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Abstract
In this work we investigate the following fractional p-Laplacian differential equation
with Sturm–Liouville boundary value conditions:

⎧
⎪⎨

⎪⎩

tDα
T (

1
(h(t))p–2

φp(h(t)C0D
α
t u(t))) + a(t)φp(u(t)) = λf (t,u(t)), a.e. t ∈ [0, T ],

α1φp(u(0)) – α2tDα–1
T (φp(C0D

α
t u(0))) = 0,

β1φp(u(T )) + β2tDα–1
T (φp(C0D

α
t u(T ))) = 0,

where C
0D

α
t , tD

α
T are the left Caputo and right Riemann–Liouville fractional derivatives

of order α ∈ ( 12 , 1], respectively. By using variational methods and critical point theory,
some new results on the multiplicity of solutions are obtained.
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1 Introduction
Fractional differential equations have been extensively applied in mathematical model-
ing. Many scholars have developed a strong interest in this kind of problem and achieved
some excellent results [1–8]. Especially, in the last several years, the investigations on the
equations including both left and right fractional differential operators have got increas-
ing attention. Left and right fractional differential operators are widely used in the phys-
ical phenomena of anomalous diffusion, such as fractional convection diffusion equation
[9, 10]. In [11], Ervin and Roop first proposed a class of steady-state fractional convection-
diffusion equations with variational structure

⎧
⎨

⎩

–aD(p0D–β
t + qtD–β

T )Du + b(t)Du + c(t)u = f ,

u(0) = u(T) = 0,

where 0 ≤ β < 1, D is the classical first derivative, 0D–β
t , tD–β

T are the left and right
Riemann–Liouville fractional derivatives. The authors constructed a suitable fractional
derivative space. The main research method is the Lax–Milgram theorem.
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Jiao and Zhou [12] considered the Dirichlet problems

⎧
⎨

⎩

d
dt ( 1

2 0D–β
t (u′(t)) + 1

2 tD–β

T (u′(t))) + ∇F(t, u(t)) = 0, a.e. t ∈ [0, T], 0 ≤ β < 1,

u(0) = u(T) = 0.

The authors gave the variational structure of the problem. Under the Ambrosetti–
Rabinowitz condition, the existence results were obtained by employing the mountain
pass theorem and the minimization principle. The following year, the authors [13] further
studied the following problems:

⎧
⎨

⎩

tDα
T (0Dα

t u(t)) = ∇F(t, u(t)), a.e. t ∈ [0, T], 1
2 < α ≤ 1,

u(0) = u(T) = 0.

Under the Ambrosetti–Rabinowitz condition, the existence of weak solution was obtained
by using the mountain pass theorem. In addition, the authors also discussed the regularity
of weak solution.

Bonanno et al. [14] and Rodríguez-López and Tersian [15] considered the Dirichlet
problems

⎧
⎪⎪⎨

⎪⎪⎩

tDα
T (C

0 Dα
t u(t)) + a(t)u(t) = λf (t, u(t)), t �= tj, a.e. t ∈ [0, T],

�(tDα–1
T (C

0 Dα
t u))(tj) = μIj(u(tj)), j = 1, 2, . . . , n,

u(0) = u(T) = 0,

where α ∈ ( 1
2 , 1], λ,μ ∈ (0, +∞), f ∈ C([0, T] × R,R), Ij ∈ C(R,R), j = 1, 2, . . . , n. a ∈

C([0, T]), and there exist a1, a2 such that 0 < a1 ≤ a(t) ≤ a2. In addition,

�
(

tDα–1
T

(C
0 Dα

t u
))

(tj) = tDα–1
T

(C
0 Dα

t u
)(

t+
j
)

– tDα–1
T

(C
0 Dα

t u
)(

t–
j
)
,

tDα–1
T

(C
0 Dα

t u
)(

t+
j
)

= lim
t→t+

j

(
tDα–1

T
(C

0 Dα
t u

)
(t)

)
,

tDα–1
T

(C
0 Dα

t u
)(

t–
j
)

= lim
t→t–

j

(
tDα–1

T
(C

0 Dα
t u

)
(t)

)
.

By employing variational methods and three critical points theorem, the existence results
of solution were obtained.

Tian and Nieto [16] studied the Sturm–Liouville boundary value problems

⎧
⎪⎪⎨

⎪⎪⎩

– d
dt ( 1

2 0D–β
t (u′(t)) + 1

2 tD–β

T (u′(t))) = λf (u(t)), a.e. t ∈ [0, T],

au(0) – b( 1
2 0D–β

t u′(0) + 1
2 tD–β

T u′(0)) = 0,

cu(T) + d( 1
2 0D–β

t u′(T) + 1
2 tD–β

T u′(T)) = 0,

where 0 ≤ β < 1, a, c > 0, b, d ≥ 0, λ > 0. The variational structure of the problem was estab-
lished and the existence result of the unbounded sequence of the solution was obtained by
employing the critical point theory. Subsequently, Nyamoradi Nemat and Tersian Stepan
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[17] further considered the Sturm–Liouville problems with p-Laplacian operators

⎧
⎪⎪⎨

⎪⎪⎩

tDα
T ( 1

(h(t))p–2 φp(h(t)C
0 Dα

t u(t))) + a(t)φp(u(t)) = λf (t, u(t)), a.e. t ∈ [0, T],

α1φp(u(0)) – α2tDα–1
T (φp(C

0 Dα
t u(0))) = 0,

β1φp(u(T)) + β2tDα–1
T (φp(C

0 Dα
t u(T))) = 0,

(1.1)

where α ∈ ( 1
2 , 1], C

0 Dα
t is the left Caputo fractional derivative, tDα

T is the right Riemann–
Liouville fractional derivative. α1,α2,β1,β2 > 0, h(t) ∈ L∞([0, T],R) with h0 =
ess inf[0,T] h(t) > 0, a ∈ C([0, T],R) with a0 = ess inf[0,T] a(t) > 0, there exist a1, a2 such that
0 < a1 ≤ a(t) ≤ a2, λ > 0, f ∈ C([0, T] ×R,R), φp(x) = |x|p–2x (x �= 0), φp(0) = 0, p > 1. To
illustrate the main results of [17], we first introduce the following hypothesis about f :

(F1) There exists μ > p such that

0 < μF(t, τ ) ≤ τ f (t, τ ), ∀τ ∈R, t ∈ [0, T],

where F(t, τ ) =
∫ τ

0 f (t, s) ds;
(F2) cinf := inf|τ |=1 F(t, τ ) > 0;
(F3) There exist cv, v > p – 1 such that

∣
∣f (t, u)

∣
∣ ≤ cv|u|v, ∀(t, u) ∈ [0, T] ×R;

(F4) F(t, u) = o(|u|p) as |u| → 0 uniformly with respect to ∀t ∈ [0, T].

