2

)
+ ρ1

{

–ρ0
(
ϕ

ψ
σ1+1,σ2+1 – ϕ

ψ
σ1,σ2+1

)

–
1∑

l=0

ρl
(
ϕ

ψ
σ1+2,σ2+1 – ϕ

ψ
σ1+1,σ2+1

)
–

2∑

l=0

ρl
(
ϕ

ψ
σ1+3,σ2+1 – ϕ

ψ
σ1+2,σ2+1

)
}

,

M̄2 = ρ2

{

–ρ0
(
ϕ

ψ
σ1+1,σ2+2 – ϕ

ψ
σ1,σ2+2

)
–

1∑

l=0

ρl
(
ϕ

ψ
σ1+2,σ2+2 – ϕ

ψ
σ1+1,σ2+2

)

–
2∑

l=0

ρl
(
ϕ

ψ
σ1+3,σ2+2 – ϕ

ψ
σ1+2,σ2+2

)
}

+ ρ3

{

–ρ0
(
ϕ

ψ
σ1+1,σ2+3 – ϕ

ψ
σ1,σ2+3

)

–
1∑

l=0

ρl
(
ϕ

ψ
σ1+2,σ2+3 – ϕ

ψ
σ1+1,σ2+3

)
–

2∑

l=0

ρl
(
ϕ

ψ
σ1+3,σ2+3 – ϕ

ψ
σ1+2,σ2+3

)
}

,

and

M̄3 =

(

1 – ρ0

3∑

l=0

ρl

)
(
ϕ

ψ
σ1+3,σ2+1 – ϕ

ψ
σ1+3,σ2

)
+

(

1 –
1∑

l=0

ρl

3∑

l=0

ρl

)

× (
ϕ

ψ
σ1+3,σ2+2 – ϕ

ψ
σ1+3,σ2+1

)
+

(

1 –
2∑

l=0

ρl

3∑

l=0

ρl

)
(
ϕ

ψ
σ1+3,σ2+2 – ϕ

ψ
σ1+3,σ2+1

)

+

(

1 –
3∑

l=0

ρl

3∑

l=0

ρl

)
(
ϕ

ψ
σ1+3,σ2+3 – ϕ

ψ
σ1+3,σ2+2

)
.

We know that 1 – (
∑3

r=0 ρr)2 = 0. Hence if we take the infinity norm of (43), we obtain

∥
∥ϕ

ψ+1
2σ1,2σ2 – ϕψ

σ1,σ2

∥
∥ ≤ δ1 max

σ1,σ2

∥
∥ϕ

ψ
σ1+1,σ2 – ϕψ

σ1,σ2

∥
∥ + δ1 max

σ1,σ2

∥
∥ϕ

ψ
σ1,σ2+1 – ϕψ

σ1,σ2

∥
∥, (44)

where

δ1 =
∣
∣3 – (ρ2 + 2ρ1 + 3ρ0)

∣
∣.

Similarly, we calculate the following three inequalities:

∥
∥
∥
∥ϕ

ψ+1
2σ1+1,2σ2 –

1
2
(
ϕψ

σ1,σ2 + ϕ
ψ
σ1+1,σ2

)
∥
∥
∥
∥

≤ δ2 max
σ1,σ2

∥
∥ϕ

ψ
σ1,σ2+1 – ϕψ

σ1,σ2

∥
∥ + δ3 max

σ1,σ2

∥
∥ϕ

ψ
σ1+1,σ2 – ϕψ

σ1,σ2

∥
∥, (45)

where

δ2 =
∣
∣3 – (ρ2 + 2ρ1 + 3ρ0)

∣
∣,
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δ3 =
∣
∣
∣
∣
5
2

– (χ2 + 2χ1 + 3χ0)
∣
∣
∣
∣,

∥
∥
∥
∥ϕ

ψ+1
2σ1,2σ2+1 –

1
2
(
ϕψ

σ1,σ2 + ϕ
ψ
σ1,σ2+1

)
∥
∥
∥
∥

≤ δ3 max
σ1,σ2

∥
∥ϕ

ψ
σ1,σ2+1 – ϕψ

σ1,σ2

∥
∥ + δ2 max

σ1,σ2

∥
∥ϕ

ψ
σ1+1,σ2 – ϕψ

σ1,σ2

∥
∥,

where

δ3 =
∣
∣
∣
∣
5
2

– (χ2 + 2χ1 + 3χ0)
∣
∣
∣
∣,

δ2 =
∣
∣3 – (ρ2 + 2ρ1 + 3ρ0)

∣
∣,

∥
∥
∥
∥ϕ

ψ+1
2σ1+1,2σ2+1 –

1
4
(
ϕψ

σ1,σ2 + ϕ
ψ
σ1+1,σ2 + ϕ

ψ
σ1,σ2+1 + ϕ

ψ
σ1+1,σ2+1

)
∥
∥
∥
∥

≤ δ4 max
σ1,σ2

∥
∥ϕ

ψ
σ1,σ2+1 – ϕψ

σ1,σ2

∥
∥ + δ4 max

σ1,σ2

∥
∥ϕ

ψ
σ1+1,σ2 – ϕψ

σ1,σ2

∥
∥, (46)

where

δ4 =
∣
∣
∣
∣
5
2

– (χ2 + 2χ1 + 3χ0)
∣
∣
∣
∣.

By combining inequalities in (44)–(46), we get

∥
∥ϕψ+1 – ϕψ

∥
∥∞ ≤ δ

{
max
σ1,σ2

∥
∥ϕ

ψ
σ1+1,σ2 – ϕψ

σ1,σ2

∥
∥ + max

σ1,σ2

∥
∥ϕ

ψ
σ1,σ2+1 – ϕψ

σ1,σ2

∥
∥
}

,

where

δ = max{δ1, δ2, δ3, δ4}.

