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Abstract
This paper is about to formulate a design of predator–prey model with constant and
time fractional variable order. The predator and prey act as agents in an ecosystem in
this simulation. We focus on a time fractional order Atangana–Baleanu operator in the
sense of Liouville–Caputo. Due to the nonlocality of the method, the predator–prey
model is generated by using another FO derivative developed as a kernel based on
the generalized Mittag-Leffler function. Two fractional-order systems are assumed,
with and without delay. For the numerical solution of the models, we not only
employ the Adams–Bashforth–Moulton method but also explore the existence and
uniqueness of these schemes. We use the fixed point theorem which is useful in
describing the existence of a new approach with a particular set of solutions. For the
illustration, several numerical examples are added to the paper to show the
effectiveness of the numerical method.
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1 Introduction
During the past decades, several mathematical models have been investigated to model
prey–predator systems [1–16]. The understanding of the relationship between herbivores
and plants is extremely important in the behavior of the ecosystems. Those studies have
been implemented in dynamical systems of organic models incorporating integer-order
differential equations. However, in these models, the effects of long-range memories are
neglected. Recently, mathematical systems with fractional order (FO) have become more
worthy than classical systems as FO models provide the description of the memory effects
[17–29]. Owolabi et al. in [30] studied local and global stability of the fractional dynamical
system of prey–predator with Holling type-II involving a time delay. Javidi and Nyamoradi
provided a detailed study of the local stability of the FO predator–prey model [31]. Alka-
htani in [32] investigated the FO triadic predator–prey model. This system was produced
utilizing the latest FO differentiation related to the function of generalized Mittag-Leffler
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(GML). In [33], the authors proposed harvesting terms of a FO delayed predator–prey sys-
tem. The stability of the model was studied and numerical results were presented to verify
the theoretical outcomes. In [34], a FO singular predator–prey model with Holling type-II
functional response was studied. The authors investigated the local stability and the solv-
ability condition of this model. Numerical simulations were obtained for different values
of the order of the FO derivative. Owolabi in [35] analyzed a FO predator–prey model. The
Riemann–Liouville operator based on the pseudo-spectral technique was considered.

In this work, we develop a FO predator–prey system with constant and variable-order
Atangana–Baleanu FO operator in the Liouville–Caputo sense. We assume the deter-
ministic integer-order predator–prey model analyzed and studied by Li in [36]. Our sys-
tem assumes a more realistic prey–predator model with two properties with and without
time delay. The mathematical model is built using this FO derivative with the generalized
Mittag-Leffler law as a kernel caused by nonlocality of the model and broad usability of
the GML function. The Mittag-Leffler kernel applied in Atangana–Baleanu FO differen-
tiation ordinarily exists in various physical models as a generalized exponential decay and
as power-law asymptotic for a very large time.

The paper is organized as follows: In Sect. 2, the FO model involving Atangana–
Baleanu–Caputo (ABC) operators is disputed. Results are displayed in Sect. 3 numerically,
and conclusion is given in Sect. 4.

2 Predator–prey model
In this paper, we study the mathematical system proposed by Li in [36] and assume
Atangana–Baleanu FO operator with constant and variable order. We aim to manufac-
ture a superior estimate model to the real dynamics of a predator–prey system involving
a prey refuge among heterogeneous populations. In this investigation, two FO models are
treated. The first one depends on the Atangana–Baleanu–Caputo FO differential equa-
tions with constant order. We present the existence of positive solutions for the unique
proposed design. We study the uniqueness and existence of the solutions. Furthermore,
we consider this model involving FO differential equations of Atangana–Baleanu–Caputo
type with variable order. Variable order is fixed as a smooth function to specify time
differentiation bounded in (0;1]. To get simulation solutions for the suggested system,
we employ the Adams process. Finally, the second one assumes a FO model with time
delay; in this scenario, we portray the computative technique focused on the Adams–
Bashforth–Moulton method to clarify FO delay differential equations relative to variable
order through the Atangana–Baleanu–Caputo FO derivative.

In the first case, the system considered is defined as [36]

ABC
0 Dε

τ x(τ ) = hx(τ )
(

1 –
x(τ )

k

)
– λ(1 – M)x(τ )y(τ ), x(τ0) = xτ (0),

ABC
0 Dς

τ y(τ ) = eλ(1 – M)x(τ )y(τ ) – dy(τ ), ξ (τ0) = yτ (0), (2.1)

with the initial conditions x(τ0) = xτ (0) and y(τ0) = yτ (0). Fractional-order operator used in
the proposed model (2.1) is in the ABC sense, ABC

0 Dε
τ . FO derivative with constant order

is defined as [37]

ABC
0 Dε

τ

{
f (τ )

}
=

�(ε)
r1 – ε

∫ τ

0

dr1

dτ r1
f (℘)Eε

[
–ε

(τ – ℘)ε

r1 – ε

]
d℘, (2.2)
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where the function �(ε) represents normalization, 1 = �(0) = �(1). FO operator is using
the Mittag-Leffler rule as a nonsingular and nonlocal kernel, where Eε is a Mittag-Leffler
function of one parameter

Eε(v) =
∞∑

r=0

vr

	(εr + 1)
r ∈C;R(ε) > 0. (2.3)

The Atangana–Baleanu FO integral of function f (τ ) with order ε is characterized as [37]

AB
0 Iε

τ

{
f (τ )

}
= f (τ ) – f (0) =

1 – ε

�(ε)
f (τ ) +

ε

�(ε)	(ε)

∫ τ

0
f (℘)(τ – ℘)ε–1 d℘. (2.4)

System (2.1) can be made more realistic as the prey and the predators should not follow
the same FO dynamics. For this reason, we provide two various orders of the fractional-
differential derivatives ε ∈ (0, 1] and ς ∈ (0, 1].