Theorem 1.0 (see [17]) Assume that (F1)–(F4) hold. Then (1.1) with λ = 1 has at least a
solution.

Based on the above work, this article further studies problem (1.1) with the concave-
convex nonlinearity. In order to compare the results of this paper with Theorem 1.0, the
main assumptions and conclusions of this paper are given below. In this paper, we study
the case that the nonlinearity f ∈ C([0, T] ×R,R) involves a combination of p-suplinear
and p-sublinear terms. That is,

f (t, u) = f1(t, u) + f2(t, u), (1.2)

where f1(t, u) is p-suplinear as |u| → ∞ and f2(t, u) is p-sublinear growth at infinity. Here
we give some reasonable assumptions on f1 and f2 as follows:

(H1) f1(t, x) = o(|x|p–1) as (|x| → 0) uniformly with respect to ∀t ∈ [0, T];
(H2) There exist d1 > 0, d∞ > 0, θ > p such that

xf1(t, x) – θF1(t, x) ≥ –d1|x|p, ∀t ∈ [0, T], |x| ≥ d∞,

where F1(t, x) =
∫ x

0 f1(t, s) ds;
(H3) lim|x|→∞ F1(t,x)

|x|θ = ∞ uniformly with respect to ∀t ∈ [0, T];
(H4) There exist 1 < r < p, b ∈ C([0, T],R+), R+ = (0,∞) such that

F2(t, x) ≥ b(t)|x|r, ∀(t, x) ∈ [0, T] ×R,

where F2(t, x) =
∫ x

0 f2(t, s) ds;
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(H5) There exist b1 ∈ L1([0, T],R+) such that

∣
∣f2(t, x)

∣
∣ ≤ b1(t)|x|r–1, ∀(t, x) ∈ [0, T] ×R.

Theorem 1.1 Assume that (H1)–(H5) hold. Then problem (1.1) with λ = 1 has at least two
nontrivial weak solutions.

Remark 1.1 Clearly, conditions (H2) and (H3) are weaker than condition (F1) of Theo-
rem 1.0. In addition, the nonlinear function f studied in this paper is more general, it con-
tains both p-suplinear and p-sublinear terms. Consequently, our conclusion generalizes
Theorem 1.0 in [17].

Moreover, we also consider that the nonlinear function f satisfies p-sublinear growth.
The specific assumptions are as follows:

(H6) There exist L > 0, 0 < β ≤ p such that

F(t, x) ≤ L
(
1 + |x|β)

, ∀(t, x) ∈ [0, T] ×R, (1.3)

where F(t, x) =
∫ x

0 f (t, s) ds.
(H7) There exist 1 < r1 < p, b ∈ L1([0, T],R+) such that

∣
∣f (t, x)

∣
∣ ≤ r1b(t)|x|r1–1, ∀(t, x) ∈ [0, T] ×R.

(H8) There exist an open interval 	 ⊂ [0, T] and constants η, δ > 0, 1 < r2 < p such that

F(t, x) ≥ η|x|r2 , ∀(t, x) ∈ 	 × [–δ, δ].

Theorem 1.2 Suppose that assumption (H6) holds. Additionally, we assume also that
(H9) there exist r > 0, ω ∈ Eα,p such that

‖ω‖p
a +

β1h(T)
β2

∣
∣ω(T)

∣
∣p +

α1h(0)
α2

∣
∣ω(0)

∣
∣p > pr,

∫ T

0
F
(
t,ω(t)

)
dt > 0 (1.4)

and

1
Ar

:=

∫ T
0 max|x|≤M(rp/)1/p F(t, x) dt

r
<

1
Al

:=
p
∫ T

0 F(t,ω(t)) dt
‖ω‖p

a + β1h(T)
β2

|ω(T)|p + α1h(0)
α2

|ω(0)|p
(1.5)

hold, where  = min{a0, h0},

M :=
(

max

{
Tα– 1

p

�(α)(αq – q + 1)
1
q

, 1
}

+
[

2p–1

T
max

{

1,
(

Tα

�(α + 1)

)p}] 1
p
)

,

1
p

+
1
q

= 1.

Then, for every λ in r = (Al, Ar), problem (1.1) has at least three weak solutions.
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Remark 1.2 Assumption (H6) studies both 0 < β < p and β = p. Obviously, when p = 2,
assumption (H6) contains the condition 0 < β < 2 in [14, 15]. Thus, our conclusion extends
the existing results.

Theorem 1.3 Suppose that assumptions (H7)–(H8) hold. Assume also that
(H10) f (t, x) = –f (t, –x), ∀(t, x) ∈ [0, T] ×R.

Then problem (1.1) with λ = 1 has infinitely many nontrivial weak solutions.

2 Preliminaries
For the convenience of readers, this section firstly introduces some basic definitions and
lemmas of fractional calculus theory.

Definition 2.1 (Left and right Riemann–Liouville fractional derivatives, [18]) Let u be a
function defined on [a, b]. The left and right Riemann–Liouville fractional derivatives of
order 0 ≤ γ < 1 for function u denoted by aDγ

t u(t) and tDγ

b u(t), respectively, are defined
by

aDγ
t u(t) =

d
dt aDγ –1

t u(t) =
1

�(1 – γ )
d
dt

(∫ t

a
(t – s)–γ u(s) ds

)

,

tDγ

b u(t) = –
d
dt tDγ –1

b u(t) = –
1

�(1 – γ )
d
dt

(∫ b

t
(s – t)–γ u(s) ds

)

,

where t ∈ [a, b].

Let AC([a, b]) be the space of absolutely continuous functions within [a, b] (see [16]).

Definition 2.2 (Left and right Caputo fractional derivatives, [18]) Let 0 < γ < 1 and u ∈
AC([a, b]), then the left and right Caputo fractional derivatives of order γ for function u
denoted by C

a Dγ
t u(t) and C

t Dγ

b u(t), respectively, exist almost everywhere on [a, b]. C
a Dγ

t u(t)
and C

t Dγ

b u(t) are represented by

C
a Dγ

t u(t) = aDγ –1
t u′(t) =

1
�(1 – γ )

∫ t

a
(t – s)–γ u′(s) ds,

C
t Dγ

b u(t) = –tDγ –1
b u′(t) = –

1
�(1 – γ )

∫ b

t
(s – t)–γ u′(s) ds,

where t ∈ [a, b].