This implies that

∥
∥ϕψ+1 – ϕψ

∥
∥∞ ≤ δ

{
max
σ1,σ2

∥
∥ϕ0

σ1+1,σ2 – ϕ0
σ1,σ2

∥
∥ + max

σ1,σ2

∥
∥ϕ0

σ1,σ2+1 – ϕ0
σ1,σ2

∥
∥
}

.

This completes the proof. �

3.2 The deviation of first order GBDDRS
In this part of the article, we first introduce the inequalities to compute the deviation be-
tween two consecutive points at the (ψ + 1)th refinement level then we introduce the
inequalities to compute the deviation between the ψ th and (ψ + 1)th level of meshes pro-
duced by first order GBDDRS.

Lemma 9 Let E0 = {(σ1,σ2, E0
σ1,σ2 ) : σ1,σ2 ∈ Z} be an initial mesh and Eψ+1 = {( σ1

2ψ+1 , σ2
2ψ+1 ,

Eψ+1
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈ N} be a mesh produced by the first order GBDDRS at the (ψ + 1)th

refinement level. If J = 0 and we fix m = 3, then the deviations between two consecutive
points at the (ψ + 1)th refinement step are

⎧
⎨

⎩

maxσ1,σ2 ‖Eψ+1
σ1+1,σ2 – Eψ+1

σ1,σ2‖ ≤ (G)ψ+1 maxσ1,σ2 ‖E0
σ1+1,σ2 – E0

σ1,σ2‖,

maxσ1,σ2 ‖Eψ+1
σ1,σ2+1 – Eψ+1

σ1,σ2‖ ≤ (G)ψ+1 maxσ1,σ2 ‖E0
σ1,σ2+1 – E0

σ1,σ2‖,
(47)
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where

G = max
θ

{Gθ : θ = 1, 2, 3, 4}, (48)
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G1 = 22|∑2
l=0(

∑l
q=0(ρl–q – χl–q))|∑2

t=0 |∑t
u=0{(2u + 1)ρt–u – (2u + 2)χt–u}|,

G2 = 22|∑2
l=0(

∑l
q=0(ρl–q – χl–q))|∑2

t=0 |∑t
u=0{(2u + 1)χt–u – 2uρt–u}|,

G3 = 22|∑3
l=0(

∑l
q=0(χl–q – ρl–q–1))|∑2

t=0 |∑t
u=0{(2u + 1)ρt–u – (2u + 2)χt–u}|,

G4 = 22|∑3
l=0(

∑l
q=0(χl–q – ρl–q–1))|∑2

t=0 |∑t
u=0{(2u + 1)χt–u – 2uρt–u}|,

(49)

and

J =
3∑

t=0

{
(2t + 1)χ3–t – 2tρ3–t

}
. (50)

Lemma 10 Let Eψ = {( σ1
2ψ , σ2

2ψ , Eψ
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈ N} be a mesh at the ψ th refinement

step and Eψ+1 = {( σ1
2ψ+1 , σ2

2ψ+1 , Eψ+1
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈ N} be a mesh produced by the first

order GDDBRS at the (ψ + 1)th refinement level. If J1 = J2 = J3 = 0 and we fix m = 3, then
the deviation between two consecutive meshes at the ψ th and (ψ + 1)th refinement steps is

∥
∥Eψ+1 – Eψ

∥
∥∞ ≤ λ

{
max
σ1,σ2

∥
∥Eψ

σ1+1,σ2 – Eψ
σ1,σ2

∥
∥ + max

σ1,σ2

∥
∥Eψ

σ1,σ2+1 – Eψ
σ1,σ2

∥
∥
}

, (51)

where

λ = max
θ

{λθ : θ = 1, 2, 3, 4}, (52)
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ1 = 22| 1
2 – (ρ1 + 3ρ0 – χ1 – 3χ0)(ρ2 + 2ρ1 + 3ρ0 – χ2 – 2χ1 – 3χ0)|,

λ2 = 22| 5
23 – (ρ2 + 2ρ1 + 3ρ0 – χ2 – 2χ1 – 3χ0)(χ2 + 3χ1 + 6χ0 – ρ1 – 3ρ0)|,

λ3 = 22| 1
2 – (ρ1 + 3ρ0 – χ1 – 3χ0)(χ3 + 2χ2 + 3χ1 + 4χ0 – ρ2 – 2ρ1 – 3ρ0)|,

λ4 = 22| 5
23 – (χ2 + 3χ1 + 6χ0 – ρ1 – 3ρ0)(χ3 + 2χ2 + 3χ1 + 4χ0 – ρ2 – 2ρ1 – 3ρ0)|,

(53)

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

J1 = –1
22 + (ρ2 + 2ρ1 + 3ρ0 – χ2 – 2χ1 – 3χ0)2,

J2 = –1
22 + (ρ2 + 2ρ1 + 3ρ0 – χ2 – 2χ1 – 3χ0)

× (χ3 + 2χ2 + 3χ1 + 4χ0 – ρ2 – 2ρ1 – 3ρ0),

J3 = –1
22 + (χ3 + 2χ2 + 3χ1 + 4χ0 – ρ2 – 2ρ1 – 3ρ0)2.

(54)

3.3 The deviation of second order GBDDRS
Here, we first calculate the inequalities to compute the deviation between two consecutive
points at the (ψ + 1)th refinement level; then we introduce the inequalities to compute
the deviation between the ψ th and (ψ + 1)th level of meshes produced by second order
GBDDRS.