In our model, x(τ ) and y(τ ) represent prey and predator populations at time τ , respec-
tively. The environmental carrying capacity of prey and intrinsic growth rate and pop-
ulation are denoted by k and r, respectively; c represents predators attack rate on prey
population; e denotes recently conceived predators for each prey catch; d represents the
predator mortality rate. This system involves a constant shelter covering Mx(τ ) of the
prey such that m ∈ [0, 1), allowing (1 – M)x(τ ) of the prey be accessible to the predator
[36]. These constants are all positive.

On the other hand, compared with constant FO systems, the research on variable FO
differential equations is relatively new, and a numerical approximation of these equations
is still at an early stage of development [37–49]. The variable FO operator of Atangana–
Baleanu type in the sense of Liouville–Caputo is given as follows:

ABC
0 Dε(τ )

τ

{
f (τ )

}

=
�(ε(τ ))
1 – ε(τ )

∫ τ

0

d
dτ

f (℘)Eε(τ )

[
–ε(τ )

(τ – ℘)ε(τ )

1 – ε(τ )

]
d℘, 0 < ε(τ ) ≤ 1, (2.5)

where the normalized function �(ε(τ )) = 1 – ε(τ ) + ε(τ )
	(ε(τ )) .

A variable FO integral in the sense of Atangana–Baleanu is listed as follows:

AB
0 Iε(τ )

τ

{
f (τ )

}
=

1 – ε(τ )
�(ε(τ ))

f (τ )

+
ε(τ )

�(ε(τ ))	(ε(τ ))

∫ τ

0
f (℘)(τ – ℘)ε(τ )–1 d℘, r1 – 1 < ε(τ ) ≤ r1. (2.6)

System (2.1) with the support of variable FO Atangana–Baleanu–Caputo derivatives
produces

ABC
0 Dε(τ )

τ x(τ ) = hx(τ )
(

1 –
x(τ )

k

)
– λ(1 – M)x(τ )y(τ ),

ABC
0 Dς (τ )

τ y(τ ) = eλ(1 – M)x(τ )y(τ ) – dy(τ ). (2.7)
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In the second case, we consider that the predatory-prey species is not an instantaneous
operation; for this case, the model given by Eq. (2.1) is defined as

ABC
0 Dε(τ )

τ x(τ ) = hx(τ – κ)
(

1 –
x(τ – κ)

k

)
– λ(1 – M)x(τ – κ)y(τ ),

ABC
0 Dς (τ )

τ y(τ ) = eλ(1 – M)x(τ – κ)y(τ ) – dy(τ ), (2.8)

where the variable FO operator ABC
0 Dτ ε(τ ) denotes Atangana–Baleanu–Caputo for each

operator, and time delay κ represents the gestation delay.

3 Predator–prey model involving constant-order fractional derivative
First case This portion is to investigate the existence and uniqueness of the solutions
under constant order assuming the Atangana–Baleanu–Caputo FO operator.

Existence and uniqueness of the solution For every real-valued continuous function, let
y = λ[a◦, a◦

1] be the Banach space in [a◦, a◦
1], containing the subnorm and shaft � ={x, y ∈ y,

x(τ ) > 0 and y(τ ) ≥ 0, a◦ ≤ τ ≤ a◦
1}. Let � be a real Banach space with a cone H . H initiates

a restricted order in the succeeding approach [45]

u ≤ v → v – u ∈ H . (3.1)

The order interval for each u, v ∈ � is specified as 〈a◦, a◦
1〉 = {f ∈ � : a◦ ≤ f ≤ a◦

1}. A cone
 speaks to typical if one can locate a positive constant α with the end goal that r, l,∈ ,
ϒ < r < l → ‖r‖ ≤ α‖l‖, where ϒ is the zero component of .

Theorem 1 Let a Banach space Z have a closed set subspace H and T : H → H with Lip-
schitz constant υ < 1 be a contraction mapping so that T carries a fixed point τ ∗ ∈ H .
Furthermore, a sequence {τM} is interpreted as τM+1 = TτM (M = 0, 1, 2, . . .) for a ran-
dom point τ0 ∈ H , then τM → τ ∗ in H for a large number M and l(τM, τ ∗) ≤ (υM/(1 –
υ))l(τ1, τ0) [45]. To study the existence of solutions, let us assume the system given by
Eq. (2.1).