Let us recall that, for any fixed t ∈ [0, T] and 1 ≤ r < ∞,

‖u‖Lr ([0,t]) =
(∫ t

0

∣
∣u(ξ )

∣
∣r dξ

) 1
r
, ‖u‖Lr =

(∫ T

0

∣
∣u(ξ )

∣
∣r dξ

) 1
r
,

‖u‖∞ = max
t∈[0,T]

∣
∣u(t)

∣
∣.

Definition 2.3 ([16]) Let α ∈ ( 1
2 , 1], p ∈ [1,∞). The fractional derivative space

Eα,p =
{

u|u ∈ AC
(
[0, T],R

)
, C

0 Dα
t u ∈ Lp([0, T],R

)}
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is defined by closure of C∞([0, T],R) with respect to the norm

‖u‖α,p =
(∫ T

0

[∣
∣u(t)

∣
∣p +

∣
∣C
0 Dα

t u(t)
∣
∣p]dt

) 1
p

. (2.1)

Lemma 2.1 ([12]) Let 0 < α ≤ 1, 1 ≤ p < ∞. For ∀f ∈ Lp([0, T],R), one has

∥
∥0D–α

ξ f
∥
∥

Lp([0,t]) ≤ tα

�(α + 1)
‖f ‖Lp([0,t]), ∀ξ ∈ [0, t], t ∈ [0, T].

Lemma 2.2 ([16]) Let 0 < α ≤ 1, 1 ≤ p < ∞. For ∀f ∈ Lp([0, T],R), one has

∥
∥

ξ D–α
T f

∥
∥

Lp([t,T]) ≤ (T – t)α

�(α + 1)
‖f ‖Lp([t,T]), ∀ξ ∈ [t, T], t ∈ [0, T].

Lemma 2.3 ([18]) Let n ∈N, n – 1 < α ≤ n. If f ∈ ACn([a, b],R) or f ∈ Cn([a, b],R), then

aD–α
t

(C
a Dα

t f (t)
)

= f (t) –
n–1∑

j=0

f (j)(a)
j!

(t – a)j, ∀t ∈ [a, b],

tD–α
b

(C
t Dα

b f (t)
)

= f (t) –
n–1∑

j=0

f (j)(b)
j!

(b – t)j, ∀t ∈ [a, b].

In particular, if 0 < α < 1, f ∈ AC([a, b],R) or f ∈ C1([a, b],R), then

aD–α
t

(C
a Dα

t f (t)
)

= f (t) – f (a), tD–α
b

(C
t Dα

b f (t)
)

= f (t) – f (b).

Lemma 2.4 ([17]) Let 1
2 < α ≤ 1, 1 ≤ p < ∞. If u ∈ Eα,p, then

‖u‖∞ ≤ M‖u‖α,p,

where

M :=
(

max

{
Tα– 1

p

�(α)(αq – q + 1)
1
q

, 1
}

+
[

2p–1

T
max

{

1,
(

Tα

�(α + 1)

)p}] 1
p
)

,
1
p

+
1
q

= 1.

Lemma 2.5 ([17]) Let 1/p < α ≤ 1, 1 < p < ∞, if a ∈ C([0, T],R) and 0 < a1 ≤ a(t) ≤ a2,
h(t) ∈ L∞([0, T],R), then by Lemma 2.4 one has

‖u‖∞ ≤ M

(min{a0, h0})
1
p

(∫ T

0
a(t)

∣
∣u(t)

∣
∣p dt +

∫ T

0
h(t)

∣
∣C
0 Dα

t u(t)
∣
∣p dt

) 1
p

,

where h0 = ess inf[0,T] h(t) > 0, a0 = ess inf[0,T] a(t) > 0.

Remark 2.1 It is also easy to check that, if a ∈ C([0, T],R) and 0 < a1 ≤ a(t) ≤ a2, h(t) ∈
L∞([0, T],R) with h0 = ess inf[0,T] h(t) > 0, then an equivalent norm in Eα,p is the following:

‖u‖a =
(∫ T

0
a(t)

∣
∣u(t)

∣
∣p dt +

∫ T

0
h(t)

∣
∣C
0 Dα

t u(t)
∣
∣p dt

) 1
p

. (2.2)
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By combining Lemma 2.5, we can see that, for ∀u ∈ Eα,p, if 1/p < α ≤ 1, then

‖u‖∞ ≤ M
1/p ‖u‖a, (2.3)

where  = min{a0, h0}.

Lemma 2.6 ([16]) Let 0 < α ≤ 1, 1 < p < ∞. The fractional derivative space Eα,p is a reflex-
ive and separable Banach space.

Lemma 2.7 ([16]) Let 1/p < α ≤ 1, 1 < p < ∞. Assume that the sequence {uk} converges
weakly to u in Eα,p, i.e., uk ⇀ u, then uk → u in C([0, T],R), i.e.,

‖uk – u‖∞ → 0, k → ∞.

Lemma 2.8 ([17]) Assume that 1/p < α ≤ 1, 1 < p < ∞, then Eα,p is compactly embedded
in C([0, T],R).

Lemma 2.9 ([18]) Let α > 0, p ≥ 1, q ≥ 1, 1/p + 1/q < 1 +α or p �= 1, q �= 1, 1/p + 1/q = 1 +α.
If u ∈ Lp([a, b],R), v ∈ Lq([a, b],R), then

∫ b

a

[
aD–α

t u(t)
]
v(t) dt =

∫ b

a
u(t)

[
tD–α

b v(t)
]

dt. (2.4)

By multiplying the equation in problem (1.1) by any v ∈ Eα,p and integrating on [0, T],
one has

∫ T

0
tDα

T

(
1

(h(t))p–2 φp
(
h(t)C

0 Dα
t u(t)

)
)

· v(t) dt +
∫ T

0
a(t)φp

(
u(t)

)
v(t) dt

= λ

∫ T

0
f
(
t, u(t)

)
v(t) dt.

(2.5)

From Definitions 2.1, 2.2 and Lemma 2.9, we can get
∫ T

0
tDα

T

(
1

(h(t))p–2 φp
(
h(t)C

0 Dα
t u(t)

)
)

· v(t) dt

= –
∫ T

0

d
dt

[

tDα–1
T

(
1

(h(t))p–2 φp
(
h(t)C

0 Dα
t u(t)

)
)]

· v(t) dt

=
β1h(T)

β2
φp

(
u(T)

)
v(T) +

α1h(0)
α2

φp
(
u(0)

)
v(0)

+
∫ T

0

[

tDα–1
T

(
1

(h(t))p–2 φp
(
h(t)C

0 Dα
t u(t)

)
)]

· v′(t) dt

=
β1h(T)

β2
φp

(
u(T)

)
v(T) +

α1h(0)
α2

φp
(
u(0)

)
v(0)

+
∫ T

0

1
(h(t))p–2 φp

(
h(t)C

0 Dα
t u(t)

)
0Dα–1

t v′(t) dt

=
β1h(T)

β2
φp

(
u(T)

)
v(T) +

α1h(0)
α2

φp
(
u(0)

)
v(0)

+
∫ T

0

1
(h(t))p–2 φp

(
h(t)C

0 Dα
t u(t)

)C
0 Dα

t v(t) dt.

