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Abstract
In this manuscript, we investigate a novel
Susceptible–Exposed–Infected–Quarantined–Recovered (SEIQR) COVID-19
propagation model with two delays, and we also consider supply chain transmission
and hierarchical quarantine rate in this model. Firstly, we analyze the existence of an
equilibrium, including a virus-free equilibrium and a virus-existence equilibrium. Then
local stability and the occurrence of Hopf bifurcation have been researched by
thinking of time delay as the bifurcation parameter. Besides, we calculate direction
and stability of the Hopf bifurcation. Finally, we carry out some numerical simulations
to prove the validity of theoretical results.
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1 Introduction
In 2019, there was a severe epidemic situation caused by a new corona virus in Wuhan,
Hubei Province, China. The World Health Organization named this virus 2019-nCoV
(COVID-19). As of December 6, 2020, about 67,381,994 COVID-19 patients have been
diagnosed worldwide [1]. COVID-19 may lead to serious respiratory distress syndrome,
multi-organ failure, septic shock and blood clots, and so on [2, 3]. Aside from the health
problems, a range of other problems have emerged [4]. Owing to the highly infectious-
ness and invisibility of COVID-19, it has an enormous impact on the economy, the envi-
ronment, the academic world, and so on. According to the survey report of Frontiers, a
Swiss press publication, due to the outbreak of the epidemic, one fifth of the researchers
interviewed said that the work could not be carried out at all, and researchers in South
American countries are the most affected, with more than a third of researchers from
Argentina, Chile and Brazil saying their work is completely impossible [5]. Hence, it has
important implications for preventing and controlling COVID-19.

Mathematical models are usually used to depict the propagation of a virus [6–12], and
so many scholars have proposed a lot of mathematical models to study the spreading laws
of the COVID-19 virus [13–17]. Although strengthening personal protection helps to re-
sist the virus [18], it is still very important to understand the law of virus transmission.
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Dynamic system models are beneficial for understanding the spreading laws of virus, so,
many dynamic system models for the COVID-19 virus have been established [19–21].
A SIR model, which provided a theoretical framework to investigate its spread within a
community, was developed by Cooper et al., and then the time evolution of different pop-
ulations and diverse significant parameters for the spread of the disease in various com-
munities had been studied [22]. Latency is the most common feature of viruses; based on
this idea, Piovella proposed a new SEIR model to study simple analytical expressions for
the peak and asymptotic values and their characteristic times of the populations affected
by the COVID-19 pandemic [23]. The quarantine strategy, which has been widely used in
the prevention of various diseases [24], is considered to be one of the most effective virus
prevention measures. So, Rafiq et al. established a SEIQR model to describe the propa-
gation of COVID-19 by taking the quarantine strategy into account, and they researched
not only the equilibrium points and the reproduction number, but also the local and global
asymptotic stability of the equilibria [25]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = λ – (β1I(t) + β2E(t))S(t) – μS(t),

dE(t)
dt = (β1I(t) + β2E(t))S(t) – (q1 + κ + α + μ)E(t),

dI(t)
dt = αE(t) – (r + μ + d1)I(t),

dQ(t)
dt = q1E(t) – (q + μ + d2)Q(t),

dR(t)
dt = κE(t) + rI(t) + qQ(t) – μR(t),

(1)

where S(t), E(t), I(t), Q(t), R(t) express the number of susceptible individuals, exposed
individuals, infected individuals, quarantine individuals and recovered individuals at time
t, respectively. The meanings of the remaining parameters in system (1) can be found in
[25].