Lemma 11 Let H0 = {(σ1,σ2, H0
σ1,σ2 ) : σ1,σ2 ∈ Z} be an initial mesh and Hψ+1 = {( σ1

2ψ+1 ,
σ2

2ψ+1 , Hψ+1
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈ N} be a mesh produced by the second order GBDDRS at the
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(ψ + 1)th refinement level. If M = 0 and we fix m = 3, then the deviations between two
consecutive points at the (ψ + 1)th refinement step are

⎧
⎨

⎩

maxσ1,σ2 ‖Hψ+1
σ1+1,σ2 – Hψ+1

σ1,σ2‖ ≤ (L)ψ+1 maxσ1,σ2 ‖H0
σ1+1,σ2 – H0

σ1,σ2‖,

maxσ1,σ2 ‖Hψ+1
σ1,σ2+1 – Hψ+1

σ1,σ2‖ ≤ (L)ψ+1 maxσ1,σ2 ‖H0
σ1,σ2+1 – H0

σ1,σ2‖,
(55)

where

L = max
θ

{Lθ : θ = 1, 2, 3, 4}, (56)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1 = 24|∑2
l=0(

∑l
q=0{(2q + 1)ρl–q – (2q + 2)χl–q})|

× ∑1
t=0 |∑t

u=0(u + 1){(2u + 1)ρt–u – (2u + 3)χt–u}|,
L2 = 24|∑2

l=0(
∑l

q=0{(2q + 1)ρl–q – (2q + 2)χl–q})|
× ∑2

t=0 |∑t
u=0(2u + 1){(u + 1)χt–u – uρt–u}|,

L3 = 24|∑2
l=0(

∑l
q=0{(2q + 1)χl–q – 2qρl–q})|

× ∑1
t=0 |∑t

u=0(u + 1){(2u + 1)ρt–u – (2u + 3)χt–u}|,
L4 = 24|∑2

l=0(
∑l

q=0{(2q + 1)χl–q – 2qρl–q})|
× ∑2

t=0 |∑t
u=0(2u + 1){(u + 1)χt–u – uρt–u}|,

(57)

and

M =
3∑

σ=1

σ
{

(2σ + 1)χ3–σ – (2σ – 1)ρ3–σ

}
. (58)

Lemma 12 Let Hψ = {( σ1
2ψ , σ2

2ψ , Hψ
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈N} be a mesh at the ψ th refinement

step and Hψ+1 = {( σ1
2ψ+1 , σ2

2ψ+1 , Hψ+1
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈ N} be a mesh produced by the second

order GDDBRS at the (ψ + 1)th refinement level. If M1 = M2 = M3 = 0 and we fix m = 3,
then the deviation between two consecutive meshes at the ψ th and (ψ + 1)th refinement
steps is

∥
∥Hψ+1 – Hψ

∥
∥∞ ≤ η

{
max
σ1,σ2

∥
∥Hψ

σ1+1,σ2 – Hψ
σ1,σ2

∥
∥ + max

σ1,σ2

∥
∥Hψ

σ1,σ2+1 – Hψ
σ1,σ2

∥
∥
}

, (59)

where

η = max
θ

{ηθ : θ = 1, 2, 3, 4}, (60)
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

η1 = 24| 1
23 – (ρ2 + 4ρ1 + 9ρ0 – 2χ2 – 6χ1 – 12χ0)(ρ1 + 5ρ0 – 2χ1 – 8χ0)|,

η2 = 24| 3
25 – (χ1 + 5χ0 – 2ρ0)(ρ2 + 4ρ1 + 9ρ0 – 2χ2 – 6χ1 – 12χ0)|,

η3 = 24| 1
23 – (ρ1 + 5ρ0 – 2χ1 – 8χ0)(χ2 + 4χ1 + 9χ0 – 2ρ1 – 6ρ0)|,

η4 = 24| 3
25 – (χ1 + 5χ0 – 2ρ0)(χ2 + 4χ1 + 9χ0 – 2ρ1 – 6ρ0)|,

(61)
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and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

M1 = –1
24 + (ρ2 + 4ρ1 + 9ρ0 – 2χ2 – 6χ1 – 12χ0)2,

M2 = –1
24 + (ρ2 + 4ρ1 + 9ρ0 – 2χ2 – 6χ1 – 12χ0)

× (χ2 + 4χ1 + 9χ0 – 2ρ1 – 6ρ0),

M3 = –1
24 + (χ2 + 4χ1 + 9χ0 – 2ρ1 – 6ρ0)2.

(62)

3.4 Generalization of Lemmas 7–12
In this section, we generalize Lemmas 7–12 for an arbitrary m. Thus, we get the follow-
ing lemmas for the (m + 1)2-point tensor product binary scheme and its corresponding
GBDDRSs.

Lemma 13 (Generalization of Lemma 7 for an arbitrary m) Let ϕ0 = {(σ1,σ2,ϕ0
σ1,σ2 ) :

σ1,σ2 ∈ Z} be an initial mesh and ϕψ+1 = {( σ1
2ψ+1 , σ2

2ψ+1 ,ϕψ+1
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈ N} be a mesh

produced by the GTPBRS at the (ψ + 1)th refinement level. Then the deviations between
two consecutive points at the (ψ + 1)th refinement step are

⎧
⎨

⎩

maxσ1,σ2 ‖ϕψ+1
σ1+1,σ2 – ϕψ+1

σ1,σ2‖ ≤ (T)ψ+1 maxσ1,σ2 ‖ϕ0
σ1+1,σ2 – ϕ0

σ1,σ2‖,

maxσ1,σ2 ‖ϕψ+1
σ1,σ2+1 – ϕψ+1

σ1,σ2‖ ≤ (T)ψ+1 maxσ1,σ2 ‖ϕ0
σ1,σ2+1 – ϕ0

σ1,σ2‖,
(63)

where

T = max
θ

{Tθ : θ = 1, 2, 3, 4} (64)

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T1 = |∑m
l=0 ρl|∑m–1

t=0 |∑t
u=0(ρt–u – χt–u)|,

T2 = |∑m
l=0 ρl|∑m

t=0 |∑t
u=0(χt–u – ρt–u–1)|,

T3 = |∑m
l=0 χl|∑m–1

t=0 |∑t
u=0(ρt–u – χt–u)|,

T4 = |∑m
l=0 χl|∑m

t=0 |∑t
u=0(χt–u – ρt–u–1)|.