(2.6)
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Getting the similar result for the second part of equation (1.1), we can give the definition
of weak solution for problem (1.1).

Definition 2.4 The function u ∈ Eα,p is a weak solution of problem (1.1) if the identity

β1h(T)
β2

φp
(
u(T)

)
v(T) +

α1h(0)
α2

φp
(
u(0)

)
v(0)

+
∫ T

0

1
(h(t))p–2 φp

(
h(t)C

0 Dα
t u(t)

)C
0 Dα

t v(t) dt

+
∫ T

0
a(t)φp

(
u(t)

)
v(t) dt = λ

∫ T

0
f
(
t, u(t)

)
v(t) dt,

holds for any v ∈ Eα,p.

Define the functional I : Eα,p →R as follows:

I(u) =
1
p

∫ T

0
h(t)

∣
∣C
0 Dα

t u(t)
∣
∣p dt +

1
p

∫ T

0
a(t)

∣
∣u(t)

∣
∣p dt

+
β1h(T)

pβ2

∣
∣u(T)

∣
∣p +

α1h(0)
pα2

∣
∣u(0)

∣
∣p – λ

∫ T

0
F
(
t, u(t)

)
dt

=
1
p
‖u‖p

a +
β1h(T)

pβ2

∣
∣u(T)

∣
∣p +

α1h(0)
pα2

∣
∣u(0)

∣
∣p – λ

∫ T

0
F
(
t, u(t)

)
dt.

(2.7)

According to the continuity of f , it is easy to prove I ∈ C1(Eα,p,R). For ∀v ∈ Eα,p, one has

〈
I ′(u), v

〉
=

∫ T

0

1
(h(t))p–2 φp

(
h(t)C

0 Dα
t u(t)

)C
0 Dα

t v(t) dt

+
∫ T

0
a(t)

∣
∣u(t)

∣
∣p–2u(t)v(t) dt +

β1h(T)
β2

φp
(
u(T)

)
v(T)

+
α1h(0)

α2
φp

(
u(0)

)
v(0) – λ

∫ T

0
f
(
t, u(t)

)
v(t) dt.

(2.8)

Then

〈
I ′(u), u

〉
= ‖u‖p

a +
β1h(T)

β2

∣
∣u(T)

∣
∣p +

α1h(0)
α2

∣
∣u(0)

∣
∣p – λ

∫ T

0
f
(
t, u(t)

)
u(t) dt. (2.9)

Therefore, the critical point of functional I corresponds to the weak solution of problem
(1.1).

To prove our main results, we introduce the following tools.

Definition 2.5 ([19]) Let X be a real Banach space, I ∈ C1(X,R). I(u) satisfies the (PS)
condition if a sequence {un}n∈N ⊂ X which satisfies the conditions {I(un)}n∈N is bounded
and I ′(un) → 0 as n → ∞ has a convergent subsequence.

Lemma 2.10 ([19]) Let X be a real Banach space and I ∈ C1(X,R) satisfying the (PS) con-
dition. Suppose that I(0) = 0 and

(i) there exist constants ρ , η > 0 such that I|∂Bρ ≥ η;
(ii) there exists e ∈ X/Bρ such that I(e) ≤ 0.
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Then I possesses a critical value c ≥ η. Moreover, c can be characterized as

c = inf
g∈�

max
s∈[0,1]

I
(
g(s)

)
,

where

� =
{

g ∈ C
(
[0, 1], X

)
: g(0) = 0, g(1) = e

}
.

Definition 2.6 ([19]) Let X be a real Banach space. Let

� =
{

A ⊂ X – {0}|A is closed in X and symmetric with respect to 0
}

.

Let A ∈ ∑
, if there is an odd mapping G ∈ C(A,Rn\{0}) and n is the smallest integer with

this property, then we say that the deficit of A is n, and γ (A) = n.

Lemma 2.11 ([19]) Let I ∈ C1(X,R) be an even functional on X and I satisfy the (PS)
condition. For any n ∈N, let

�n =
{

A ∈ �|γ (A) ≥ n
}

, cn = inf
A∈�n

sup
u∈A

I(u), Kc =
{

u ∈ X|I(u) = c, I ′(u) = 0
}

.

(1) If �n �= ∅ and cn ∈R, then cn is the critical value of I .
(2) If there exists a constant l ∈N such that cn = cn+1 = · · · = cn+l = c ∈R, and c �= I(0),

then γ (Kc) ≥ l + 1.

Remark 2.2 According to Remark 7.3 in [19], if Kc ∈ � and γ (Kc) > 1, then Kc contains an
infinite number of different points. That is, I has an infinite number of different critical
points on X.

Lemma 2.12 ([20]) Let X be a reflexive real Banach space, � : X → R be a sequentially
weakly lower semicontinuous, coercive, and continuously Gâteaux differentiable functional
whose Gâteaux derivative admits a continuous inverse on X∗, � : X →R be a continuously
Gâteaux differentiable functional whose Gâteaux derivative is compact such that

inf
x∈X

�(x) = �(0) = �(0) = 0.

Assume that there exist r > 0, x ∈ X with r < �(x) such that
(i) sup{�(x) : �(x) ≤ r} < r �(x)

�(x) ,
(ii) for each

λ ∈ r =
(

�(x)
�(x)

,
r

sup{�(x) : �(x) ≤ r}
)

,

the functional � – λ� is coercive.
Then, for each λ ∈ r , the functional � – λ� has at least three distinct critical points

in X.
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3 Main results
In order to prove the theorems, the following lemma plays an essential role.

Lemma 3.1 Under the assumption given in Theorem 1.1, I satisfies the (PS) condition.