In the process of model analysis in [25], Rafiq et al. thought only exposed individu-
als would be quarantined, but in fact, infected individuals are more likely to be quaran-
tined. And, since the exposed individuals may have no obvious symptoms of infection, the
quarantine rate of exposed individuals is less than that of infected individuals. In Shan-
dong Port-Qingdao Port, there were two workers, whose work was loading and unload-
ing for imported cold chain products, infected with COVID-19. On November 9, 2020,
some workers of Hailian cold storage in Tianjin Binhai New Area were detected to be
infected with COVID-19 because of contact with imported pig elbows. So, COVID-19
can spread not only by infectious individuals, but also supply chain transmission with
the virus. Therefore, it is increasingly important to study the influence of supply chain
transmission when we investigate the propagation laws of COVID-19. On the one hand,
exposed individuals have carried virus, but they do not show signs of infection immedi-
ately, such as an asymptomatic patient. Some exposed individuals may take about 24 days
to turn into infected individuals, so, there is a latency delay before changing to infected
individuals. On the other hand, when people who have been infected by the COVID-19
virus, including exposed individuals, infected individuals and quarantine individuals, con-
vert into recovered individuals, they need a long time for treatment by chemotherapy and
restoring. Thus, it is impossible for a person to recover immediately, and there exists a time
delay. Considering the above ideas, we develop a SEIQR novel COVID-19 model with two
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delays and a hierarchical quarantine rate:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = λ – (β1I(t) + β2E(t) + β3)S(t) – μS(t),

dE(t)
dt = (β1I(t) + β2E(t) + β3)S(t) – (q1 + μ)E(t) – αE(t – τ1) – κE(t – τ2),

dI(t)
dt = αE(t – τ1) – (μ + d1 + q2)I(t) – rI(t – τ2),

dQ(t)
dt = q1E(t) + q2I(t) – (μ + d2)Q(t) – qQ(t – τ2),

dR(t)
dt = κE(t – τ2) + rI(t – τ2) + qQ(t – τ2) – μR(t).

(2)

There are some hypotheses for the model:
(1) λ is the recruitment rate of individuals, λ �= 0;
(2) μ is the natural death rate of individuals;
(3) κ and r represent the recovery rate of exposed individuals, infected individuals and

quarantine individuals due to immunity, respectively;
(4) d1 and d2 represent the death rate of infected individuals, quarantine individuals,

respectively;
(5) β1 and β2 represent the contact rate of susceptible individuals with exposed

individuals and infected individuals, respectively; β3 represents the infectious rate of
susceptible individuals due to supply chain transmission;

(6) q1 is the quarantine rate of exposed individuals; q2 is the quarantine rate of infected
individuals; q1 should be smaller than q2;

(7) τ1 is the latency delay before virus outbreak; τ2 is the time delay to treatment before
the exposed individuals, infected individuals and quarantine individuals come into
recovered.

The rest of the paper is arranged as follows: In Sect. 2, the existence of a virus-free equi-
librium and a virus-existence equilibrium are discussed. In Sect. 3, we take two delays
as bifurcation parameters, and local stability of the virus-existence equilibrium and the
occurrence of Hopf bifurcation are analyzed. In Sect. 4, the direction and stability of the
Hopf bifurcation when τ1 > τ2 and τ2 ∈ (0, τ20) are examined, especially. In Sect. 5, we test
the validity of the theoretical results. We summarize our work in Sect. 6.

2 The existence of equilibrium
At first, the existence of a virus-free equilibrium is discussed. Assume that system (2) has
a virus-free equilibrium G0(S0, E0, I0, Q0, R0), and E0 = I0 = 0, S0 ≥ 0, Q0 ≥ 0, R0 ≥ 0. So we
can obtain the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ – (β1I0 + β2E0 + β3)S0 – μS0 = 0,

(β1I0 + β2E0 + β3)S0 – (q1 + μ)E0 – αE0 – κE0 = 0,

αE0 – (μ + d1 + q2)I0 – rI0 = 0,

q1E0 + q2I0 – (μ + d2)Q0 – qQ0 = 0,

κE0 + rI0 + qQ0 – μR0 = 0.