(65)

Lemma 14 (Generalization of Lemma 8 for an arbitrary m) Let ϕψ = {( σ1
2ψ , σ2

2ψ ,ϕψ
σ1,σ2 ) :

σ1,σ2 ∈ Z,ψ ∈ N} be a mesh at the ψ th refinement step and ϕψ+1 = {( σ1
2ψ+1 , σ2

2ψ+1 ,ϕψ+1
σ1,σ2 ) :

σ1,σ2 ∈ Z,ψ ∈ N} be a mesh produced by GTPBRS at the (ψ + 1)th refinement level. Then
the deviation between two consecutive meshes at the ψ th and (ψ + 1)th refinement steps is

∥
∥ϕψ+1 – ϕψ

∥
∥∞ ≤ δ

{
max
σ1,σ2

∥
∥ϕ

ψ
σ1+1,σ2 – ϕψ

σ1,σ2

∥
∥ + max

σ1,σ2

∥
∥ϕ

ψ
σ1,σ2+1 – ϕψ

σ1,σ2

∥
∥
}

, (66)

where

δ = max
θ

{δθ : θ = 1, 2, 3, 4} (67)
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and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

δ1 = |m –
∑m–1

σ=0 (σ + 1)ρm–1–σ |,
δ2 = |m –

∑m–1
σ=0 (σ + 1)ρm–1–σ |,

δ3 = | 2m–1
2 –

∑m–1
σ=0 (σ + 1)χm–1–σ |,

δ4 = | 2m–1
2 –

∑m–1
σ=0 (σ + 1)χm–1–σ |.

(68)

Lemma 15 (Generalization of Lemma 9 for an arbitrary m) Let E0 = {(σ1,σ2, E0
σ1,σ2 ) :

σ1,σ2 ∈ Z} be an initial mesh and Eψ+1 = {( σ1
2ψ+1 , σ2

2ψ+1 , Eψ+1
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈ N} be a mesh

produced by the first order GBDDRS at the (ψ + 1)th refinement level. If J = 0, then the
deviations between two consecutive points at the (ψ + 1)th refinement step are

⎧
⎨

⎩

maxσ1,σ2 ‖Eψ+1
σ1+1,σ2 – Eψ+1

σ1,σ2‖ ≤ (G)ψ+1 maxσ1,σ2 ‖E0
σ1+1,σ2 – E0

σ1,σ2‖,

maxσ1,σ2 ‖Eψ+1
σ1,σ2+1 – Eψ+1

σ1,σ2‖ ≤ (G)ψ+1 maxσ1,σ2 ‖E0
σ1,σ2+1 – E0

σ1,σ2‖,
(69)

where

G = max
θ

{Gθ : θ = 1, 2, 3, 4}, (70)
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G1 = 22|∑m–1
l=0 (

∑l
q=0(ρl–q – χl–q))|∑m–1

t=0 |∑t
u=0{(2u + 1)ρt–u – (2u + 2)χt–u}|,

G2 = 22|∑m–1
l=0 (

∑l
q=0(ρl–q – χl–q))|∑m–1

t=0 |∑t
u=0{(2u + 1)χt–u – 2uρt–u}|,

G3 = 22|∑m
l=0(

∑l
q=0(χl–q – ρl–q–1))|∑m–1

t=0 |∑t
u=0{(2u + 1)ρt–u – (2u + 2)χt–u}|,

G4 = 22|∑m
l=0(

∑l
q=0(χl–q – ρl–q–1))|∑m–1

t=0 |∑t
u=0{(2u + 1)χt–u – 2uρt–u}|,

(71)

and

J =
m∑

t=0

{
(2t + 1)χm–t – 2tρm–t

}
. (72)

Lemma 16 (Generalization of Lemma 10 for an arbitrary m) Let Eψ = {( σ1
2ψ , σ2

2ψ , Eψ
σ1,σ2 ) :

σ1,σ2 ∈ Z,ψ ∈ N} be a mesh at the ψ th refinement step and Eψ+1 = {( σ1
2ψ+1 , σ2

2ψ+1 , Eψ+1
σ1,σ2 ) :

σ1,σ2 ∈ Z,ψ ∈ N} be a mesh produced by the first order GDDBRS at the (ψ + 1)th refine-
ment level. If J1 = J2 = J3 = 0, then the deviation between two consecutive meshes at the ψ th
and (ψ + 1)th refinement steps is

∥
∥Eψ+1 – Eψ

∥
∥∞ ≤ λ

{
max
σ1,σ2

∥
∥Eψ

σ1+1,σ2 – Eψ
σ1,σ2

∥
∥ + max

σ1,σ2

∥
∥Eψ

σ1,σ2+1 – Eψ
σ1,σ2

∥
∥
}

, (73)

where

λ = max
θ

{λθ : θ = 1, 2, 3, 4}, (74)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 = |(m – 1) – (
∑m–2

σ=0
(σ+1)(σ+2)

2 (ρm–2–σ – χm–2–σ ))

× (
∑m–1

σ=0 (σ + 1)(ρm–1–σ – χm–1–σ ))|,
λ2 = | 2m–1

2 – (
∑m–1

σ=0
(σ+1)

2 {(σ + 2)χm–1–σ – σρm–1–σ })
× (

∑m–1
σ=0 (σ + 1)(ρm–1–σ – χm–1–σ ))|,

λ3 = |(m – 1) – (
∑m–2

σ=0
(σ+1)(σ+2)

2 (ρm–2–σ – χm–2–σ ))

× (
∑m

σ=0{(σ + 1)χm–σ – σρm–σ })|,
λ4 = | 2m–1

2 – (
∑m–1

σ=0
(σ+1)

2 {(σ + 2)χm–1–σ – σρm–1–σ })
× (

∑m
σ=0{(σ + 1)χm–σ – σρm–σ })|,

(75)

and

⎧
⎪⎪⎨

⎪⎪⎩

J1 = (
∑m

t=0 t{ρm–t – χm–t})2 – 1
22 ,

J2 = (
∑m

t=0 t{ρm–t – χm–t})(∑m
t=0{(t + 1)χm–t – tρm–t}) – 1

22 ,

J3 = (
∑m

t=0{(t + 1)χm–t – tρm–t})2 – 1
22 .