Proof Assuming that {uk}k∈N ⊂ Eα,p is a sequence such that {I(uk)}k∈N is bounded and
I ′(uk) → 0 as k → ∞, then there exists D > 0 such that

∣
∣I(uk)

∣
∣ ≤ D,

∥
∥I ′(uk)

∥
∥

(Eα,p)∗ ≤ D (3.1)

for k ∈N, where (Eα,p)∗ is the conjugate space of Eα,p.
The first step, we prove that {uk}k∈N is bounded in Eα,p. If not, we assume that ‖uk‖a →

+∞ as k → ∞. Let zk = uk
‖uk‖a

, then ‖zk‖a = 1. Since Eα,p is a reflexive Banach space, there
exists a subsequence of {zk} (still denoted as {zk}) such that zk ⇀ z0 (k → ∞) in Eα,p, then
zk → z0 in C([0, T],R). By (H4) and (H5), one has

∣
∣f2(t, u) · u

∣
∣ ≤ b1(t)|u|r ,

∣
∣F2(t, u)

∣
∣ ≤ 1

r
b1(t)|u|r . (3.2)

The following two cases are discussed.
Case 1: z0 �= 0. Let � = {t ∈ [0, T]||z0(t)| > 0}, then meas(�) > 0. Because ‖uk‖a → +∞

(k → ∞) and |uk(t)| = |zk(t)| · ‖uk‖a, so for t ∈ �, one has |uk(t)| → +∞ (k → ∞). On the
one hand, by (2.3), (2.7), (3.1), (3.2), we have

∫ T

0
F1(t, uk) dt

=
1
p
‖uk‖p

a +
[

β1h(T)
pβ2

∣
∣uk(T)

∣
∣p +

α1h(0)
pα2

∣
∣uk(0)

∣
∣p

]

–
∫ T

0
F2(t, uk) dt – I(uk)

≤ 1
p
‖uk‖p

a +
1
p

[
β1h(T)

β2
+

α1h(0)
α2

]

‖uk‖p
∞ +

1
r

∫ T

0
b1(t)|u|r dt + D

≤ 1
p
‖uk‖p

a

[

1 +
(

β1h(T)
β2

+
α1h(0)

α2

)
Mp



]

+
1
r
‖b1‖L1‖u‖r

∞ + D,

≤ 1
p
‖uk‖p

a

[

1 +
(

β1h(T)
β2

+
α1h(0)

α2

)
Mp



]

+
Mr

rr/p ‖b1‖L1‖u‖r
a + D.

Since θ > p > r > 1, so

∫ T

0

F1(t, uk)
‖uk‖θ

a
dt ≤ o(1), k → ∞. (3.3)

On the other hand, according to Fatou’s lemma, the properties of � and (H3), one has

lim
k→∞

∫ T

0

F1(t, uk)
‖uk‖θ

a
dt ≥ lim

k→∞

∫

�

F1(t, uk)
‖uk‖θ

a
dt = lim

k→∞

∫

�

F1(t, uk)
|uk(t)|θ

∣
∣zk(t)

∣
∣θ dt = +∞.

This is a contradiction to (3.3).
Case 2: z0 ≡ 0. According to the continuity of f , there exists d0 > 0 such that

∣
∣uf1(t, u) – θF1(t, u)

∣
∣ ≤ d0, ∀|u| ≤ d∞, t ∈ [0, T].
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Combined with condition (H2), we get

uf1(t, u) – θF1(t, u) ≥ –d1|u|p – d0, ∀|u| ∈R, t ∈ [0, T]. (3.4)

According to (1.2), (2.3), (2.7), (2.9), (3.1), (3.2), (3.4) and Hölder’s inequality, we have

o(1) =
θD + D‖uk‖a

‖uk‖p
a

≥ θ I(uk) – 〈I ′(uk), uk〉
‖uk‖p

a

≥
(

θ

p
– 1

)

+
1

‖uk‖p
a

∫ T

0

[
ukf1(t, uk) – θF1(t, uk)

]
dt

+
1

‖uk‖p
a

∫ T

0

[
ukf2(t, uk) – θF2(t, uk)

]
dt

≥
(

θ

p
– 1

)

–
1

‖uk‖p
a

∫ T

0

(
d1|uk|p + d0

)
dt –

1
‖uk‖p

a

(
θ

r
+ 1

)∫ T

0
b1(t)|uk|r dt

≥
(

θ

p
– 1

)

– d1

∫ T

0

|uk|p
‖uk‖p

a
dt –

Td0

‖uk‖p
a

–
1

‖uk‖p
a

(
θ

r
+ 1

)

‖b1‖L1‖uk‖r
∞

≥
(

θ

p
– 1

)

– d1

∫ T

0
|zk|p dt –

Td0

‖uk‖p
a

–
(

θ

r
+ 1

)

‖b1‖L1
Mr

r/p · ‖uk‖r
a

‖uk‖p
a

≥
(

θ

p
– 1

)

, k → ∞.

It is a contradiction. Therefore, {uk}k∈N is bounded in Eα,p. Suppose that the sequence
{uk}k∈N has a subsequence, still denoted as {uk}k∈N, there exists u ∈ Eα,p such that uk ⇀ u
in Eα,p, then uk → u in C([0, T],R). So

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈I ′(uk) – I ′(u), uk – u〉 → 0, k → ∞,
∫ T

0 [f (t, uk(t)) – f (t, u(t))][uk(t) – u(t)] dt → 0, k → ∞,

|uk(T) – u(T)|p → 0, k → ∞,

|uk(0) – u(0)|p → 0, k → ∞.

Since

‖uk – u‖p
a =

〈
I ′(uk) – I ′(u), uk – u

〉
+

∫ T

0

[
f
(
t, uk(t)

)
– f

(
t, u(t)

)][
uk(t) – u(t)

]
dt

–
β1h(T)

β2

∣
∣uk(T) – u(T)

∣
∣p –

α1h(0)
α2

∣
∣uk(0) – u(0)

∣
∣p,

so ‖uk – u‖a → 0 (k → ∞). �

The proof process of Theorem 1.1 is given below, which is structured into four steps.

Proof of Theorem 1.1 Step 1. Obviously, I(0) = 0. According to Lemma 3.1, I ∈ C1(Eα,p,R)
satisfies the (PS) condition.

Step 2. We will prove that condition (i) in Lemma 2.10 holds. By (H1), for ∀ε > 0, there
exists a constant δ > 0 such that

F1(t, u) ≤ ε|u|p, ∀t ∈ [0, T], |u| ≤ δ. (3.5)
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For ∀u ∈ Eα,p, by (2.2), (2.3), (2.7), (3.2), (3.5), one has

I(u) ≥ 1
p
‖u‖p

a –
∫ T

0
F
(
t, u(t)

)
dt ≥ 1

p
‖u‖p

a – ε

∫ T

0
|u|p dt –

1
r

∫ T

0
b1(t)|u|r dt

≥ 1
p
‖u‖p

a – ε · 1
a0

∫ T

0
a(t)|u|p dt –

1
r
‖b1‖L1‖u‖r

∞

≥ 1
p
‖u‖p

a –
ε

a0
‖u‖p

a –
Mr

rr/p ‖b1‖L1‖u‖r
a

=
[(

1
p

–
ε

a0

)

–
Mr

rr/p ‖b1‖L1‖u‖r–p
a

]

‖u‖p
a.