(3)

After calculation, we can get S0 = 0 from the second equation. Taking S0 = 0 in the first
equation, we can obtain λ = 0. In fact, λ is the recruitment rate of individuals. It means that
λ �= 0. So, it is inconsistent with the facts, and system (2) has no virus-free equilibrium.
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Then we analyze the existence of the virus-existence equilibrium G∗(S∗, E∗, I∗, Q∗, R∗).
Let us equate the equations in system (2) to be zero, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ – (β1I(t) + β2E(t) + β3)S(t) – μS(t) = 0,

(β1I(t) + β2E(t) + β3)S(t) – (q1 + μ)E(t) – αE(t) – κE(t) = 0,

αE(t) – (μ + d1 + q2)I(t) – rI(t) = 0,

q1E(t) + q2I(t) – (μ + d2)Q(t) – qQ(t) = 0,

κE(t) + rI(t) + qQ(t) – μR(t) = 0,

(4)

S∗ =
λ – k3E∗

μ
,

E∗ =
λβ3

K
,

I∗ =
αE∗

k1
,

Q∗ =
q1E∗ + q2I∗

k2
,

R∗ =
1
μ

(
κE∗ + rI∗ + qQ∗),

where

k1 = μ + d1 + q2 + r,

k2 = μ + d2 + q,

k3 = q1 + μ + α + κ ,

k4 = q + μ,

K = k3 –
αβ1

k1
+ μ(q1 + μ + α + κ) – β2.

According to the above analysis, system (2) has a unique virus-existence equilibrium
G∗(S∗, E∗, I∗, Q∗, R∗).

In other words, system (2) has no virus-free equilibrium, and has only a virus-existence
equilibrium G∗(S∗, E∗, I∗, Q∗, R∗).

3 Local stability of the virus-existence equilibrium and the occurrence of Hopf
bifurcation

We know system (2) has a virus-existence equilibrium, and the linearized part of system
(2) is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = a11S(t) + a12E(t) + a13I(t),

dE(t)
dt = a21S(t) + a22E(t) + b22E(t – τ1) + c22E(t – τ1) + a23I(t),

dI(t)
dt = b32E(t – τ1) + a33I(t) + c33I(t – τ2),

dQ(t)
dt = a42E(t) + a43I(t) + a44Q(t) + c44Q(t – τ2),

dR(t)
dt = c52E(t – τ2) + c53I(t – τ2) + c54Q(t – τ2) + a55R(t),

(5)
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where

a11 = –(β1I + β2E + β3) – μ, a12 = –β2S, a12 = –β1S,

a21 = β1I + β2E + β3, a22 = –(q1 + μ),

b22 = –α, c22 = –κ , b32 = α, a33 = –(μ + d1 + q2),

c33 = –r, a42 = q1, a43 = q2, a44 = –(μ + d2),

c44 = –q, c52 = κ , c53 = γ , c54 = q, a55 = –μ.

From the system (4), we can obtain the Jacobian matrix at the virus-existence equilib-
rium G∗(S∗, E∗, I∗, Q∗, R∗):

J
(
G∗) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 a12 a13 0 0
a21 a22 + b22e–λτ1 + c22e–λτ2 a23 0 0
0 b32e–λτ1 a33 + c33e–λτ2 0 0
0 a42 a43 a44 + c44e–λτ2 0
0 c52e–λτ2 c53e–λτ2 c54e–λτ2 a55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then the corresponding characteristic equation can be obtained:

F0(λ) + F1(λ)e–λτ1 + F2(λ)e–λτ2 + F3(λ)e–λ(τ1+τ2)

+ F4(λ)e–2λτ2 + F5(λ)e–λ(τ1+2τ2) + F6(λ)e–3λτ2 = 0, (6)

where

F0(λ) = (λ – a11)(λ – a22)(λ – a33)(λ – a44)(λ – a55)

– a12a21(λ – a33)(λ – a44)(λ – a55),

F1(λ) = –b22(λ – a11)(λ – a33)(λ – a44)(λ – a55) – a23b32(λ – a11)(λ – a44)(λ – a55)

– a13a21b32(λ – a44)(λ – a55),

F2(λ) = –c22(λ – a11)(λ – a33)(λ – a44)(λ – a55)

– c33(λ – a11)(λ – a22)(λ – a44)(λ – a55)

– c44(λ – a11)(λ – a22)(λ – a33)(λ – a55) + a12a21c44(λ – a33)(λ – a55)

+ a12a21c33(λ – a44)(λ – a55),

F3(λ) = b22c33(λ – a11)(λ – a44)(λ – a55) + a13a21b32c44(λ – a55)