Model (2.1) is identical to that of Volterra when it is integral in the Atangana–Baleanu
sense. We apply the AB fractional integral in Eq. (2.1) to get the system

x(τ ) – x(0) =
1 – ε

�(ε)

{
hx(τ )

(
1 –

x(τ )
k

)
– λ(1 – M)x(τ )y(τ )

}

+
ε

�(ε)	(ε)

∫ τ

0
(τ – ℘)ε–1

{
hx(℘)

(
1 –

x(℘)
k

)
– λ(1 – M)x(℘)y(℘)

}
d℘,

y(τ ) – y(0) =
1 – ς

�(ς )
{

eλ(1 – M)x(τ )y(τ ) – dy(τ )
}

+
ς

�(ς )	(ς )

∫ τ

0
(τ – ℘)ς–1{eλ(1 – M)x(℘)y(℘) – dy(℘)

}
d℘. (3.2)

Now we assume the following lemmas.
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Lemma 1 Suppose that T : H → H is a mapping and gives

T
[
x(τ )

]
=

1 – ε

�(ε)
S
(
τ , x(τ )

)
+

ε

�(ε)	(ε)

∫ τ

0
(τ – ℘)ε–1S

(
θ , x(℘)

)
d℘,

T
[
y(τ )

]
=

1 – ς

�(ς )
S
(
τ , y(τ )

)
+

ς

�(ς )	(ς )

∫ τ

0
(τ – ℘)ς–1S

(
℘, y(℘)

)
d℘. (3.3)

To handle this more easily, let us assume the following:

S
(
τ , x(τ )

)
=

{
hx(τ )

(
1 –

x(τ )
k

)
– λ(1 – M)x(τ )y(τ )

}
,

S
(
τ , y(τ )

)
=

{
eλ(1 – M)x(τ )y(τ ) – dy(τ )

}
. (3.4)

Lemma 2 Let M ⊂ H be bounded and constants β , δ > 0

∥∥x(τ2) – x(τ1)
∥∥ ≤ β‖τ2 – τ1‖,

∥∥y(τ2) – y(τ1)
∥∥ ≤ δ‖τ2 – τ1‖, ∀x, y ∈ M. (3.5)

Thus, ¯T(M) is compact.

Proof Let us consider � = max{((1 – ε)/(�(ε))) + S(τ , x(τ ))}, 0 ≤ x(τ ) ≤ P. Therefore, for
x(τ ) ∈ M, we have

∥∥T
[
x(τ )

]∥∥ =
1 – ε

�(ε)
∥∥S

(
τ , x(τ )

)∥∥ +
ε

�(ε)	(ε)

∫ τ

0
(τ – ℘)ε–1∥∥S

(
℘, x(℘)

)∥∥d℘

≤ 1 – ε

�(ε)
� +

ε

�(ε)	(ε)
�

(
τ ε

ε

)
(3.6)

≤ 1 – ε

�(ε)
� +

ετ ε

�(ε)	(ε + 1)
�.

If η = max{((1 – ς )/(�(ς ))) + S(τ , x(τ ))}, 0 ≤ y(τ ) ≤ Q for y(τ ) ∈ M, then we have

∥∥T
[
y(τ )

]∥∥ =
1 – ς

�(ς )
∥∥S

(
τ , y(τ )

)∥∥ +
ς

�(ς )	(ς )

∫ τ

0
(τ – ℘)ς–1∥∥S

(
℘, y(℘)

)∥∥d℘

≤ 1 – ς

�(ς )
η +

ς

�(ς )	(ς )
η

(
τ ς

ς

)
(3.7)

≤ 1 – ς

�(ς )
η +

ςτς

�(ς )	(ς + 1)
η.

Due to Eqs. (3.6) and (3.7), we assume that T is bounded. Now observe x(τ ) ∈ M, τ1, τ2;
τ1 < τ2 and if |τ2 – τ1| < μ for given φ > 0, hence

∥∥T
[
x(τ2)

]
– T

[
x(τ1)

]∥∥ ≤ 1 – ε

�(ε)
∥∥S

(
τ2, x(τ2)

)
– S

(
τ1, x(τ1)

)∥∥

+
∥∥∥∥ ε

�(ε)	(ε)

∫ τ2

0
(τ2 – θ )ε–1∥∥S

(
θ , x(θ )

)∥∥dθ

–
ε

�(ε)	(ε)

∫ τ1

0
(τ1 – ℘)ε–1∥∥S

(
℘, x(℘)

)∥∥d℘

∥∥∥∥
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≤ 1 – ε

�(ε)
∥∥S

(
τ2, x(τ2)

)
– S

(
τ1, x(τ1)

)∥∥

+
εP

�(ε)	(ε)

{∫ τ2

0
(τ2 – χ )ε–1 dχ –

∫ τ1

0
(τ1 – χ )ε–1 dχ

}
. (3.8)

Now we assume an integral part

∫ τ2

0
(τ2 – χ )ε–1 dχ –

∫ τ1

0
(τ1 – χ )ε–1 dχ

=
∫ τ1

0

{
(τ1 – χ )ε–1 – (τ2 – χ )ε–1}dχ +

∫ τ2

τ1

{
(τ2 – χ )ε–1}dχ = 2

(τ2 – τ1)ε

ε
. (3.9)

Now we will study the following:

S
(
τ2, x(τ2)

)
– S

(
τ1, x(τ1)

