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Abstract
Taeniasis and cysticercosis pose a significant challenge to food safety and public
health. Cysticercosis reduces the market value for pigs and cattle by making pork and
beef unsafe for consumption. In this paper, a mathematical model for the
transmission dynamics of taeniasis and cysticercosis in humans, pigs and cattle is
formulated and analyzed. The analysis shows that both the disease free equilibrium
(DFE) and the endemic equilibrium (EE) exist. To study the dynamics of the diseases,
we derived the basic reproduction number R0 by next generation matrix method.
When R0 < 1, the DFE is globally asymptotically stable whereas when R0 > 1 the EE is
globally asymptotically stable. The normalized forward sensitivity index was used to
determine sensitive parameters to the diseases. Humans’ recruitment rate, probability
of humans’ infection with taeniasis and the defecation rate of taenia eggs by humans
with taeniasis are the most positive sensitive parameters to diseases’ transmission
whereas the human natural death rate is the most negative sensitive parameter.
However, it is biologically unethical and not practical to increase human natural
mortality rate for disease control. In this case, other parameters with negative
sensitivity indices such as death rate of taenia eggs and proportions of unconsumed
infected beef and pork can be considered for disease control. Generally, to control the
diseases, more efforts should be made directed to reducing the number of humans
who have taeniasis and defecate in the open environment. Also meat inspection and
indoor keeping of cattle and pigs should be emphasized.

Keywords: Taeniasis; Cysticercosis; Reproduction number; Equilibria; Stability
analysis; Sensitivity analysis

1 Introduction
Taeniasis and cysticercosis are foodborne infections which are caused by the adult and lar-
val form tapeworms, respectively [29]. Three tapeworm species that cause taeniasis in hu-
mans and cysticercosis in humans, pigs and cattle are Taenia solium, Taenia saginata and
Taenia asiatica [36]. While T. asiatica is endemic only in Asia, other tapeworm species are
distributed worldwide [35]. Taeniasis and cysticercosis are associated with poor hygiene
and sanitation, open human defecation, free range farming system for pigs and cattle, and
poverty [11, 35]. They affect mainly poor and marginalized communities who always have
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close contact with pigs and cattle, and depend on pork and beef as their sources of food
[30, 36].

Humans acquire taeniasis when they consume raw or undercooked beef or pork that
contains the tapeworm larval cysts, which develop into adult tapeworms in the human
intestine [36]. When humans who are infected with taeniasis defecate in the fields, the
tapeworm eggs that are passed out with human faeces spread over the environment by
several means, such as water, winds, animal feet and insects, and contaminate the soil,
fodder, pastures and water sources [8]. Domestic cattle acquire cysticercosis when they
feed on the contaminated environment while pigs acquire cysticercosis through direct
consumption of human faeces or indirectly when they ingest taenia eggs from the con-
taminated environment [29]. When taenia eggs are consumed by cattle and pigs, they
hatch, penetrate the intestinal wall and reach the blood circulation system, where they
spread throughout the body tissues and organs such as heart, diaphragm, kidney, lungs,
liver and tongue, and develop into cysticerci [13, 35]. Human cysticercosis is a result of
consuming T. solium eggs from the contaminated environment via contaminated water,
fruits and vegetables, or by putting contaminated fingers in the mouth [7]. Once the eggs
are ingested, they hatch in the small intestine, and develop into larvae which penetrate
the intestinal wall and migrate to various parts of the body such as eyes, muscles, skin and
the central nervous system through the blood circulatory system, where they form larval
cysts [35]. When the cysts reach and infect the brain, they cause neurocysticercosis which
is the most severe form of tapeworm infection of the central nervous system and is the
major cause of epilepsy worldwide [36].

Taeniasis and cysticercosis are endemic in many developing countries of Latin America,
Africa and Asia [29]. The diseases threaten people’s health and livelihood of subsistence
farming communities, posing considerable challenges in food safety and reducing the mar-
ket value of pigs and cattle by making pork and beef unsafe to eat [34, 35]. Globally, the
diseases affect approximately 50 million people and nearly 50,000 people die annually due
to cysticercosis [1]. In 2010, the World Health Organization (WHO) listed cysticercosis as
a major neglected tropical disease and later in 2015, it was identified as a leading cause of
deaths from foodborne diseases. In Tanzania, the disease has been reported to be a serious
health problem whereby the parasite is spread in almost all regions [33]. Porcine cysticer-
cosis has been reported to be highly endemic in southern, central and northern regions
of Tanzania with the prevalence rate of 0.3–17.4%, 14.9% and 5.5–16.9%, respectively
[21, 30]. Human infections have also been reported in the country [15, 23]. For example,
in 2012 Tanzania had 17,853 cases and 212 deaths due to epilepsy while porcine cysticer-
cosis cases were 18i and the economic burden for cysticercosis was estimated to be US$
7.9 million [30].

The diagnosis of human taeniasis is done by examination of stool samples while human
cysticercosis involves doing a biopsy of subcutaneous cysts, immunodiagnosis, radiogra-
phy, computed tomography (CT) scan and magnetic resonance imaging (MRI). The diag-
nosis of neurocysticercosis requires both central nervous system imaging with CT brain
scans or MRI and serological testing [35]. The diagnosis of cysticercosis in pigs and cattle
involves meat inspection, serological tests and tongue inspection for pigs [34]. The treat-
ment of human taeniasis and cysticercosis is through administration of prescribed med-
ication of praziquantel, niclosamide, nitazoxanide or albendazole [35]. The treatment of
neurocysticercosis may involve prolonged doses of albendazole and/or praziquantel with
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supporting therapy such as anti-epileptic drugs, corticosteroids, and possibly surgery for
some cases [35]. Intervention strategies in pigs and cattle involve using vaccines such as
S3Pvac and TSOL18 for pigs and TSA-18 and TSA-9 for cattle [18, 19], and anthelmintic
treatment with flubendazole, fenbendazole, oxfendazole, praziquantel and nitazoxanide
[34, 35].