(76)

Lemma 17 (Generalization of Lemma 11 for an arbitrary m) Let H0 = {(σ1,σ2, H0
σ1,σ2 ) :

σ1,σ2 ∈ Z} be an initial mesh and Hψ+1 = {( σ1
2ψ+1 , σ2

2ψ+1 , Hψ+1
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈ N} be a mesh

produced by the second order GBDDRS at the (ψ + 1)th refinement level. If M = 0, then the
deviations between two consecutive points at the (ψ + 1)th refinement step are

⎧
⎨

⎩

maxσ1,σ2 ‖Hψ+1
σ1+1,σ2 – Hψ+1

σ1,σ2‖ ≤ (L)ψ+1 maxσ1,σ2 ‖H0
σ1+1,σ2 – H0

σ1,σ2‖,

maxσ1,σ2 ‖Hψ+1
σ1,σ2+1 – Hψ+1

σ1,σ2‖ ≤ (L)ψ+1 maxσ1,σ2 ‖H0
σ1,σ2+1 – H0

σ1,σ2‖,
(77)

where

L = max
θ

{Lθ : θ = 1, 2, 3, 4}, (78)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1 = 24|∑m–1
l=0 (

∑l
q=0{(2q + 1)ρl–q – (2q + 2)χl–q})|

× ∑m–2
t=0 |∑t

u=0(u + 1){(2u + 1)ρt–u – (2u + 3)χt–u}|,
L2 = 24|∑m–1

l=0 (
∑l

q=0{(2q + 1)ρl–q – (2q + 2)χl–q})|
× ∑m–1

t=0 |∑t
u=0(2u + 1){(u + 1)χt–u – uρt–u}|,

L3 = 24|∑m–1
l=0 (

∑l
q=0{(2q + 1)χl–q – 2qρl–q})|

× ∑m–2
t=0 |∑t

u=0(u + 1){(2u + 1)ρt–u – (2u + 3)χt–u}|,
L4 = 24|∑m–1

l=0 (
∑l

q=0{(2q + 1)χl–q – 2qρl–q})|
× ∑m–1

t=0 |∑t
u=0(2u + 1){(u + 1)χt–u – uρt–u}|,

(79)

and

M =
m∑

σ=1

σ
{

(2σ + 1)χm–σ – (2σ – 1)ρm–σ

}
. (80)

Lemma 18 (Generalization of Lemma 12 for an arbitrary m) Let Hψ = {( σ1
2ψ , σ2

2ψ , Hψ
σ1,σ2 ) :

σ1,σ2 ∈ Z,ψ ∈ N} be a mesh at the ψ th refinement step and Hψ+1 = {( σ1
2ψ+1 , σ2

2ψ+1 , Hψ+1
σ1,σ2 ) :
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σ1,σ2 ∈ Z,ψ ∈ N} be a mesh produced by the second order GDDBRS at the (ψ + 1)th re-
finement level. If M1 = M2 = M3 = 0, then the deviation between two consecutive meshes at
the ψ th and (ψ + 1)th refinement steps is

∥
∥Hψ+1 – Hψ

∥
∥∞ ≤ η

{
max
σ1,σ2

∥
∥Hψ

σ1+1,σ2 – Hψ
σ1,σ2

∥
∥ + max

σ1,σ2

∥
∥Hψ

σ1,σ2+1 – Hψ
σ1,σ2

∥
∥
}

, (81)

where

η = max
θ

{ηθ : θ = 1, 2, 3, 4}, (82)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1 = |(m – 1) – (
∑m–1

σ=0 (σ + 1){(σ + 1)ρm–1–σ – (σ + 2)χm–1–σ })
× (

∑m–2
σ=0 {(4σ + 1)ρm–2–σ – (6σ + 2)χm–2–σ })|,

η2 = | 2m–3
2 – (

∑m–1
σ=0 (σ + 1){(σ + 1)ρm–1–σ – (σ + 2)χm–1–σ })

× (
∑m–2

σ=0 {(4σ + 1)χm–2–σ – 6σρm–2–σ })|,
η3 = |(m – 1) – (

∑m–1
σ=0 (σ + 1){(σ + 1)χm–1–σ – σρm–1–σ })

× (
∑m–2

σ=0 {(4σ + 1)ρm–2–σ – (6σ + 2)χm–2–σ })|,
η4 = | 2m–3

2 – (
∑m–1

σ=0 (σ + 1){(σ + 1)χm–1–σ – σρm–1–σ })
× (

∑m–2
σ=0 {(4σ + 1)χm–2–σ – 6σρm–2–σ })|,

(83)

and
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

M1 = (
∑m

t=0{(t2ρm–t – t(t + 1)χm–t})2 – 1
24 ,

M2 = (
∑m

t=0{(t2ρm–t – t(t + 1)χm–t})
× (

∑m
t=0{t2χm–t – t(t – 1)ρm–t}) – 1

24 ,

M3 = (
∑m

t=0{t2χm–t – t(t – 1)ρm–t})2 – 1
24 .