(3.6)

Choose ε = a0
2p , we obtain

I(u) ≥
[

1
2p

–
Mr

rr/p ‖b1‖L1‖u‖r–p
a

]

‖u‖p
a.

Let ρ = ( rr/p

4pMr‖b1‖L1
)

1
r–p , η = 1

4pρp, then for u ∈ ∂Bρ one has I(u) ≥ η > 0.
Step 3. We will prove that there exist e ∈ Eα,p and ‖e‖a > ρ such that I(e) < 0, where ρ is

defined in Step 2. According to (H3), there exist two constants d2, d3 > 0 such that

F1(t, u) ≥ d2|u|θ – d3, ∀t ∈ [0, T], u ∈R. (3.7)

So, for ∀u ∈ Eα,p\{0}, ξ ∈ R
+, by (2.3), (2.7), (3.7) and Hölder’s inequality, we get

I(ξu) ≤ ξp

p
‖u‖p

a +
ξp

p
‖u‖p

∞

(
β1h(T)

β2
+

α1h(0)
α2

)

– d2ξ
θ

∫ T

0
|u|θ dt + d3T

≤ ξp

p
‖u‖p

a +
ξp

p
Mp


‖u‖p

a

(
β1h(T)

β2
+

α1h(0)
α2

)

– d2ξ
θ

(

T
p–θ
θ

∫ T

0

∣
∣u(t)

∣
∣p dt

) θ
p

+ d3T

≤ 1
p
ξp

[

1 +
Mp



(
β1h(T)

β2
+

α1h(0)
α2

)]

‖u‖p
a – d2ξ

θ T
p–θ

p ‖u‖θ
Lp + d3T .

Since θ > p, the above formula implies that when ξ0 is sufficiently large, I(ξ0u) → –∞. Let
e = ξ0u, one has I(e) < 0, so condition (ii) in Lemma 2.10 holds. From Lemma 2.10, we
know that I has one critical value c(1) ≥ η > 0 as follows:

c(1) = inf
g∈�

max
s∈[0,1]

I
(
g(s)

)
,

where

� =
{

g ∈ C
(
[0, 1], Eα,p) : g(0) = 0, g(1) = e

}
.

Therefore, there exists 0 �= u(1) ∈ Eα,p such that

I
(
u(1)) = c(1) ≥ η > 0, I ′(u(1)) = 0. (3.8)

That is, the first nontrivial weak solution of (1.1) exists.
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Step 4. It is known from (3.6) that I is bounded below in Bρ . Choose ϕ ∈ Eα,p such that
ϕ(t) �= 0 in [0, T]. For ∀l ∈ (0, +∞), by (2.7), (H3), and (H4), we have

I(lϕ) ≤ lp

p
‖ϕ‖p

a

[

1 +
Mp



(
β1h(T)

β2
+

α1h(0)
α2

)]

–
∫ T

0
F2

(
t, lϕ(t)

)
dt

≤ lp

p
‖ϕ‖p

a

[

1 +
Mp



(
β1h(T)

β2
+

α1h(0)
α2

)]

– lr
∫ T

0
b(t)

∣
∣ϕ(t)

∣
∣r dt.

(3.9)

Thus, from 1 < r < p, we know that, for small enough l0 satisfying ‖l0ϕ‖a ≤ ρ , one has
I(l0ϕ) < 0. Let u = l0ϕ, one has

c(2) = inf I(u) < 0, ‖u‖a ≤ ρ,

where ρ is defined in Step 2. Then, according to the Ekeland variational principle, there
exists a minimization sequence {vk}k∈N ⊂ Bρ such that

I(vk) → c(2), I ′(vk) → 0, k → ∞.

That is, {vk}k∈N is a (PS) sequence. According to Lemma 3.1, I satisfies the (PS) condition.
Therefore, c(2) < 0 is another critical value of I . So there exists 0 �= u(2) ∈ Eα,p such that

I
(
u(2)) = c(2) < 0,

∥
∥u(2)∥∥

a < ρ. �

The proof of Theorem 1.2 is given below.

Proof of Theorem 1.2 The functionals � : Eα,p → R and � : Eα,p → R are defined as fol-
lows:

�(u) =
1
p
‖u‖p

a +
β1h(T)

pβ2

∣
∣u(T)

∣
∣p +

α1h(0)
pα2

∣
∣u(0)

∣
∣p, �(u) =

∫ T

0
F
(
t, u(t)

)
dt,

then I(u) = �(u) – λ�(u). Through simple calculation, we get

inf
u∈Eα,p

�(u) = �(0) = 0, �(0) =
∫ T

0
F(t, 0) dt = 0.

Furthermore, � and � are continuous Gâteaux differential and

〈
�′(u), v

〉
=

∫ T

0
h(t)φp

(C
0 Dα

t u(t)
)C

0 Dα
t v(t) dt +

∫ T

0
a(t)φp

(
u(t)

)
v(t) dt

+
β1h(T)

β2
φp

(
u(T)

)
v(T) +

α1h(0)
α2

φp
(
u(0)

)
v(0), ∀u, v ∈ Eα,p,

(3.10)

〈
� ′(u), v

〉
=

∫ T

0
f
(
t, u(t)

)
v(t) dt, ∀u, v ∈ Eα,p. (3.11)

In addition, �′ : Eα,p → (Eα,p)∗ is continuous. Next, we prove that � ′ : Eα,p → (Eα,p)∗ is
a continuous compact operator. Assuming that {un} ⊂ Eα,p, un ⇀ u (n → ∞), then {un}
uniformly converges to u on C([0, T]). Because f ∈ C([0, T] × R,R), so f (t, un) → f (t, u)
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(n → ∞). Thus � ′(un) → � ′(u) as n → ∞. Then, � ′ is strongly continuous. From Propo-
sition 26.2 in [21], � ′ is a compact operator. And then we show that � is weakly semi-
continuous. Assuming that {un} ⊂ Eα,p, {un} ⇀ u, then {un} uniformly converges to u on
C([0, T]), and lim infn→∞ ‖un‖a ≥ ‖u‖a. So,

lim inf
n→∞ �(un) = lim inf

n→∞

(
1
p
‖un‖p

a +
β1h(T)

pβ2

∣
∣un(T)

∣
∣p +

α1h(0)
pα2

∣
∣un(0)

∣
∣p

)

≥ 1
p
‖u‖p

a +
β1h(T)

pβ2

∣
∣u(T)

∣
∣p +

α1h(0)
pα2

∣
∣u(0)

∣
∣p = �(u).