)‖ =
∥∥∥∥h

(
x(τ – 2)

)
– x(τ1))

[
1 –

(x(τ2) – x(τ1))
r

]

– λ(1 – M)
[(

x(τ2) – x(τ1)
)(

y(τ2) – y(τ1)
)]∥∥∥∥. (3.10)

Equation (3.10) by taking the Lipschitz condition of the operator becomes

∥∥S
(
τ2, x(τ2)

)
– S

(
τ1, x(τ1)

)∥∥ ≤ ‖hA‖
[∥∥∥∥1 –

A
r

∥∥∥∥
]

–
∥∥λ(1 – M)(AB)

∥∥

≤
{

h
(

1 –
A
r

)
– λ(1 – M)(B)

}∥∥(
x(τ2) – x(τ1)

)∥∥
≤ {ϕM}∥∥(τ2 – τ1

∥∥ (3.11)

≤ x
∥∥(τ2 – τ1

∥∥,

where ϕ = h(1 – A
k ) – λ(1 – M)(B).

Now putting Eqs. (3.9)–(3.11) in Eq. (3.8), we get

∥∥T
[
x(τ2)

]
– T

[
x(τ1)

]∥∥ ≤ 1 – ε

�(ε)
x‖τ2 – τ1‖ +

εP
�(ε)	(ε)

2
‖τ2 – τ1‖ε

ε

≤ 1 – ε

�(ε)
x‖τ2 – τ1‖ +

2εP
�(ε)	(ε + 1)

(‖τ2 – τ1‖ε
)
,

�1 =
ρ

1–ε
�(ε) x‖τ2 – τ1‖ + 2εP

�(ε)	(ε+1)
(3.12)

such that ‖T[x(τ2)] – T[x(τ1)]‖ < ρ is satisfied.
Now, for y(τ ), we have

∥∥S
[
y(τ2)

]
– S

[
y(τ1)

]∥∥
=

∥∥eλ(1 – M)
[(

x(τ2) – x(τ1)
)(

y(τ2) – y(τ1)
)]

– d
[(

y(τ2) – y(τ1)
)]∥∥. (3.13)

Taking the Lipschitz condition of the operator and Eq. (3.13), we consider the following:

∥∥S
(
τ2, x(τ2)

)
– S

(
τ1, x(τ1)

)∥∥ ≤ ∥∥eλ(1 – M)(AB)
∥∥ –

∥∥d(B)
∥∥
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≤ {
eλ(1 – M)(A) – d

}∥∥y(τ2) – y(τ1)
∥∥

≤ {xM}∥∥(τ2 – τ1
∥∥ (3.14)

≤ ε1
∥∥(τ2 – τ1

∥∥,

where x = eλ(1 – M)(A) – d.
Now we get

∥∥T
[
y(τ2)

]
– T

[
y(τ1)

]∥∥ ≤ 1 – ς

�(ς )
ε‖τ2 – τ1‖ +

ςQ
B(ς )	(ς )

2
‖τ2 – τ1‖ς

ς

≤ 1 – ς

�(ς )
ε‖τ2 – τ1‖ +

2ςQ
�(ς )	(ς + 1)

(‖τ2 – τ1‖ς
)
,

�2 =
ρ

1–ς

�(ς ) x‖τ2 – τ1‖ + 2ςQ
�(ς )	(ς+1)

. (3.15)

Such that ‖T[x(τ2)] – T[x(τ1)]‖ < ε and ‖T[y(τ2)] – T[y(τ1)]‖ < ε hold. So ¯T(M) is
equicontinuous and compact [45] due to the Arzela–Ascoli principle. This completes the
proof. �

Theorem 2 Assume that the function S : [x1, x2] × [0,∞) → [0,∞) is continuous and
S(τ , ·) is increasing for each τ ∈ [x1, x2]. Consider a constant ψ̄�

1 satisfying x(s)ψ̄�
1 ≤ S(τ , ψ̄�

1 ),
x(s)ψ̄�

2 ≥ S(τ , ψ̄�
2 ), 0 ≤ ψ̄�

1 (τ ) ≤ ψ̄�
2 (τ ), x1 ≤ τ ≤ x2. Then the concluding equation has a

positive solution.

Proof We require a fixed point operator of T to research the existence of a positive solu-
tion. With Lemma 1 structure, assume that the operator T : H → H is entirely continuous.
Consider two arbitrary predator population densities of x1 and x2 in H which meet x1 ≤ x2

as well as the densities of prey population S1and S2 in H which satisfy S1 ≤ S2, then S is a
positive function and

∥∥T
[
x1(τ )

]∥∥
≤ 1 – ε

�(ε)
∥∥S

(
τ , x1(τ )

)∥∥ +
ε

�(ε)	(ε)

∫ τ

0
(τ – ℘)ε–1∥∥S

(
℘, x1(℘)

)∥∥d℘, ≤ Tx2(τ ),

∥∥T
[
S1(τ )

]∥∥
≤ 1 – ς

�(ς )
∥∥S

(
τ , S1(τ )

)∥∥ +
ς

�(ς )	(ς )

∫ τ

0
(τ – ℘)ς–1∥∥S

(
℘, S1(℘)