(84)

4 The smoothness of the models produced by the GTPBRS
Let {�κ

[0,n]2 ,κ = 0, 1, 2} be the set of Cκ -continuous functions on a closed and bounded
interval [0, n] × [0, n]. A bivariate function is called Cκ -continuous if its κth order par-
tial derivatives are continuous. The common class of continuous function is C = C0. The
graphs of C2-continuous functions are smooth, while the graphs of C0-continuous func-
tions are comparatively rough. In Fig. 2, red bullets and red lines represents initial con-
trol points and initial meshes. Figure 2(a) and Fig. 2(b) show the C0-continuous and C2-
continuous meshes produced by the bivariate schemes after three refinement levels, re-
spectively. In this section, we give some basic results for Cκ -smoothness of the GTPBRS,
where κ = 0, 1, 2.

Theorem 1 Let ϕ0 = {(σ1,σ2,ϕ0
σ1,σ2 ) : σ1,σ2 ∈ Z} be an initial mesh and ϕψ+1 = {( σ1

2ψ+1 ,
σ2

2ψ+1 ,ϕψ+1
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈ N} be a mesh produced by the GTPBRS after (ψ + 1) refine-

ment steps. If T < 1 then limψ→∞ ϕψ = ϕ ∈ �[0,n]2 = �0
[0,n]2 .

Proof We use (66) to get the following result:

∥
∥ϕψ+1 – ϕψ

∥
∥∞ ≤ δ

{
max
σ1,σ2

∥
∥ϕ

ψ
σ1+1,σ2 – ϕψ

σ1,σ2

∥
∥ + max

σ1,σ2

∣
∣ϕ

ψ
σ1,σ2+1 – ϕψ

σ1,σ2

∣
∣
}

,

where δ is defined in (67).
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Figure 2 Surfaces generated by the tensor product schemes. (c)–(d) are the mirror images of the parts inside
the blue rectangles of (a)–(b), respectively

Now by using (63), we obtain

∥
∥ϕψ+1 – ϕψ

∥
∥∞ ≤ δ(T)ψ

{
max
σ1,σ2

∥
∥ϕ0

σ1+1,σ2 – ϕ0
σ1,σ2

∥
∥ + max

σ1,σ2

∥
∥ϕ0

σ1,σ2+1 – ϕ0
σ1,σ2

∥
∥
}

,

where T is defined in (64).
Let T < 1. This implies that {ϕψ }∞ψ=0 is a Cauchy sequence on �[0,n]2 . Thus, it is conver-

gent. Therefore,

lim
ψ→∞ϕψ = ϕ ∈ �[0,n]2 .

This completes the proof. �

Lemma 19 If E0 = {(σ1,σ2, E0
σ1,σ2 ) : σ1,σ2 ∈ Z} is an initial mesh and Eψ+1 = {( σ1

2ψ+1 ,
σ2

2ψ+1 , Eψ+1
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈ N} is a mesh produced by the first order GBDDRS at the

(ψ + 1)th refinement step. If J , J1, J2, J3 = 0 and G < 1 then limψ→∞ Eψ = E ∈ �[0,n]2 = �0
[0,n]2 .

Proof By (73), we have

∥
∥Eψ+1 – Eψ

∥
∥∞ ≤ λ

{
max
σ1,σ2

∥
∥Eψ

σ1+1,σ2 – Eψ
σ1,σ2

∥
∥ + max

σ1,σ2

∥
∥Eψ

σ1,σ2+1 – Eψ
σ1,σ2

∥
∥
}

,

where λ is defined in (74).
Now by using (69) in the above inequality, we get

∥
∥Eψ+1 – Eψ

∥
∥∞ ≤ λ(G)ψ

{
max
σ1,σ2

∥
∥E0

σ1+1,σ2 – E0
σ1,σ2

∥
∥ + max

σ1,σ2

∥
∥E0

σ1,σ2+1 – E0
σ1,σ2

∥
∥
}

,

where G is defined in (70).
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If G < 1, then {Eψ }∞ψ=0 is a Cauchy sequence on �[0,n]2 and hence

lim
ψ→∞ Eψ = E ∈ �[0,n]2 .

This completes the proof. �

Theorem 2 Let ϕ ∈ �[0,n]2 be the limit function of GTPBRS defined in (1). If J , J1, J2, J3 = 0,
and G < 1, then we have ϕ ∈ �1

[0,n]2 .

Proof By Lemma 19, we have limψ→∞ Eψ = E ∈ �[0,n]2 . By Lemma 5, we have E = ϕ′, where
ϕ is the limit function of the GTPBRS defined in (1). This implies that ϕ ∈ �1

[0,n]2 . �

Lemma 20 If H0 = {(σ1,σ2, H0
σ1,σ2 ) : σ1,σ2 ∈ Z} is an initial mesh and Hψ+1 = {( σ1

2ψ+1 ,
σ2

2ψ+1 , Hψ+1
σ1,σ2 ) : σ1,σ2 ∈ Z,ψ ∈ N} is a mesh produced by the second order GBDDRS at the

(ψ + 1)th refinement step. If M = M1 = M2 = M3 = 0 and L < 1 then limψ→∞ Hψ = H ∈
�[0,n]2 = �0

[0,n]2 .

Proof By (81), we have

∥
∥Hψ+1 – Hψ

∥
∥∞ ≤ η

{
max
σ1,σ2

∥
∥Hψ

σ1+1,σ2 – Hψ
σ1,σ2

∥
∥ + max

σ1,σ2

∥
∥Hψ

σ1,σ2+1 – Hψ
σ1,σ2

∥
∥
}

,

where η is defined in (82).
Now by using (77) in the above expression, we obtain

∥
∥Hψ+1 – Hψ

∥
∥∞ ≤ η(L)ψ

{
max
σ1,σ2

∥
∥H0

σ1+1,σ2 – H0
σ1,σ2

∥
∥ + max

σ1,σ2

∥
∥H0

σ1,σ2+1 – H0
σ1,σ2

∥
∥
}

,

where L is defined in (78).
If L < 1, then it follows that {Hψ }∞ψ=0 gives a Cauchy sequence on �[0,n]2 and thus

lim
ψ→∞ Hψ = H ∈ �[0,n]2 .