Thus � is weakly semicontinuous. In addition, we will show that �′ is coercive and has a
continuous inverse on (Eα,p)∗. For u ∈ Eα,p\{0}, by (3.10), one has

lim‖u‖a→+∞
〈�′(u), u〉

‖u‖a
= lim‖u‖a→+∞

‖u‖p
a + β1h(T)

β2
|u(T)|p + α1h(0)

α2
|u(0)|p

‖u‖a
= +∞,

then �′ is coercive. For ∀u, v ∈ Eα,p, by (3.10), we obtain

〈
�′(u) – �′(v), u – v

〉

=
∫ T

0
h(t)

(
φp

(C
0 Dα

t u(t)
)

– φp
(C

0 Dα
t v(t)

))(C
0 Dα

t u(t) – C
0 Dα

t v(t)
)

dt

+
∫ T

0
a(t)

(
φp

(
u(t)

)
– φp

(
v(t)

))(
u(t) – v(t)

)
dt

+
β1h(T)

β2

(
φp

(
u(T)

)
– φp

(
v(T)

))(
u(T) – v(T)

)

+
α1h(0)

α2

(
φp

(
u(0)

)
– φp

(
v(0)

))(
v(T) – v(0)

)

≥
∫ T

0
h(t)

(
φp

(C
0 Dα

t u(t)
)

– φp
(C

0 Dα
t v(t)

))(C
0 Dα

t u(t) – C
0 Dα

t v(t)
)

dt

+
∫ T

0
a(t)

(
φp

(
u(t)

)
– φp

(
v(t)

))(
u(t) – v(t)

)
dt.

From [22], we can see that there exist constants cp, dp > 0 such that

〈
�′(u) – �′(v), u – v

〉

≥

⎧
⎪⎨

⎪⎩

cp
∫ T

0 h(t)|C0 Dα
t u(t) – C

0 Dα
t v(t)|p + a(t)|u(t) – v(t)|p dt, p ≥ 2;

dp
∫ T

0
h(t)|C0 Dα

t u(t)–C
0 Dα

t v(t)|2

(|C0 Dα
t u(t)|+|C0 Dα

t v(t)|)2–p + a(t)|u(t)–v(t)|2
(|u(t)|+|v(t)|)2–p dt, 1 < p < 2.

(3.12)

If p ≥ 2, then

〈
�′(u) – �′(v), u – v

〉 ≥ cp‖u – v‖p
a.
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Consequently, �′ is uniformly monotonous. If 1 < p < 2, by Hölder’s inequality, one has

∫ T

0

∣
∣C
0 Dα

t u(t) – C
0 Dα

t v(t)
∣
∣p dt

≤ c
(∫ T

0

|C0 Dα
t u(t) – C

0 Dα
t v(t)|2

(|C0 Dα
t u(t)| + |C0 Dα

t v(t)|)2–p dt
) p

2 (‖u‖a + ‖v‖a
) p(2–p)

2 ,

so
∫ T

0

(
φp

(C
0 Dα

t u(t)
)

– φp
(C

0 Dα
t v(t)

))(C
0 Dα

t u(t) – C
0 Dα

t v(t)
)

dt

≥ c
(‖u‖a + ‖v‖a)2–p

(∫ T

0

∣
∣C
0 Dα

t u(t) – C
0 Dα

t v(t)
∣
∣p dt

) 2
p

.

(3.13)

Combined with (3.12) and (3.13), we obtain

〈
�′(u) – �′(v), u – v

〉 ≥ c‖u – v‖2
a

(‖u‖a + ‖v‖a)2–p .

Thus, �′ is strictly monotonous. From Theorem 26.A(d) in [21], (�′)–1 exists and is con-
tinuous.

The second step is to verify that condition (i) in Lemma 2.12 holds. If x ∈ Eα,p satisfies
�(x) ≤ r, then by (2.3) one has

�(x) =
1
p
‖x‖p

a +
β1h(T)

pβ2

∣
∣x(T)

∣
∣p +

α1h(0)
pα2

∣
∣x(0)

∣
∣p ≥ 1

p
‖x‖p

a ≥ 

pMp ‖x‖p
∞

and

{
x ∈ Eα,p : �(x) ≤ r

} ⊆
{

x :


pMp ‖x‖p
∞ ≤ r

}

=
{

x : ‖x‖p
∞ ≤ rpMp



}

=
{

x : ‖x‖∞ ≤ M
(

rp


) 1
p
}

.

Thus,

sup
{
�(x) : �(x) ≤ r

}
= sup

{∫ T

0
F
(
t, x(t)

)
dt : �(x) ≤ r

}

≤
∫ T

0
max

|x|≤M(rp/)1/p
F(t, x) dt,

combined with (1.5), we get

sup{�(x) : �(x) ≤ r}
r

=
sup{∫ T

0 F(t, x(t)) dt : �(x) ≤ r}
r

≤
∫ T

0 max|x|≤M(rp/)1/p F(t, x) dt
r

<
p
∫ T

0 F(t,ω(t)) dt
‖ω‖p

a + β1h(T)
β2

|ω(T)|p + α1h(0)
α2

|ω(0)|p =
�(ω)
�(ω)

,

which implies that condition (i) of Lemma 2.12 holds.
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The third step is to prove that, for any λ ∈ r = (Al, Ar), the functional �–λ� is coercive.
For x ∈ Eα,p, by (1.3), (2.3) we have

∫ T

0
F
(
t, x(t)

)
dt ≤ L

∫ T

0

(
1 +

∣
∣x(t)

∣
∣β

)
dt ≤ LT + LT‖x‖β

∞ ≤ LT +
LTMβ

β/p ‖x‖β
a . (3.14)

For x ∈ Eα,p, λ ∈ r , by (3.14) we get

�(x) – λ�(x) ≥ 1
p
‖x‖p

a +
β1h(T)

pβ2

∣
∣x(T)

∣
∣p +

α1h(0)
pα2

∣
∣x(0)

∣
∣p

– λ

(

LT +
LTMβ

β/p ‖x‖β
a

)

.

If 0 < β < p, for all λ > 0, one has

lim‖x‖a→+∞
(
�(x) – λ�(x)

)
= +∞.

Obviously, the functional � – λ� is coercive. If β = p, we obtain

�(x) – λ�(x) ≥
(

1
p

–
λLTMp



)

‖x‖p
a – λLT .

Choose

L <


∫ T
0 max|x|≤M(rp/)1/p F(t, x) dt

prTMp ,

for λ < Ar , one has 1
p – λLTMp


> 0. Thus,

lim‖x‖a→+∞
(
�(x) – λ�(x)

)
= +∞.