)∥∥d℘, ≤ TS2(τ ),

are satisfied, thus the mapping T is increasing, we have Tψ̄�
2 ≥ ψ̄�

2 and Tψ̄�
2 ≤ ψ̄�

2 . So
T : 〈ψ̄�

1 , ψ̄�
2 〉 → 〈ψ̄�

1 , ψ̄�
2 〉 is a compact operator by the guideline of Lemma 2 and continuous

by the perspective of Lemma 1. As H is a normal cone of T [45], this completes the proof.�

Uniqueness of the special solution Consider

∥∥T
[
x1(τ )

]
– T

[
x2(τ )

]∥∥
≤

∥∥∥∥1 – ε

�(ε)
(S

(
τ , x1(τ )

)
– S

(
τ , x2(τ )

)
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+
ε

�(ε)	(ε)

∫ τ

0
(τ – ℘)ε–1(S

(
℘, x1(℘)

)
– S

(
℘, x2(θ )

))
d℘

∥∥∥∥
≤ 1 – ε

�(ε)
∥∥(S

(
τ , x1(τ )

)
– S

(
τ , x2(τ )

)∥∥

+
ε

�(ε)	(ε)

∫ τ

0
(τ – ℘)ε–1∥∥(

S
(
℘, x1(℘)

)
– S

(
℘, x2(℘)

))∥∥d℘

≤ 1 – ε

�(ε)
K1

∥∥x1(τ ) – x2(τ )
∥∥ +

ε

�(ε)	(ε)
K1

∫ τ

0
(τ – ℘)ε–1∥∥x1(℘) – x2(℘)

∥∥d℘. (3.16)

Thus

∥∥T
[
x1(τ )

]
– T

[
x2(τ )

]∥∥ ≤
{

1 – ε

�(ε)
K1 +

εK1ε
ε

�(ε)	(ε + 1)

}∥∥x1(τ ) – x2(τ )
∥∥, (3.17)

and

∥∥T
[
S1(τ )

]
– T

[
S2(τ )

]∥∥ ≤
{

1 – ς

�(ς )
K2 +

ςK2ε
ς

�(ς )	(ς + 1)

}∥∥S1(τ ) – S2(τ )
∥∥. (3.18)

Therefore, if the following conditions hold:

{
1 – ε

�(ε)
K1 +

εK1ε
ε

�(ε)	(ε + 1)

}
< 1 (3.19)

and
{

1 – ς

�(ς )
K2 +

ςK2ε
ς

�(ς )	(ς + 1)

}
< 1, (3.20)

then the system produces a unique positive solution because mapping T is a contraction
with fixed point.

Numerical approximation The Atangana–Baleanu FO integral numerical approxima-
tion by imposing the Adams–Moulton rule is granted by [24]

AB
0 Iε

τ

[
f (τr1+1)

]
=

1 – ε

�(ε)

[
f (τr1+1) – f (τr1 )

2

]
+

ε

	(ε)

∞∑
r=0

[
f (τr+1) – f (τr)

2

]
bε

r , (3.21)

where bε
r = (r + 1)1–ε – (r)1–ε .

With a similar previous numerical method, we have

x(r1+1)(τ ) – x(r1)(τ )

= xr1
0 (τ ) +

{
1 – ε

�(ε)

[
r
(

x(r1+1)(τ ) – x(r1)(τ )
2

)(
1 – r–1

(
x(r1+1)(τ ) – x(r1)(τ )

2

))

– λ(1 – M)
(

x(r1+1)(τ ) – x(r1)(τ )
2

)(
y(r1+1)(τ ) – y(r1)(τ )

2

)]}

+
ε

�(ε)

∞∑
r=0

bε
r

[
r
(

x(r+1)(τ ) – x(r)(τ )
2

)(
1 – r–1

(
x(r+1)(τ ) – x(r)(τ )

2

))

– λ(1 – M)
(

x(r+1)(τ ) – x(r)(t)
2

)(
y(r+1)(τ ) – y(r)(τ )

2

)]
,
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y(r1+1)(τ ) – y(r1)(τ )

= yr1
0 (τ ) +

{
1 – ε

�(ε)

[
eλ(1 – M)

(
x(r1+1)(τ ) – x(r1)(τ )

2

)(
y(r1+1)(τ ) – y(r1)(τ )

2

)

– d
(

y(r1+1)(τ ) – y(r1)(τ )
2

)]}
+

ε

�(ε)

∞∑
r=0

bε
r

[
eλ(1 – M)

(
x(r+1)(τ ) – x(r)(τ )

2

)

×
(

y(r+1)(τ ) – y(r)(τ )
2

)
– d

(
y(r+1)(τ ) – y(r)(τ )

2

)]
. (3.22)

Now consider FO differential equations with variable-order ABC of model Eq. (2.7), in
which, to justify temporal changes, a FO derivative as a variable is used instead of integer-
order derivatives.

3.1 Predator–prey model involving variable-order fractional derivative
Adams–Moulton method with variable order Now, we show an alteration of variable or-
der ε(τ ) of the Adams–Moulton approach. Along these lines, the algorithm computes
numerical results of a FO differential equation of the kind

ABC
0 Dε(τ )

τ f (τ ) = g
(
τ , f (τ )

)
, f r(0) = f r

0 , r = 0, 1, . . . , r1 – 1, (3.23)

where ε(τ ) > 0 and ABC
0 Dε(τ )

τ is the variable-order Atangana–Baleanu–Caputo FO deriva-
tive.