The use of mathematical models plays an important role in studying the transmission
dynamics of infectious diseases and is very useful for deciding on the appropriate disease
control strategies. Over the past two decades, various mathematical models have been
formulated and analyzed to study the dynamics and control of parasitic foodborne dis-
eases such as cholera, brucellosis and echinococcus [6, 20, 24, 28, 32, 37, 38]. In particular,
some statistical and deterministic models with some stochastic elements that have been
formulated and analyzed to study the transmission dynamics and control of taeniasis and
cysticercosis in humans and pigs can be found in Gonzalez et al. [12], Kyvsgaard et al. [16],
Braae et al. [2], Winskill et al. [34], José et al. [14] and Sánchez-Torreset al. [27]. The study
done by Winskill et al. [34] has assumed that human taeniasis occurs when susceptible
humans interact with pigs that are infected with cysticercosis something that is practi-
cally wrong. Moreover, previous studies did not include the cattle population to study the
transmission dynamics of the taeniasis and cysticercosis. To get new insights on the dis-
eases transmission dynamics, we formulate and analyze the mathematical model for the
transmission dynamics of taeniasis and cysticercosis by including cattle population and
incorporating compartments of infected pork and beef. The cattle population is included
due to its significance in accelerating diseases through feeding on a contaminated envi-
ronment which later affects human beings. Also, the market value of cattle is reduced
and thus affecting the livelihood of subsistence farming communities and leading to food
safety problems.

This paper is organised as follows: the deterministic model and analysis are presented
in Sect. 2, and numerical analysis in Sect. 3. A summary and a conclusion are presented
in Sect. 4.

2 Model formulation and analysis
2.1 Model formulation
The basic model for the dynamics of taeniasis and cysticercosis is formulated by modify-
ing the work by Winskill et al. [34] that studied intervention strategies against T. solium
cysticercosis, by including cattle population and incorporating compartments of infected
pork and beef as described by Kyvsgaard et al. [16]. Taeniasis and cysticercosis use humans
as the definitive hosts, and pigs and cattle as the intermediate hosts [8].

The model divides human population into SH , IHT and IHC classes that represent sus-
ceptible humans, humans infected with taeniasis and humans infected with cysticercosis,
respectively. The pig population is divided into SP and IP classes that represent susceptible
pigs and pigs that are infected with cysticercosis, respectively, while the cattle population
is divided into SC and IC , which represent susceptible cattle and cattle that are infected
with cysticercosis, respectively. The compartments PI and BI represent infected pork and
beef, respectively, and ET represent the number of taenia eggs in the environment.

Susceptible humans are recruited through birth at per capita rate ψ and diminish
through consumption of infected raw or insufficiently cooked pork or beef at rates αp

and αb, respectively. They also diminish by acquiring cysticercosis through consumption
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of T. solium eggs from the contaminated environment at a rate θ either in contaminated
water, fruits, vegetables or by putting contaminated fingers in the mouth [7]. Humans with
cysticercosis increase at a rate θ due to interaction of susceptible humans with T. solium
eggs in the contaminated environment and they reduce due to disease induced death at
rate μd . Humans with taeniasis increase at rates αP and αb when susceptible humans feed
on infected pork and beef, respectively. The parameter βT denotes the probability of sus-
ceptible humans acquiring taeniasis from an infected pork or beef, that is, the per capita
rate at which susceptible individuals acquire infection. All human compartments suffer
natural death rate μh. The number of taenia eggs in the environment grow as a result of
open defecation by humans who are infected with taeniasis at a rate ν and decrease due
to natural death at a rate μe.

Susceptible pigs are recruited at per capita rate � due to birth and reduce at a rate γp

when they acquire cysticercosis from the contaminated environment. Similarly, suscepti-
ble cattle are recruited at per capita rate φ due to birth and diminish at a rate γc when they
acquire cysticercosis from the contaminated environment. Both pigs and cattle are further
slaughtered for consumption at rates ρ and σ , respectively. The infected pigs and cattle
increase at rates γp and γc, respectively, as a consequence of susceptible pigs and cattle
feeding on contaminated environment. All pigs and cattle classes suffer natural death at
rates μp and μc, respectively. The infected pork increases when infected pigs are slaugh-
tered at a rate ω and it decreases when consumed by humans at a rate αp whereas infected
beef increases when infected cattle are slaughtered at a rate η and decreases when con-
sumed by humans at a rate αb. The parameters δ and ε are the proportions of infected
pork and beef unconsumed by susceptible humans.

In model formulation we consider the free range farming system for both pigs and cattle
populations, and we do not consider immigration. We assume that humans can be infected
by either taeniasis or cysticercosis; the number of taenia eggs consumed by humans, pigs
and cattle has negligible effect on the total number of eggs in the environment and that
infected humans, pigs and cattle cannot recover naturally without treatment. We further
assume that pigs and cattle do not suffer disease induced mortality, that they become car-
riers for their life and that the rates at which susceptible humans consume infected raw or
undercooked pork or beef depend on the amount of infected pork or beef that is present.
Humans, pigs and cattle contact rates with taenia eggs in the environment are assumed to
be density dependent. The model for the transmission dynamics of taeniasis and cysticer-
cosis in humans, pigs and cattle is summarized by using the flow diagram in Fig. 1.