This completes the proof. �

Theorem 3 Let ϕ ∈ �[0,n]2 be the limit function of the GTPBRS defined in (1). If M, M1, M2,
M3 = 0 and L < 1, then we have ϕ ∈ �2

[0,n]2 .

Proof By Lemma 20, we have limψ→∞ Hψ = H ∈ �[0,n]2 . Lemma 6 shows that H = ϕ′′,
where ϕ is the limit function of the GTPBRS defined in (1). This implies that ϕ ∈ �2

[0,n]2 . �

5 Applications of the proposed method
In this section, we analyze the tensor product schemes of the binary refinement schemes
proposed by [21–24] by proposed method. We use Theorem 1 to analyze the C0-
continuity, Theorem 2 to analyze the C1-continuity and Theorem 3 to analyze the C2-
continuity of the tensor product binary refinement schemes.
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Corollary 1 Let ϕψ
σ1,σ2 : σ1,σ2 ∈ Z be the control points at the ψ th refinement step and ϕψ+1

σ1,σ2 :
σ1,σ2 ∈ Z be the refined data/points at the (ψ + 1)th refinement step which are refined by
using the following interpolatory tensor product scheme of the scheme [21]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ
ψ+1
2σ1,2σ2 =

∑3
r=0

∑3
s=0 ρrρsϕ

ψ
σ1+r,σ2+s,

ϕ
ψ+1
2σ1,2σ2+1 =

∑3
r=0

∑3
s=0 ρrχsϕ

ψ
σ1+r,σ2+s,

ϕ
ψ+1
2σ1+1,2σ2 =

∑3
r=0

∑3
s=0 χrρsϕ

ψ
σ1+r,σ2+s,

ϕ
ψ+1
2σ1+1,2σ2+1 =

∑3
r=0

∑3
s=0 χrχsϕ

ψ
σ1+r,σ2+s,

(85)

where
⎧
⎨

⎩

ρ0 = 0, ρ1 = 1, ρ2 = 0, ρ3 = 0,

χ0 = –ω, χ1 = 1
2 + ω, χ2 = 1

2 + ω, χ3 = –ω.
(86)

Then the surfaces produced by the scheme (85) are C1-continuous for parametric interval
ω ∈ (0, 1

8 ). But they are not C2-continuous.

Proof It is easy to see that

3∑

r=0

3∑

s=0

ρrρs =
3∑

r=0

3∑

s=0

ρrχs =
3∑

r=0

3∑

s=0

χrρs =
3∑

r=0

3∑

s=0

χrχs = 1.

Also from (65) and (86), we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T1 = |∑3
l=0 ρl|∑2

t=0 |∑t
u=0(ρt–u – χt–u)| < 1,

T2 = |∑3
l=0 ρl|∑3

t=0 |∑t
u=0(χt–u – ρt–u–1)| < 1,

T3 = |∑3
l=0 χl|∑2

t=0 |∑t
u=0(ρt–u – χt–u)| < 1,

T4 = |∑3
l=0 χl|∑3

t=0 |∑t
u=0(χt–u – ρt–u–1)| < 1,

for the common interval –1
4 < ω < 1

4 . Hence

T = max
θ

{Tθ : θ = 1, 2, 3, 4} < 1,

for –1
4 < ω < 1

4 . So by Theorem 1, the tensor product scheme (85) produces C0-continuous
surfaces/models when the values of ω lies between –1

4 to 1
4 . Now from (72), (76) and (86),

we have
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

J =
∑3

t=0{(2t + 1)χ3–t – 2tρ3–t} = 0

J1 = (
∑3

t=0 t{ρ3–t – χ3–t})2 – 1
22 = 0,

J2 = (
∑3

t=0 t{ρ3–t – χ3–t})(∑3
t=0{(t + 1)χ3–t – tρ3–t}) – 1

22 = 0,

J3 = (
∑3

t=0{(t + 1)χ3–t – tρ3–t})2 – 1
22 = 0.

Also from (71) and (86), we have
⎧
⎨

⎩

G1 = 22|∑m–1
l=0 (

∑l
q=0(ρl–q – χl–q))|∑m–1

t=0 |∑t
u=0{(2u + 1)ρt–u – (2u + 2)χt–u}| < 1,

G2 = 22|∑m–1
l=0 (

∑l
q=0(ρl–q – χl–q))|∑m–1

t=0 |∑t
u=0{(2u + 1)χt–u – 2uρt–u}| < 1,
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for –1
8 < ω < 1

8 and

⎧
⎨

⎩

G3 = 22|∑m
l=0(

∑l
q=0(χl–q – ρl–q–1))|∑m–1

t=0 |∑t
u=0{(2u + 1)ρt–u – (2u + 2)χt–u}| < 1,

G4 = 22|∑m
l=0(

∑l
q=0(χl–q – ρl–q–1))|∑m–1

t=0 |∑t
u=0{(2u + 1)χt–u – 2uρt–u}| < 1,

for 0 < ω < 1
4 . Hence G = maxθ {Gθ : θ = 1, 2, 3, 4} < 1, for 0 < ω < 1

8 . Then, by Theorem 2, the
tensor product scheme (85) produces C1-continuous surfaces/models when the values of
ω lie between 0 to 1

8 . By (80), (84) and (86), M = M1 = M2 = M3 
= 0. Hence, by Theorem 3,
the models produced by the tensor product scheme (85) are not C2-continuous. �

Corollary 2 Let ϕψ
σ1,σ2 : σ1,σ2 ∈ Z be the control points at the ψ th refinement step and ϕψ+1

σ1,σ2 :
σ1,σ2 ∈ Z be the refined data/points at the (ψ + 1)th refinement step which are refined by
using the following 9-point approximating tensor product scheme of the scheme [24]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ
ψ+1
2σ1,2σ2 =