Equation (3.23) has one solution categorized in τ ∈ [0, T], which can be reformulated
by applying the FO Atangana–Baleanu integral as follows:

f (τ ) = f0 +
1 – ε(τ )
�(ε(τ ))

g
(
τ , f (τ )

)
+

ε(τ )
�(ε(τ ))	(ε(τ ))

∫ τ

0
g
(
℘, f (℘)

)
(τ – ℘)ε(τ )–1 d℘, (3.24)

where �(ε(τ )) = 1 – ε(τ ) + ε(τ )
	(ε(τ )) represents a normalization function.

The solution plot by applying the trapezoidal quadrature formulation appears as de-
scribed:

f P
i+1 = f0 +

1 – ε(τi+1)
�(ε(τi+1))

g(τi+1, fi+1) +
ε(τi+1)

	(ε(τi+1))�(ε(τi+1))

i∑
j=0

bj,i+1g(τj, fj), (3.25)

fi+1 = f0 +
1 – ε(τi+1)
�(ε(τi+1))

g
(
τi+1, f P

i+1
)

+
ε(τi+1)

�(ε(τi+1))

×
[

hε(τi+1)

	(ε(τi+1) + 2)
g
(
τi+1, f P

i+1
)

+
hε(τi+1)

	(ε(τi+1) + 2)

i∑
j=0

aj,i+1g(τj, fj)

]
, (3.26)

where

aj,i+1 =

⎧⎨
⎩

iε(τi+1)+1 – (i – ε(τi+1))(i + 1)ε(τi+1), j = 0,

(i – j + 2)ε(τi+1)+1 + (i – j)ε(τi+1)+1 – 2(i – j + 1)ε(τi+1)+1, 1 ≤ j ≤ i,

and

bj,i+1 =
hε(τi+1)

ε(τi+1)
(
(i + 1 – j)ε(τi+1) – (i – j)ε(τi+1)), j = 0, 1, 2, . . . , i.



Khan et al. Advances in Difference Equations        (2021) 2021:183 Page 10 of 18

Existence and uniqueness of the solution

Theorem 3 We show the existence and uniqueness of the solution.

Proof Assuming that the space

M(Tmax , ymax) = ATmax (τ0) × Dymax (τ0), (3.27)

we define

ĀTmax = [τ0 – τmax, τ0 + τmax] (3.28)

and

D̄ymax = [y0 – ymax, y0 + ymax], (3.29)

a compact cylinder of function f in Eq. (3.23) and Eq. (3.24) is M(Tmax , ymax) and the maxi-
mum gradient M(Tmax , ymax) of a module function is K = sup‖f ‖. Additionally, F is the time
constant for a Lipschitz function f . The Banach fixed point theorem will be used by the
metric on its own built-in space M(Tmax, ymax), which will influence the uniform m norm

‖�‖∞ = sup
τ∈Āmax

∣∣�(τ )
∣∣. (3.30)

Create Picard’s operator

� : M(Tmax , ymax) → M(Tmax , ymax), (3.31)

defined by

�f (τ ) = y0 +
1 – ε(τ )
�(ε(τ ))

g
(
τ , f (τ )

)

+
ε(τ )

�(ε(τ ))	(ε(τ ))

∫ τ

0
g
(
℘, f (℘)

)
(τ – ℘)ε(τ )–1 d℘. (3.32)

Find ‖g�f (τ ) – y0‖ < ymax to establish the condition of well-posedness for which

∥∥�f (τ ) – y0
∥∥

=
∥∥∥∥1 – ε(τ )

�(ε(τ ))
g
(
τ , f (τ )

)
+

ε(τ )
�(ε(τ ))	(ε(τ ))

∫ τ

0
g
(
℘, f (℘)

)
(τ – ℘)ε(τ )–1 d℘

∥∥∥∥. (3.33)

Taking the triangular inequality, we obtain

∥∥�f (τ ) – y0
∥∥∞ ≤

∣∣∣∣1 – ε(τ )
�(ε(τ ))

||∣∣g(
τ , f (τ )

)∣∣∣∣∣∣∞
+

∣∣∣∣ ε(τ )
�(ε(τ ))	(ε(τ ))

∣∣∣∣
∫ τ

0
(τ – θ )ε(τ )

∣∣∣∣
∣∣g(

τ , x(τ )
)∣∣

∣∣∣∣∞ dθ
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≤
∣∣∣∣1 – ε(τ )
�(ε(τ ))

∣∣∣∣K +
∣∣∣∣ ε(τ )
�(ε(τ ))	(ε(τ ))

∣∣∣∣K |τ |

≤ 1 – ε(τ )
�(ε(τ ))

K +
ε(τ )

�(ε(τ ))	(ε(τ ) + 1)
KTε(τ )

max ≤ ymax. (3.34)

For the above, we need to have

K <
ymax

1–ε(τ )
�(ε(τ )) + ε(τ )Tε(τ )

max
�(ε(τ ))	(ε(τ )+1)