The state variables and parameters are summarized in Tables 1 and 2, respectively.
Some parameter values in this paper are assumed within realistic ranges due to the fact

that only little has been done on this area, the diseases being common in rural areas where
there is inadequate or no meat inspection and the treatment is not readily available [22].
The model that describes the transmission dynamics of taeniasis and cysticercosis is gov-
erned by the following system of differential equations:

dSH

dt
= ψ – βT (αpPI + αbBI)SH – θSHET – μhSH ,

dIHT

dt
= βT (αpPI + αbBI)SH – μhIHT ,

dIHC

dt
= θSHET – (μh + μd)IHC ,
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Figure 1 The model flow diagram

Table 1 Description of the state variables

Variable Description Variable Description

SH Susceptible humans PI Cysticercosis infected pork
IHT Humans infected with taeniasis SC Susceptible cattle
IHC Humans infected with cysticercosis IC Cattle infected with cysticercosis
SP Susceptible pigs BI Cysticercosis infected beef
IP Pigs infected with cysticercosis ET Taenia eggs in the environment

dSP

dt
= � – γpSPET – (ρ + μp)SP,

dIP

dt
= γpSPET – (ω + μp)IP,

dPI

dt
= ωIP – (δ + αP)PI ,

(1)

dSC

dt
= φ – γcSCET – (σ + μc)SC ,

dIC

dt
= γcSCET – (η + μc)IC ,

dBI

dt
= ηIC – (ε + αb)BI ,

dET

dt
= νIHT – μeET ,

with initial conditions

SH (0) > 0; IHT (0) ≥ 0; IHC(0) ≥ 0; SP(0) > 0; IP(0) ≥ 0;

PI(0) ≥ 0; SC(0) > 0; IC(0) ≥ 0; BI(0) ≥ 0 and ET (0) ≥ 0.
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Table 2 Parameters’ description and their values (unit: yr–1)

Parameter Description Value Source

ψ Per capita recruitment rate of human population 2247 [37]
μh Per capita natural death rate of humans 0.0141 [32]
μd Human cysticercosis induced death rate 0.0925 [32]
� Per capita recruitment rate of pig population 1450 Assumed
γp T. solium eggs to pig transmission coefficient 0.01 [16]
αp Rate of eating raw/undercooked infected pork 0.012 Assumed
ρ Harvesting rate of susceptible pigs 0.252 Assumed
ω Slaughter rate of infected pigs 0.083×4 [16]
μp Per capita natural death rate of pigs 0.083×12 [34]
δ Proportion of unconsumed infected pork 0.358 Assumed
φ Per capita recruitment rate of cattle population 750 Assumed
γc T. saginata eggs to cattle transmission coefficient 0.00625 Assumed
αb Rate of eating raw/undercooked infected beef 0.023 Assumed
σ Harvesting rate of susceptible cattle 0.213 Assumed
η Slaughter rate of infected cattle 0.235 Assumed
μc Per capita natural death rate of cattle 0.33 [32]
ε Proportion of unconsumed infected beef 0.225 Assumed
βT Probability of humans getting taeniasis 0.093 Assumed
ν Defecation rate by humans with taeniasis 0.150 Assumed
θ T. solium eggs to human cysticercosis transmission coeffient 0.00523 Assumed
μe Per capita death rate of taenia eggs 10.42 [32]

2.2 Positivity of solutions and invariant region
For the model system (1) to be biologically and epidemiologically meaningful, we need to
show that the model solutions are positive and bounded.

2.2.1 Positivity of solutions
From the first equation in the model system (1) for susceptible humans, we have

dSH

dt
= ψ – βT (αpPI + αbBI)SH – θSHET – μhSH ,

dSH

dt
≥ –

(
βT (αpPI + αbBI) + θET + μh

)
SH ,

dSH

SH
≥ –

(
βT (αpPI + αbBI) + θET + μh

)
dt,

SH (t) ≥ SH (0)e
∫ t

0 –(βT (αpPI +αbBI )+θET +μh) ds ≥ 0, ∀t ≥ 0.

Using the same approach, it can be shown that

IHT (t) ≥ 0; IHC(t) ≥ 0; SP(t) ≥ 0; IP(t) ≥ 0; PI(t) ≥ 0;

SC(t) ≥ 0; IC(t) ≥ 0; BI(t) ≥ 0; ET (t) ≥ 0, ∀t ≥ 0.

Therefore, all solutions of the model system (1) are positive for all t ≥ 0.

2.2.2 Invariant region
To show that the model solutions are bounded, we let the total populations for humans,
pigs and cattle be H = SH + IHT + IHC , TP = SP + IP and TC = SC + IC , respectively. By con-
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sidering the human population, we have

dH
dt

= ψ – μhH – μdIHC ,

dH
dt

+ μhH ≤ ψ .
(2)

Integrating throughout, we obtain

H(t) ≤ ψ

μh
+

(
H(0) –

ψ

μh

)
e–μht , (3)

where H(0) = SH(0) + IHT (0) + IHC(0). Following the same procedures, it can be shown that
the populations for pigs and cattle are given by

TP(t) ≤ �

μp
+

(
TP(0) –

�

μp

)
e–μpt and TC(t) ≤ φ

μc
+

(
TC(0) –

φ

μc

)
e–μct , (4)

respectively, where TP(0) = SP(0) + IP(0) and TC(0) = SC(0) + IC(0). The analysis of the
solutions (3) and (4) considers two cases: when H(0) > ψ

μh
, TP(0) > �

μp
, TC(0) > φ

μc
and

when H(0) < ψ

μh
, TP(0) < �

μp
, TC(0) < φ

μc
, which gives

H(t) ≤ �t = max

{
ψ

μh
, H(0)

}
,

TP(t) ≤ �t = max

{
�

μp
, TP(0)

}
,

TC(t) ≤ �t = max

{
φ

μc
, TC(0)

}
.

(5)

Since H(t) = SH + IHT + IHC ≤ �t , it follows that IHT ≤ �t . We need to show that ET is also
bounded. By considering the last equation in model system (1), we have

dET

dt
= νIHT – μeET ,

dET

dt
+ μeET = νIHT ,

dET

dt
+ μeET ≤ ν�t .

(6)

Integrating throughout, we obtain

ET (t) ≤ ν�t

μe
+

(
ET (0) –

ν�t

μe

)
e–μet , (7)

from which we get

ET (t) ≤ �t = max

{
ν�t

μe
, ET (0)

}
.
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Using the same approach for the sixth and ninth equations in model system (1), we get

PI(t) ≤ �t = max

{
ω�t

(αb + δ)
, PI(0)

}
and BI(t) ≤ ξt = max

{
η�t

(ε + αb)
, BI(0)

}
.