So �–λ� is coercive. Therefore, the conditions in Lemma 2.12 are all true. By Lemma 2.12,
we get that, for each λ ∈ r , the functional I = � – λ� has at least three different critical
points in Eα,p. �

Finally, the proof process of Theorem 1.3 is given.

Proof of Theorem 1.3 In the first step, I ∈ C1(Eα,p,R) is bounded below. By (H7), one has

∣
∣F(t, u)

∣
∣ ≤ b(t)|u|r1 , ∀(t, u) ∈ [0, T] ×R.

Combining (2.3) and (2.7), we can get

I(u) =
1
p
‖u‖p

a +
β1h(T)

pβ2

∣
∣u(T)

∣
∣p +

α1h(0)
pα2

∣
∣u(0)

∣
∣p –

∫ T

0
F
(
t, u(t)

)
dt

≥ 1
p
‖u‖p

a –
∫ T

0
F
(
t, u(t)

)
dt ≥ 1

p
‖u‖p

a –
∫ T

0
b(t)|u|r1 dt

≥ 1
p
‖u‖p

a – ‖b‖L1‖u‖r1∞ ≥ 1
p
‖u‖p

a –
Mr1

r1/p ‖b‖L1‖u‖r1
a .

(3.15)
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Since 1 < r1 < p, (3.15) indicates that I(u) → ∞ as ‖u‖a → ∞, so I is bounded be-
low.

In the second step, I satisfies the (PS) condition on Eα,p. Assume that {uk} ⊂ Eα,p is a
sequence such that

∣
∣I(uk)

∣
∣ ≤ D, I ′(uk) → 0 (k → ∞),

where D > 0 is a constant. Then (3.15) shows that {uk}k∈N is bounded on Eα,p. Suppose that
the sequence {uk}k∈N has a subsequence, still recorded as {uk}k∈N, there exists u ∈ Eα,p such
that uk ⇀ u in Eα,p, then uk → u in C([0, T],R). So

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈I ′(uk) – I ′(u), uk – u〉 → 0, k → ∞,
∫ T

0 [f (t, uk(t)) – f (t, u(t))][uk(t) – u(t)] dt → 0, k → ∞,

|uk(T) – u(T)|p → 0, k → ∞,

|uk(0) – u(0)|p → 0, k → ∞.

Since

‖uk – u‖p
a =

〈
I ′(uk) – I ′(u), uk – u

〉
+

∫ T

0

[
f
(
t, uk(t)

)
– f

(
t, u(t)

)][
uk(t) – u(t)

]
dt

–
β1h(T)

β2

∣
∣uk(T) – u(T)

∣
∣p –

α1h(0)
α2

∣
∣uk(0) – u(0)

∣
∣p,

so ‖uk – u‖a → 0 (k → ∞). This means that uk → u in Eα,p. That is, I satisfies the (PS)
condition on Eα,p. In addition, (2.7) and (H10) indicate that I is an even functional and
I(0) = 0.

Fix n ∈ N, then take n disjoint open intervals 	i such that ∪n
i=1	i ⊂ 	. Let ui ∈

(W 1,2(	i,R) ∩ Eα,p)\{0} satisfy ‖ui‖a = 1, and remember

En = span{u1, u2, . . . , un}, Sn =
{

u ∈ En|‖u‖a = 1
}

.

Therefore, for u ∈ En, there exists λi ∈R such that

u =
n∑

i=1

λiui, ∀t ∈ [0, T], (3.16)

then

‖u‖p
a =

∫ T

0

[
a(t)

∣
∣u(t)

∣
∣p + h(t)

∣
∣C
0 Dα

t u(t)
∣
∣p]dt

=
n∑

i=1

|λi|p
∫

	i

[
a(t)

∣
∣ui(t)

∣
∣p + h(t)

∣
∣C
0 Dα

t ui(t)
∣
∣p]dt

=
n∑

i=1

|λi|p‖ui‖p
a =

n∑

i=1

|λi|p, ∀u ∈ En.

(3.17)
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For u ∈ Sn, by (2.2), (2.3), (3.16), and (H8), one has

I(su) =
1
p
‖su‖p

a +
β1h(T)

pβ2

∣
∣su(T)

∣
∣p +

α1h(0)
pα2

∣
∣su(0)

∣
∣p –

∫ T

0
F
(
t, su(t)

)
dt

≤ |s|p
p

‖u‖p
a +

|s|p
p

(
β1h(T)

β2
+

α1h(0)
α2

)

‖u‖p
∞ –

n∑

i=1

∫

	i

F(t, sλiui) dt

≤ |s|p
p

[

1 +
Mp



(
β1h(T)

β2
+

α1h(0)
α2

)]

– η|s|r2
n∑

i=1

|λi|r2

∫

	i

|ui|r2 dt, 0 < s ≤ δ1/p

Mλ∗ ,

(3.18)

where λ∗ = maxi∈{1,2,...,n}|λi| > 0 is a constant. Because 1 < r2 < p, (3.18) shows that there
exist ε,σ > 0 such that

I(σu) < –ε, ∀u ∈ Sn. (3.19)

Let

Sσ
n = {σu|u ∈ Sn}, � =

{

(λ1,λ2, . . . ,λn) ∈R
n
∣
∣
∣

n∑

i=1

|λi|p < σ p

}

,

then by (3.19) we obtain

I(u) < –ε, ∀u ∈ Sσ
n .

Combining I is an even functional and I(0) = 0, we get

Sσ
n ⊂ I–ε ∈ �.

In addition, it can be seen from (3.17) that the mapping (λ1,λ2, . . . ,λn) → ∑n
i=1 λiui from

∂� to Sσ
n is odd and homeomorphic. Thus, according to some properties of the genus

(Propositions 7.5 and 7.7 in [19]), one has

γ
(
I–ε

) ≥ γ
(
Sσ

n
)

= n.

Therefore I–ε ∈ �n, so �n �= φ. Let

cn = inf
A∈�n

supu∈AI(u).

Then, since I is bounded below, we can get –∞ < cn ≤ –ε < 0. That is, for ∀n ∈ N, cn is a
negative real number. Therefore, according to Lemma 2.11, I has infinitely many nontrivial
critical points, that is, problem (1.1) has infinitely many nontrivial weak solutions. �
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4 Conclusions
This paper mainly explores the multiplicity of solutions for a fractional p-Laplacian dif-
ferential equation with Sturm–Liouville boundary value conditions. By employing vari-
ational methods, the multiplicity results of weak solutions are obtained under the con-
ditions of p-suplinear growth, p-sublinear growth, and the combination of p-suplinear
growth and p-sublinear growth. Compared with the existing related work, the research
results of this paper weaken the existing related conditions and improve and enrich the
related results to a certain extent.
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