. (3.35)

Presently, use an operator of Picard to contract on Tmax under some condition.
Let f1 and f2 be two functions in C[ATmax (τ0), Dymax (y0)], then let us calculate the follow-

ing:

∥∥�(f1) – �(f2)
∥∥∞

=
∥∥∥∥1 – ε(τ )

�(ε(τ ))
g
(
τ , f1(τ )

)
+

ε(τ )
�(ε(τ ))	(ε(τ ))

∫ τ

0
g
(
℘, f1(℘)

)
(τ – ℘)ε(τ )–1 d℘

–
1 – ε(τ )
�(ε(τ ))

g
(
τ , f2(τ )

)
–

ε(τ )
�(ε(t))	(ε(τ ))

∫ τ

0
g
(
℘, f2(℘)

)
(τ – ℘)ε(τ )–1 d℘

∥∥∥∥
≤ 1 – ε(τ )

�(ε(t))

∣∣∣∣
∣∣g(

τ , f1(τ )
)

– g
(
τ , f2(τ )

)∣∣
∣∣∣∣∞

+
ε(τ )

�(ε(t))	(ε(τ ))

∫ τ

0

∣∣∣∣
∣∣g(

℘, f1(℘)
)

– g
(
℘, f2(℘)

)∣∣
∣∣∣∣(τ – ℘)ε(τ )–1 d℘

≤
(

1 – ε(τ )
�(ε(τ ))

)
L
∣∣∣∣
∣∣f1(τ ) – f2(τ )

∣∣
∣∣∣∣∞+

ε(τ )
�(ε(τ ))	(ε(τ ) + 1)

LTε(τ )
max

∣∣∣∣
∣∣f1(τ ) – f2(τ )

∣∣
∣∣∣∣∞

≤
(

1 – ε(τ )
�(ε(τ ))

L +
ε(τ )

B(ε(τ ))	(ε(τ ) + 1)
LTε(τ )

max

)∥∥f1(τ ) – f2(τ )
∥∥∞. (3.36)

The condition for contraction is

1 – ε(τ )
�(ε(τ ))

+
ε(τ )

�(ε(τ ))	(ε(τ ) + 1)
Tε(τ )

max <
1
L

. (3.37)

Under the prior setting, the derived Picard’s operation on a Banach space with the mea-
surement included by norm uniformly is a contraction, hence � has the feature that an
exceptional function x exists means �x = x, which is the special solution of Eq. (3.24). �

4 Predator–prey model with time delay variable-order fractional derivative
Second case Now we assume the system given by Eq. (2.8). The underneath calculation
ascertains a numerical solution of a time delayed FO system:

ABC
0 Dε(τ )

τ y(τ ) = f
(
τ , y(τ ), y(τ – δ)

)
, 0 ≤ τ ≤ T , 0 < ε(τ ) ≤ 1, (4.1)

y(τ ) = g(τ ), –δ ≤ τ ≤ 0,

where T ∈R
+, g(τ ), y(τ ) and y(τ – δ) denote smooth functions and delay by δ ∈R

+.
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If f is a continuous function, the solution of Eq. (4.1) with FO Atangana–Baleanu integral
may be restated as follows:

y(τ ) = y0 +
1 – ε(τ )
�(ε(τ ))

f
(
τ , y(τ ), y(τ – δ)

)

+
ε(τ )

�(ε(τ ))	(ε(τ ))

∫ τ

0
f
(
℘, y(℘), y(u – δ)

)
(τ – ℘)ε(τ )–1 d℘. (4.2)

While implementing the predictor-corrector algorithm, Eq. (4.2) solution can be dis-
crete where y(τ ) should be consistent in [0, T] and differential consistent in (0, T).

Assume a uniform grid {τr1 = r1h : r1 = –M, –M + 1, . . . , –1, 0, 1, . . . , N}, M and N are
integers such that M = δ

h and N = T
h . Let

y(τr1 ) = g(τr1 ), r1 = –M, –M + 1, . . . , –1, 0, (4.3)

notice

y(τn – δ) = y(r1h – Mh) = y(τr1–M), r1 = 0, 1, 2, . . . , N . (4.4)

Now (4.2) is measured by assigning a trapezoidal quadrature scheme and

y(τr1+1) = y0 +
1 – ε(τr1+1)
�(ε(τr1+1))

f
(
τr1+1, yP

n+1, yr1+1–M
)

+
ε(τr1+1)

�(ε(τr1+1))

×
[

hε(τr1+1)

	(ε(τr1+1) + 2)
f
(
τr1+1, yP

r1+1, yn+1–M
)

+
hε(τr1+1)

	(ε(τr1+1) + 2)

r1∑
j=0

aj,r1+1f (τj, yj, yj–M)

]
, (4.5)

where

aj,r1+1 =

⎧⎨
⎩

nε(τr1+1)+1 – (r1 – ε(τn+1))(n + 1)ε(τr1+1) j = 0,

(r1 – j + 2)ε(τr1+1)+1 + (r1 – j)ε(τr1+1)+1 – 2(r1 – j + 1)ε(τr1+1)+1 1 ≤ j ≤ r1,

the predicted value yP(τr1+1) is given by

yP(τr1+1) = y0 +
1 – ε(τr1+1)
�(ε(τr1+1))

f (τr1+1, yr1+1, yr1+1–M)