Therefore, all solutions of the model system (1) are positive invariant in the region

� =
{

(SH , IHT , IHC , SP, IP, PI , SC , IC , BI , ET ) ∈R
10
+ : 0 ≤ H(t) ≤ �t ; 0 ≤ Tp(t) ≤ �t ;

0 ≤ TC(t) ≤ �t ; 0 ≤ ET (t) ≤ �t ; 0 ≤ PI(t) ≤ �t ; 0 ≤ BI(t) ≤ ξt
}

.

All solutions which start at the boundary of region � converge to this region. The model
system (1) is biologically and epidemiologically meaningful and therefore we can consider
the flow generated by the model for analysis.

2.3 Equilibrium states and reproduction number R0

2.3.1 The disease free equilibrium (E0)
When there are no infections in humans, pigs and cattle populations, we obtain the disease
free equilibrium E0 which is given by

E0 =
(

ψ

μh
, 0, 0,

�

(ρ + μp)
, 0, 0,

φ

(σ + μc)
, 0, 0, 0

)
.

2.3.2 The basic reproduction number R0

The basic reproduction number R0 is the expected number of secondary infections that
may occur as a result of introducing one infected individual in a fully susceptible popula-
tion [9]. When R0 < 1, the disease clears whereas, when R0 > 1, the disease persists within
the population. In computing R0, we adopt the next generation matrix method as used by
Van den Driessche and Watmough [31]. Let Fi be the new infections in compartment i
and V+

i and V–
i be the transfer terms in and out of the compartment i, respectively, then

the infected classes can be written as

dxi

dt
= Fi(x) – V+

i (x) – V–
i (x).

Using the next generation matrix method, we define Fi and Vi by

Fi =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎝

βT (αpPI + αbBI)SH

θSHET

γpSPET

0
γcSCET

0
0

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎠

, Vi =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎝

μhIHT

(μh + μd)IHC

(ω + μp)IP

–ωIP + (δ + αp)PI

(η + μc)IC

–ηIC + (ε + αb)BI

–νIHT + μeET

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎠

. (8)

The Jacobian of matrices Fi and Vi at the disease free equilibrium E0 are given by

F =
∂Fi

∂xj

(
E0), V =

∂Vi

∂xj

(
E0). (9)
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The basic reproduction number R0 is given by

R0 = ρ
(
FV –1). (10)

Using the definitions in (9), we have

F =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎝

0 0 0 βT αpψ

μh
0 βT αbψ

μh
0

0 0 0 0 0 0 θψ

μh

0 0 0 0 0 0 γp�

(ρ+μp)

0 0 0 0 0 0 0
0 0 0 0 0 0 γcφ

(σ+μc)
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎠

and

V =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎝

μh 0 0 0 0 0 0
0 (μh + μd) 0 0 0 0 0
0 0 (ω + μp) 0 0 0 0
0 0 –ω δ + αp 0 0 0
0 0 0 0 η + μc 0 0
0 0 0 0 –η (ε + αb) 0

–ν 0 0 0 0 0 μe

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎠

.

The next generation matrix is given by

FV –1 =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎝

0 0 βT ωαpS0
H

C1

βT αpS0
H

(δ+αp)
βT ηαbS0

H
C2

βT αbS0
H

(ε+αb) 0
νθS0

H
μeμh

0 0 0 0 0 θS0
H

μe
νγpS0

P
μeμh

0 0 0 0 0 γpS0
P

μe

0 0 0 0 0 0 0
νγcS0

C
μeμh

0 0 0 0 0 γcS0
C

μe

0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎠

,

where C1 = (ω+μp)(δ +αp), C2 = (η+μc)(ε +αb), S0
H = ψ

μh
, S0

P = �
(ρ+μp) and S0

C = φ

(σ+μc) . Using
the definition in (10), the basic reproduction number R0 is given by

R0 =
√

RHP + RHC , (11)

where

RHP =
βTναpγpωψ�

μ2
hμe(ω + μp)(αp + δ)(μp + ρ)

and

RHC =
βTναbγcηψφ

μ2
hμe(η + μc)(αb + ε)(μc + σ )

.

RHP is the partial reproduction number due to interaction of humans and pigs whereas
RHC is the partial reproduction number due to interaction of humans and cattle. To give
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the biological meaning for R0, we rewrite RHP and RHC in the forms

RHP = βTγp
ψ

μh

ν

μe

1
μh

�

(μp + ρ)
ω

(ω + μp)
αp

(αp + δ)
,

RHC = βTγc
ψ

μh

ν

μe

1
μh

φ

(μc + σ )
η

(η + μc)
αb

(αb + ε)
.

(12)

The terms in (12) can be interpreted as follows: ν/μe is the density of taenia eggs re-
leased by humans with taeniasis, 1/μh is the human life expectancy and βT is the proba-
bility of humans to be infected with taeniasis due to consumption of raw or insufficiently
cooked pork or beef infected with tapeworm larval cysts. The terms ψ/μh,�/(μp +ρ) and
φ/(μc + σ ) are initial populations for susceptible humans, susceptible pigs and susceptible
cattle, respectively; 1/(μp + ρ) and 1/(μc + σ ) are the average times pigs and cattle spend
in susceptible classes, respectively; 1/(ω + μp) and 1/(η + μc) are the infectious periods of
infected pigs and cattle, respectively; 1/(αp + δ) and 1/(αb + ε) are the average infectious
period for infected pork and beef, respectively, whereas ω/(ω + μp) and η/(η + μc) are the
proportions of infected pigs and cattle that are slaughtered for consumption, respectively.
The terms αp/(αp + δ) and αb/(αb + ε) are the proportions of infected pork and beef that
are eaten by susceptible humans, respectively, whereas γp and γc are the rates at which T.
solium eggs and T. sagnata eggs are consumed by pigs and cattle, respectively, from the
contaminated environment.