∑2
r=0

∑2
s=0 ρrρsϕ

ψ
σ1+r,σ2+s,

ϕ
ψ+1
2σ1,2σ2+1 =

∑2
r=0

∑2
s=0 ρrχsϕ

ψ
σ1+r,σ2+s,

ϕ
ψ+1
2σ1+1,2σ2 =

∑2
r=0

∑2
s=0 χrρsϕ

ψ
σ1+r,σ2+s,

ϕ
ψ+1
2σ1+1,2σ2+1 =

∑2
r=0

∑2
s=0 χrχsϕ

ψ
σ1+r,σ2+s,

(87)

where

⎧
⎨

⎩

ρ0 = 9
32 , ρ1 = 22

32 , ρ2 = 1
32 ,

χ0 = 1
32 , χ1 = 22

32 , χ2 = 9
32 .

Then the models produced by the bivariate scheme (87) are C2-continuous.

Corollary 3 Let ϕψ
σ1,σ2 : σ1,σ2 ∈ Z be the control points at the ψ th refinement step and ϕψ+1

σ1,σ2 :
σ1,σ2 ∈ Z be the refined data/points at the (ψ + 1)th refinement step which are refined by
using the following 16-point approximating tensor product scheme of the scheme [23]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ
ψ+1
2σ1,2σ2 =

∑3
r=0

∑3
s=0 ρrρsϕ

ψ
σ1+r,σ2+s,

ϕ
ψ+1
2σ1,2σ2+1 =

∑3
r=0

∑3
s=0 ρrχsϕ

ψ
σ1+r,σ2+s,

ϕ
ψ+1
2σ1+1,2σ2 =

∑3
r=0

∑3
s=0 χrρsϕ

ψ
σ1+r,σ2+s,

ϕ
ψ+1
2σ1+1,2σ2+1 =

∑3
r=0

∑3
s=0 χrχsϕ

ψ
σ1+r,σ2+s,

(88)

where

⎧
⎨

⎩

ρ0 = 1
16 + 3μ, ρ1 = 5

8 – 5μ, ρ2 = 5
16 + μ, ρ3 = μ,

χ0 = μ, χ1 = 5
16 + μ, χ2 = 5

16 + μ, χ3 = 1
16 + 3μ.

Then the shapes produced by the tensor product refinement scheme (88) are C2-continuous
if we choose μ from an open interval ( –1

32 , 3
32 ).
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Corollary 4 Let ϕψ
σ1,σ2 : σ1,σ2 ∈ Z be the control points at the ψ th refinement step and ϕψ+1

σ1,σ2 :
σ1,σ2 ∈ Z be the refined data/points at the (ψ + 1)th refinement step which are refined by
using the following 36-point approximating tensor product scheme of the scheme [22]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ
ψ+1
2σ1,2σ2 =

∑5
r=0

∑5
s=0 ρrρsϕ

ψ
σ1+r,σ2+s,

ϕ
ψ+1
2σ1,2σ2+1 =

∑5
r=0

∑5
s=0 ρrχsϕ

ψ
σ1+r,σ2+s,

ϕ
ψ+1
2σ1+1,2σ2 =

∑5
r=0

∑5
s=0 χrρsϕ

ψ
σ1+r,σ2+s,

ϕ
ψ+1
2σ1+1,2σ2+1 =

∑5
r=0

∑5
s=0 χrχsϕ

ψ
σ1+r,σ2+s,

(89)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ0 = 81
40,960 , ρ1 = 15,349

122,880 , ρ2 = 31,927
61,440 ,

ρ3 = 6719
20,480 , ρ4 = 3119

122,880 , ρ5 = 1
122,880 ,

χ0 = 1
122,880 , χ1 = 3119

122,880 , χ2 = 6719
20,480 ,

χ3 = 31,927
61,440 , χ4 = 15,349

122,880 , χ5 = 81
40,960 .

Then the scheme that is defined in (89) produces the C2-continuous limiting shapes.

6 Summary and conclusion
In this paper, we have presented some simple conditions to analyze the smoothness of the
tensor product version of the (m + 1)-point binary refinement scheme. The summary of
the conditions is given by:

• The GTPBRS defined in (1) is C0-continuous if T = maxθ {Tθ : θ = 1, 2, 3, 4} < 1, where
Tθ : θ = 1, 2, 3, 4 are taken from (65).

• The GTPBRS defined in (1) is C1-continuous if G = maxθ {Gθ : θ = 1, 2, 3, 4} < 1, where
Gθ : θ = 1, 2, 3, 4 are taken from (71) and J , J1, J2 and J3 defined in (72) and (76) are zero.

• The GTPBRS defined in (1) is C2-continuous if L = maxθ {Lθ : θ = 1, 2, 3, 4} < 1, where
Lθ : θ = 1, 2, 3, 4 are taken from (79) and M, M1, M2 and M3 defined in (80) and (84)
are zero.

Our method of continuity analysis is basically a generalization of the dyadic parametriza-
tion method. This method was firstly used by Qu [10–12]. However, he does not provide
any general formula. He had just used this method for the analysis of a few particular re-
finement schemes. The analysis of the bivariate schemes by our method is quite different
from the Laurent polynomial method. Because, if the complexity of a refinement scheme is
large, then the factorizations of its Laurent polynomial and norms of its mask is difficult to
calculate. And in surface case, the computational cost of the Laurent polynomial method
is greatly increased. On the other hand, our method provides some simple inequalities
which requires mask of that particular scheme.

Our method is superior over other methods because:
• The implementation of our method is very simple and easy even when complexity of

the scheme is large.
• Our method is very efficient.
• The formulas involved in our method are of explicit type.
• Our method just requires the mask of the refinement schemes as input.
• Our formulas are free from polynomial algebraic operations.
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