+
ε(τr1+1)

	(ε(τr1+1))�(ε(τr1+1))

r1∑
j=0

bj,r1+1f (τj, yj–M),

where bj,r1+1 = hε(τr1+1)

ε(τr1+1) ((r1 + 1 – j)ε(τr1+1) – (r1 – j)ε(τr1+1)), j = 0, 1, 2, . . . , r1.
The proof of existence and uniqueness given by Eq. (4.5) is acquired according to the

past case.
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Figure 1 Numerical simulation for the prey–predator model via Atangana–Baleanu–Caputo fractional
derivative with constant order (2.1) via the numerical scheme given by Eq. (3.22). In (a)–(b) phase portrait and
time series x(τ ) and y(τ ) for ε = 1 and ς = 1. In (c)–(d) phase portrait and time series x(τ ) and y(τ ) for
ε = 0.95 ς = 0.9. In (e)–(f) phase portrait and time series x(τ ) and y(τ ) for ε = 0.9 and ς = 0.95

5 Numerical simulations
In this section, we show the dynamics of the fractional-order operator on the proposed
model in the sense of constant fractional-order ε and variable fractional-order operator
ε(τ ). By assuming the parameter values and choosing a numerical method, we illustrate
the mathematical results of the system by Eqs. (2.1), (2.7), and (2.8) with the numerical
simulations (3.22), (3.26), and (4.5). We observed in the Figs. 2a–2f and 3a–3f that conver-
gency of fractional-order derivative is faster than that of noninteger operator. We analyze
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Figure 2 Mathematical reproduction for the prey–predator design by means of the
Atangana–Baleanu–Caputo fractional derivative with variable order (2.7) through the numerical plan
indicated by Eq. (3.26). In (a)–(b) phase portrait and time series x(τ ) and y(τ ) for ε = | sin(ετ )| and
ς = tanh(3 – τ ). In (c)–(d) phase portrait and time series x(τ ) and y(τ ) for for ε = 1 – 1

10 exp(–
1
2 τ ) and ς =

√
τ
2 .

In (e)–(f) phase portrait and time series x(τ ) and y(τ ) for ε = | sin(ετ )| and ς = 1 – 1
10 exp(–

1
2 τ )

the system’s dynamic characteristics to variate fractional-order derivative ε and ε(τ ), indi-
vidually. Simulated values are h = 1.2, r = 40, λ = 1, d = 0.4, e = 0.2, M = 0.1 and the initial
conditions are x(0) = 3 and y(0) = 1. In calculating the estimated solution, the step size
used was Z = 0.0001. The solutions noted in Figs. 1a–1f, 2a–2f, and 3a–3f show numerical
analysis of the suggested model’s special solution as a function of time for various estima-
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Figure 3 Simulation for the delay prey–predator model of variable order (2.8) of the
Atangana–Baleanu–Caputo fractional derivative numerically mentioned as Eq. (4.5). In (a)–(b) phase portrait
and time series x(τ ) and y(τ ) for ε = | sin(ετ )|, ς = tanh(3 – τ ), and κ = 0.01 seconds. In (c)–(d) phase portrait
and time series x(τ ) and y(τ ) for ε = 1 – 1

10 exp(–
1
2 τ ), ς =

√
t

2 , and κ = 0.03 seconds. In (e)–(f) phase portrait
and time series x(τ ) and y(τ ) for ε = | sin(ετ )|, ς = 1 – 1

10 exp(–
1
2 τ ), and κ = 0.5 seconds

tions of (ε –ς ), (ε(τ )–ς (τ )) or delay (κ), arbitrary selected. It is significant that expectation
relies upon the estimation of alpha not just close to the hypothetical boundaries.

6 Conclusions
A model of predator–prey consisting of constant and variable-order time FO with and
without delay (gestation delay) involving operators related to a Mittag-Leffler kernel of
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type Liouville–Caputo is investigated in this paper. Because of this system’s nonlocality,
the predator–prey model was manufactured utilizing another FO differentiation devel-
oped along with the generalized Mittag-Leffler function as a kernel. With finality to make
our model more realistic, preys and predators did not follow the same fractional dynamics
and the orders of FO derivatives of prey and predator population concerning time ε ∈ (0, 1]
and ς ∈ (0, 1] were not equal. The fixed point theorem is beneficial to explain the exis-
tence of a novel model having a special set of solutions. We offered a numerical pattern
dependent on the Adams–Bashforth–Moulton method for variable order. The existence
and uniqueness of this numerical framework and complex dynamics of the structure were
studied with modification of fractional orders (ε – ς ), (ε(τ ) – ς (τ )) or delay (κ).

The presented findings emphasize that the variable-order fractional methodology was
more appropriate to explain complex dynamics configurations under investigation. Even-
tually, the predator–prey model may show rich dynamical conduct. An Intel Core i7,
2.6 GHz CPU, 16.0-GB RAM (Matlab R.2013a) computer program was used to get the
results in this article.
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