2.3.3 Sensitivity analysis
To determine how sensitive the model parameters are to the diseases’ transmission, we
adopt the normalized forward sensitivity index approach as used by Chitnis et al. [5]. If κ

is a parameter in the basic reproduction number R0, then the sensitivity index of R0 with
respect to κ is given by

�R0
κ =

∂R0

∂κ
× κ

R0
. (13)

Using Eq. (13) and parameter values in Table 2, we obtain sensitivity indices for each pa-
rameter as shown in Table 3. The positive sign of sensitivity index indicates that an increase
or decrease of parameter value while keeping other parameters constant increases or de-
creases the basic reproduction number R0. The negative sign indicates that an increase or
decrease of parameter value causes a decrease or increase in expected new average infec-
tion R0. For instance, γp = +0.1421 means that an increase in γp by 10%, increases R0 by
1.421% and hence the disease transmission; and δ = –0.1375 means that an increase in δ

by 20% causes a decrease in R0 by 2.75% and thus decrease the disease transmission.
The most positive sensitive parameters in the model are human’s recruitment (ψ ), the

probability of humans infection with taeniasis (βT ) and the defecation rate by humans
who are infected with taeniasis (ν) whereas the most negative sensitive parameter is the
natural mortality rate of humans (μh). However, since it is unethical and not practical to
increase human natural mortality, other parameters with negative sensitivity indices such
as death rate of taenia eggs and proportions of unconsumed infected beef and pork can
be considered for disease control.

The sensitivity indices for all parameters in the basic reproduction number R0 are plot-
ted on a bar graph in Fig. 2.
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Table 3 Sensitivity indices

Parameter Sensitivity Index Parameter Sensitivity Index

� +0.1421 ω +0.1066
ψ +0.3579 η +0.2090
φ +0.5000 ν +0.5000
γp +0.1421 δ –0.1375
γc +0.3579 ε –0.3343
αp +0.1375 μp –0.2200
αb +0.3343 μh –1.0000
βT +0.5000 μc –0.4266
σ –0.1404 μe –0.5000
ρ –0.0287

Figure 2 Graphical representation of sensitivity indices

2.3.4 The endemic equilibrium (E∗)
The endemic equilibrium is a point at which taeniasis and cysticercosis exist in hu-
mans, pigs and cattle populations. It is obtained by setting the derivatives in model sys-
tem (1) equal to zero and solving for state variables. The endemic equilibrium E∗ =
(S∗

H , I∗
HT , I∗

HC , S∗
P, I∗

P , P∗
I , S∗

C , I∗
C , B∗

I , E∗
T ) is given by

S∗
H =

ψ

(βT F0E∗
T + θE∗

T + μh)
, I∗

HT =
βT F0E∗

T S∗
H

μh
, I∗

HC =
θS∗

HE∗
T

(μh + μd)
,

S∗
P =

�

(γpE∗
T + ρ + μp)

, I∗
P =

γp�E∗
T

(γpE∗
T + ρ + μp)(ω + μp)

,

P∗
I =

ωγp�E∗
T

(γpE∗
T + ρ + μp)(ω + μp)(δ + αp)

, S∗
C =

φ

(γcE∗
T + σ + μc)

,

I∗
C =

γcφE∗
T

(γcE∗
T + σ + μc)(η + μc)

, B∗
I =

ηγcφE∗
T

(γcE∗
T + σ + μc)(η + μc)(ε + αb)

,

where

F0 =
αpωγp�

(γpE∗
T + ρ + μp)(ω + μp)(αp + δ)

+
αbηγcφ

(γcE∗
T + σ + μc)(η + μc)(αb + ε)

.
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Table 4 Number of possible positive real roots when R0 < 1 and R0 > 1

Cases a0 a1 a2 a3 R0 No. of Sign Change No. of + ve Real Roots

1 + + + + R0 < 1 0 0
2 + + + – R0 > 1 1 1
3 + + – + R0 < 1 2 0,2
4 + + – – R0 > 1 1 1

To obtain E∗
T , we solve for the real roots of the polynomial:

a0E∗
T

3 + a1E∗
T

2 + a2E∗
T + a3 = 0, (14)

where

a0 = 1 > 0,

a1 =
αpω�βT

θ (μp + ω)(αp + δ)
+

αbηφβT

θ (μc + η)(αp + ε)
+

(μc + σ )
γc

+
(μp + ρ)

γp
+

μh

θ
> 0,

a2 =
(ρ + μp)(σ + μc)

γcγp
+

μh(σ + μc)
θγc

+
μh(ρ + μp)

θγp
+

αpω�βT (σ + μc)
θγc(μp + ω)(αp + δ)

+
αbηφβT (ρ + μp)

θγp(μc + η)(αp + ε)
–

(
νψβTαpω�γc

μhμeγcθ (μp + ω)(αp + δ)
+

νψβTαbηφγp

μhμeγpθ (μc + η)(αp + ε)

)
,

a3 =
μh(σ + μc)(ρ + μp)(1 + R0)(1 – R0)

θγcγp
.

To analyze the possible number of positive real roots of polynomial (14) when R0 < 1
and R0 > 1, we adopt the approach in Okosun et al. [25]. Using this approach, the number
of possible real roots when R0 < 1 and R0 > 1 are summarized in Table 4.

Therefore the model system (1) has a unique endemic equilibrium when R0 > 1 as shown
in cases 2 and 4. Hence we state the following theorem.

Theorem 1 The model system (1) has a unique endemic equilibrium when the basic re-
production number R0 > 1.

2.4 Stability analysis of equilibrium states
2.4.1 The global stability of the disease free equilibrium (E0)
Theorem 2 The disease free equilibrium (E0) of the model system (1) is globally asymp-
totically stable when R0 < 1.

Proof To analyze the global stability of the disease free equilibrium, we adopt the approach
used in Castillo-Chavez et al. [4] and Dumont et al. [10]. Using this method, the system of
differential equations (1) is written as

dXr

dt
= B(Xr – XDFE) + B1Xn,

dXn

dt
= B2Xn,

(15)

where Xr and Xn are the non-transmitting and transmitting classes, respectively, XDFE is
the disease free equilibrium, whereas B, B1 and B2 are the matrices to be computed. Here,
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we have

Xr = (SH , SP, SC)T ,

XDFE =
(

ψ

μh
,

�

μp + ρ
,

φ

μc + σ

)T

.
(16)

Thus,

Xr – XDFE =
(

SH –
ψ

μh
, SP –

�

μp + ρ
, SC –

φ

μc + σ

)T

. (17)

Therefore from Eq. (15), we have

⎛

⎜
⎝

ψ – βT (αpPI + αbBI)SH – θSHET – μhSH

� – γpSPET – (ρ + μp)SP

φ – γcSCET – (σ + μc)SP

⎞

⎟
⎠ = B

⎛

⎜
⎝

SH – ψ

μh

SP – �
μp+ρ

SC – φ

μc+σ

⎞

⎟
⎠ + B1

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

IHT

IHC

IP

PI

IC

BI

ET

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

(18)

and

⎛

⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜
⎝

βT (αpPI + αbBI)SH – μhIHT

θSHET – (μh + μd)IHC

γpSPET – (ω + μp)IP

ωIP – (δ + αp)PI

γcSCET – (η + μc)IC

ηIC – (ε + αb)BI

νIHT – μeET

⎞

⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟
⎠

= B2

⎛

⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜
⎝

IHT

IHC

IP

PI

IC

BI

ET

⎞

⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟
⎠

. (19)

From (18) and (19), the matrices B, B1 and B2 are given by

B =

⎛

⎜
⎝

–μh 0 0
0 –(ρ + μp) 0
0 0 –(σ + μc)

⎞

⎟
⎠ ,

B1 =

⎛

⎜
⎝

0 0 0 –βTαpSH 0 –βTαbSH –θSH

0 0 0 0 0 0 γpSP

0 0 0 0 0 0 γcSC

⎞

⎟
⎠ ,
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and

B2 =

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

–μh 0 0 βTαpSH 0 βTαbSH 0
0 –(μh + μd) 0 0 0 0 θSH

0 0 –(ω + μp) 0 0 0 γpSP

0 0 ω –(δ + αp) 0 0 0
0 0 0 0 –(η + μc) 0 γcSC

0 0 0 0 η –(ε + αb) 0
ν 0 0 0 0 0 –μe

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

.

It can be observed that matrix B has real and negative eigenvalues. Thus, the system

dXr

dt
= B(Xr – XDFE) + B1Xn (20)

is globally asymptotically stable at XDFE.
To prove the stability of B2, we adopt the idea of stable Metzler matrix and apply the

lemma in Dumont et al. [10]. A Metzler matrix is a matrix whose of-diagonal elements
are non-negative, denoted by B2(i, j) ≥ 0, for all i �= j. Thus, it can be observed that B2 is a
Metzler matrix. �

Lemma 1 Let M be a square Metzler matrix written in block form:

M =

(
P Q
R S

)

,

where P and S are square matrices. M is Metzler stable if and only if matrices P and S –
RP–1Q are Metzler stable.

Proof Comparing the Metzler matrix B2 with a square Metzler matrix M, the matrices P,
Q, R and S are defined as

P =

⎛

⎜
⎝

–μh 0 0
0 –(μh + μd) 0
0 0 –(ω + μp)

⎞

⎟
⎠ , Q =

⎛

⎜
⎝

βTαpSH 0 βTαbSH 0
0 0 0 θSH

0 0 0 γpSP

⎞

⎟
⎠ ,

R =

⎛

⎜⎜⎜
⎝

0 0 ω

0 0 0
0 0 0
ν 0 0

⎞

⎟⎟⎟
⎠

, S =

⎛

⎜⎜⎜
⎝

–(δ + αp) 0 0 0
0 –(η + μc) 0 γcSC

0 η –(ε + αb) 0
0 0 0 –μe

⎞

⎟⎟⎟
⎠

.

Clearly, P is a stable Metzler matrix. After some computations, we obtain

S – RP–1Q =

⎛

⎜
⎜⎜
⎜
⎝

–(δ + αp) 0 0 ωγpSP
(ω+μp)

0 –(η + μc) 0 γcSC

0 η –(ε + αb) 0
νβT αpSH

μh
0 νβT αbSH

μh
–μe

⎞

⎟
⎟⎟
⎟
⎠

.
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Thus, S – RP–1Q is Metzler stable if Det(S – RP–1Q) > 0. That is,

W(δ + αp)μe –
νβT SH (ωαpγpWSP + ηαbγc(δ + αb)(ω + μp)SC)

μh(ω + μp)
> 0, (21)

where W = (ε + αc)(η + μc). Substituting the values for SH , SP and SC at disease free equi-
librium into (21) and simplifying the expression, we obtain 1 – R2

0 > 0, where R0 is given
in (11). Therefore, the disease free equilibrium E0 is globally asymptotically stable when
R0 < 1. �

2.4.2 Global stability of the endemic equilibrium (E∗)
Theorem 3 The endemic equilibrium (E∗) for the model system (1) is globally asymptoti-
cally stable when R0 > 1.

Proof Since the endemic equilibrium exists if and only if R0 > 1, we adopt the approach in
Osman et al. [26] to prove global stability of endemic equilibrium E∗. Consider the non-
linear Lyapunov function

L = S∗
H

(
SH

S∗
H

– ln
SH

S∗
H

)
+ I∗

HT

(
IHT

I∗
HT

– ln
IHT

I∗
HT

)
+ I∗

HC

(
IHC

I∗
HC

– ln
IHC

I∗
HC

)

+ S∗
P

(
SP

S∗
P

– ln
SP

S∗
P

)
+ I∗

P

(
IP

I∗
P

– ln
IP

I∗
P

)
+ P∗

I

(
PI

P∗
I

– ln
PI

P∗
I

)
+ S∗

C

(
SC

S∗
C

– ln
SC

S∗
C

)

+ I∗
C

(
IC

I∗
C

– ln
IC

I∗
C

)
+ B∗

I

(
BI

B∗
I

– ln
BI

B∗
I

)
+ E∗

T

(
ET

E∗
T

– ln
ET

E∗
T

)
, (22)

The time derivative of the Lyapunov function L is

dL
dt

=
(

1 –
S∗

H
SH

)
dSH

dt
+

(
1 –

I∗
HT

IHT

)
dIHT

dt
+

(
1 –

I∗
HC

IHC

)
dIHC

dt
+

(
1 –

S∗
P

SP

)
dSP

dt

+
(

1 –
I∗

P
IP

)
dIP

dt
+

(
1 –

P∗
I

PI

)
dPI

dt
+

(
1 –

S∗
C

SC

)
dSC

dt
+

(
1 –

I∗
C

IC

)
dIC

dt

+
(

1 –
B∗

I
BI

)
dBI

dt
+

(
1 –

E∗
T

ET

)
dET

dt
. (23)

Substituting the equations of model system (1) into Eq. (23), we have

dL
dt

=
(

1 –
S∗

H
SH

)
(ψ – βTαpPISH – βTαbBISH – θSHET – μhSH )

+
(

1 –
I∗

HT
IHT

)(
βT (αpPI + αbBI)SH – μhIHT

)

+
(

1 –
I∗

HC
IHC

)(
θSHET – (μh + μd)IHC

)

+
(

1 –
S∗

P
SP

)
(
� – γpSPET – (ρ + μp)SP

)
+

(
1 –

I∗
P

IP

)
(
γpSPET – (ω + μp)IP

)

+
(

1 –
P∗

I
PI

)
(
ωIP – (δ + αp)PI

)
+

(
1 –

S∗
C

SC

)
(
φ – γcSCET – (σ + μc)SC

)

+
(

1 –
I∗

C
IC

)(
γcSCET – (η + μc)IC

)
+

(
1 –

B∗
I

BI

)(
ηIC – (ε + αb)BI

)
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+
(

1 –
E∗

T
ET

)
(νIHT – μeET ). (24)

Equation (24) can also be written as

dL
dt

= ψ – βTαpPISH – βTαbBISH – θSHET – μhSH

–
ψS∗

H
SH

+ βTαpPIS∗
H + βTαbBIS∗

H + θET S∗
H + μhS∗

H + βTαpPISH

+ βTαbBISH – μhIHT –
βTαpPISHI∗

HT
IHT

–
βTαbBISHI∗

HT
IHT

+ μhI∗
HT + θSHET

– (μh + μd)IHC –
θSHET I∗

HC
IHC

+ (μh + μd)I∗
HC + � – γpSPET – (ρ + μp)SP

–
�S∗

P
SP

+ γpET S∗
P + (ρ + μp)S∗

P + γpSPET – (ω + μp)IP –
γpSPET I∗

P
IP

+ (ω + μp)I∗
P + ωIP – (δ + αp)PI –

ωIPP∗
I

PI
+ (δ + αp)P∗

I + φ – γcSCET

– (σ + μc)SC –
φS∗

C
SC

+ γcET S∗
C + (σ + μc)S∗

C + γcSCET – (η + μc)IC

–
γcSCET I∗

C
IC

+ (η + μc)I∗
C + ηIC – (ε + αb)BI –

ηICB∗
I

BI
+ (ε + αb)B∗

I + νIHT

– μeET –
νIHT E∗

T
ET

+ μeE∗
T . (25)

Similarly, Eq. (25) can be written as

dL
dt

= J – P , (26)

where

J = ψ + βTαpPIS∗
H + βTαbBIS∗

H + θET S∗
H + μhS∗

H + βTαpPISH + βTαbBISH

+ μhI∗
HT + θSHET + (μh + μd)I∗

HC + � + γpET S∗
P + (ρ + μp)S∗

P + γpSPET

+ (ω + μp)I∗
P + ωIP + (δ + αp)P∗

I + φ + γcET S∗
C + (σ + μc)S∗

C + γcSCET

+ (η + μc)I∗
C + ηIC + (ε + αb)B∗

I + νIHT + μeE∗
T ,

P = βTαpPISH + βTαbBISH + θSHET + μhSH +
ψS∗

H
SH

+ μhIHT +
βTαpPISHI∗

HT
IHT

+
βTαbBISHI∗

HT
IHT

+ (μh + μd)IHC +
θSHET I∗

HC
IHC

+ γpSPET + (ρ + μp)SP

+
�S∗

P
SP

+ (ω + μp)IP +
γpSPET I∗

P
IP

+
ωIPP∗

I
PI

+ γcSCET + (σ + μc)SC

+
φS∗

C
SC

+ (δ + αp)PI + (η + μc)IC +
γcSCET I∗

C
IC

+ (ε + αb)BI +
ηICB∗

I
BI

+ μeET +
νIHT E∗

T
ET

.
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It can be seen from Eq. (26) that if J < P then dL
dt < 0 and if � = �∗ then dL

dt = 0. Thus,
the largest invariant set in � is the endemic equilibrium. Hence from the LaSalle invari-
ant principle [17], we can conclude that, as t → ∞, the solution of the model system (1)
approaches the endemic equilibrium when R0 > 1. Therefore, the endemic equilibrium is
globally asymptotically stable in the invariant set � if J < P . �

3 Numerical simulations
To understand well the dynamics of taeniasis and cysticercosis in humans, pigs and cattle,
we simulate the model (1) using parameters from different literature and some are as-
sumed as indicated in Table 2. To obtain initial conditions we consider a village with 5420
susceptible humans, 750 humans with taeniasis, 528 humans with cysticercosis, 1050 sus-
ceptible pigs, 620 infected pigs, 1250 susceptible cattle, 850 infected cattle and 1000 taenia
eggs in the environment. We quantify pork and beef in terms of the number of infected
pigs and cattle that are slaughtered for consumption. The Runge–Kutta order 4 numerical
method is used to simulate the model in MATLAB software.

3.1 The fourth order Runge–Kutta method (RK4)
The 4th order Runge Kutta method (RK4) is a numerical method for solving a system of
ordinary differential equations. The advantage of using RK4 over other numerical meth-
ods is that it is more accurate as it has high-order local truncation error O(h4) of the Taylor
methods and eliminates the need of computing and evaluating the derivatives of a func-
tion. RK4 approximates the solution of the initial value system of the first order differential
equation of the form

dy
dt

= f
(
t, y(t)

)
; y(t0) = y0.

The method uses the initial value of the function to start the algorithm:

k1 = hf (ti, yi, ), k2 = hf
(

ti +
h
2

, yi +
1
2

k1,
)

, k3 = hf
(

ti +
h
2

, yi +
1
2

k2,
)

,

k4 = hf (ti+1, yi + k3, ), yi+1 = yi +
1
6

(k1 + 2k2 + 2k3 + k4),

for each i = 1, 2, 3, . . . , N – 1, where h > 0 is the given step size and k1, k2, k3, k4 are constants
that are used to eliminate the need for successive nesting in the second variable of f (t, y)
[3].

3.2 Model simulation
The infected cattle and pigs increase initially to their maximum in the first six months
and later they decline and remain constant as illustrated in Fig. 3(a) and (b). The decline of
infected cattle and pigs is in correspondence with the decline of taenia eggs in environment
as shown in Fig. 3(d). This situation can happen if humans with taeniasis have toilets and
hence do not shed taenia eggs in the environment. Susceptible cattle and pigs decrease to
their lowest following infection by cysticercosis. However, they increase between the first
and fourth year and thereafter remain constant.

In Fig. 3(c), susceptible humans decline rapidly in the first six months. However, at the
end of the first year, susceptible humans increase gradually until the third year where they
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Figure 3 Dynamics of Humans, Pigs, Cattle and Taenia Eggs

remain constant. Humans with cysticercosis increase rapidly in the first six months and
then with gradual increase until the second year where they remain constant. These trends
are caused by variation of taenia eggs in the environment as depicted by Fig. 3(d) and con-
sumption of raw or undercooked infected pork and beef. On the other hand, humans who
are infected with taeniasis increase with time in the first two years and then increases lin-
early with time. This can happen if humans have habit of consuming raw or insufficiently
cooked infected beef and pork.

3.3 Effect of varying the most sensitive parameters
In this subsection we present numerical simulation by considering the most sensitive pa-
rameters to observe how they affect disease transmission in humans, pigs and cattle. From
the sensitivity analysis, the most positive sensitive parameters are the human recruitment
rate (ψ ), probability of humans to be infected with taeniasis (βT ) and the defection rate
of humans with taeniasis (ν) whereas the most negative sensitive parameter is the natural
mortality rate of humans (μh).

3.3.1 Effect of varying human recruitment rate (ψ )
The dynamics of taeniasis and cysticercosis shows that humans with taeniasis and cysticer-
cosis, and infected cattle and pigs will increase in proportion to the human recruitment
rate as illustrated in Fig. 4.

3.3.2 Effect of varying defecation rate (ν)
Infected pigs and cattle, and humans who are infected with cysticercosis increase with time
as a result of increase in defecation rate as depicted by Fig. 5(a), (b), (d). A different trend
can be observed for humans who are infected with taeniasis in Fig. 5(c) where there is a



Mwasunda et al. Advances in Difference Equations        (2021) 2021:176 Page 19 of 23

Figure 4 Impact of varying human recruitment rate on infected populations

Figure 5 Impact of varying defecation rate on infected populations

decrease in cases of humans who are infected when the human defecation rate is increased.
This is due to the fact that a high defecation rate can result in an expel of a high number
of taenia eggs and so the possibility of recovery.
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Figure 6 Impact of varying probability of infection on infected populations

3.3.3 Effect of varying probability of taeniasis infection (βT )
In Fig. 6(a), (b), (c); the infected pigs, cattle and humans who are infected with taeniasis
show an increase with time when the probability of taeniasis infection is increased. A dif-
ferent trend can be seen for humans who are infected with cysticercosis in Fig. 6(d), which
shows the decrease in disease prevalence with increase in probability of taeniasis infec-
tion. This is because humans cysticercosis does not depend on the probability of human
infection with taeniasis but on the rate at which humans consume T. solium eggs from the
contaminated environment.

3.3.4 Effect of varying human natural death rate (μh)
In Fig. 7, the results show that an increase in human natural mortality rate has negative
impact in disease prevalence for all infected sub-populations. This indicates that human
beings play an important role in transmission of the two diseases.

4 Conclusion and recommendation
In this paper, a mathematical model for the transmission dynamics of taeniasis and cys-
ticercosis in humans, pigs and cattle is presented and analyzed. The model is well posed
since the model solutions are positive and bounded. The disease free and endemic equi-
libria exist and their stability are investigated. The next generation approach is used to
compute the basic reproduction number R0. The analysis has shown that the disease free
equilibrium is globally asymptotically stable when basic reproduction number R0 < 1 while
the endemic equilibrium is globally asymptotically stable when R0 > 1. The effect of the
most sensitive parameters in the diseases’ transmission dynamics was assessed. Numerical
results indicate that increasing human recruitment rate (ψ) leads to an increased disease
prevalence whereas increasing human natural death rate (μh) reduces disease prevalence
in all populations. On the other hand, increasing probability of human infection with tae-
niasis (βT ) increases the number of infected pigs, cattle and humans with taeniasis and
reduces the number of cases for humans with cysticercosis. Similarly, increasing open hu-
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Figure 7 Impact of varying human natural death rate on infected populations

man defecation rate (ν) leads to an increased number of cases for infected pigs, cattle and
humans with cysticercosis and decreases the number of cases for humans with taeniasis.

To control the diseases, the open human defecation rate should be reduced through use
of toilets, especially in rural communities where pigs and cattle are kept under a free range
system, treatment of infected individuals and proper cooking of pork and beef. To reduce
the rate of transfer of infections from contaminated environment, we recommend pigs
and cattle vaccination, indoor keeping of pigs and cattle as well as improvement in hygiene
and sanitation. Moreover, infected pigs and cattle should be treated and meat inspection
should be promoted to reduce the rate at which humans are infected with taeniasis.
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