+ a23b32c44(λ – a11)(λ – a55)

+ b22c44(λ – a11)(λ – a33)(λ – a55),

F4(λ) = c22c33(λ – a11)(λ – a44)(λ – a55) + c22c44(λ – a11)(λ – a33)(λ – a55)

+ c33c44(λ – a11)(λ – a22)(λ – a55) – a12a21c33c44(λ – a55),

F5(λ) = –b22c33c44(λ – a11)(λ – a55),

F6(λ) = –c22c33c44(λ – a11)(λ – a55).
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Case 1. τ1 = τ2 = 0, Eq. (6) becomes

λ5 +
(
F4

0 + F4
1 + F4

2
)
λ4 +

(
F3

0 + F3
1 + F3

2 + F3
3 + F3

4
)
λ3

+
(
F2

0 + F2
1 + F2

2 + F2
3 + F2

4 + F2
5 + F2

6
)
λ2

+
(
F1

0 + F1
1 + F1

2 + F1
3 + F1

4 + F1
5 + F1

6
)
λ +

(
F0

0 + F0
1 + F0

2 + F0
3 + F0

4 + F0
5 + F0

6
)

= 0, (7)

where Fj
i (i = 0, 1, 2, 3, 4, 5, 6; j = 0, 1, 2, 3, 4) represents the coefficient of λj in Fi(λ).

Lemma 1 According to the Routh–Hurwitz criteria, when τ1 = τ2 = 0, the virus-existence
equilibrium G∗(S∗, E∗, I∗, Q∗, R∗) is locally asymptotically stable.

Case 2. τ1 > 0, τ2 = 0. Then Eq. (6) becomes

[
F0(λ) + F2(λ) + F4(λ) + F6(λ)

]
+

[
F1(λ) + F3(λ) + F5(λ)

]
e–λτ1 = 0. (8)

Let λ = iω1. Separating the real and imaginary parts, we obtain

⎧
⎨

⎩

M11 cos τ1ω1 + M12 sin τ1ω1 = –N11,

M12 cos τ1ω1 – M11 sin τ1ω1 = –N12,
(9)

with

M11 =
(
F0

1 + F0
3 + F0

5
)

–
(
F2

1 + F2
3 + F2

5
)
ω2

1 + F4
1 ω4

1,

M12 =
(
F1

1 + F1
3 + F1

5
)
ω1 –

(
F3

1 + F3
3
)
ω3

1,

N11 =
(
F0

0 + F0
2 + F0

4 + F0
6
)

–
(
F2

0 + F2
2 + F2

4 + F2
6
)
ω1 +

(
F4

0 + F4
2
)
ω1,

N12 =
(
F0

0 + F0
2 + F0

4 + F0
6
)
ω1 –

(
F3

0 + F3
2 + F3

4
)
ω3

1.

Squaring both sides of two equations in Eq. (9), and summing them up, Eq. (10) can be
obtained

M2
11 + M2

12 = N2
11 + N2

12. (10)

We suppose that (P0): Eq. (10) has at least one positive real root ω10. Solving Eq. (10),
we obtain

τ
(i)
1 =

1
ω10

×
[

arccos
M11N11 + M12N12

M2
11 + M2

12
+ 2iπ

]

, i = 0, 1, 2, . . . . (11)

For convenience, we define

τ10 = min
{
τ

(i)
1 , i = 0, 1, 2, . . .

}
, (12)

where τ
(i)
1 is defined by Eq. (11).
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Taking the derivative to τ1 of λ, we can get

[
dλ

dτ1

]–1

=
[F ′

0(λ) + F ′
2(λ) + F ′

4(λ) + F ′
6(λ)] + [F ′

1(λ) + F ′
3(λ) + F ′

5(λ)]e–λτ1

λ[F1(λ) + F3(λ) + F ′
5(λ)]e–λτ1

–
τ1

λ
. (13)

According to [26], when the hypothesis (P1): Re[dλ/dτ1]–1
τ1=τ10 �= 0 holds, the virus-

existence equilibrium G∗(S∗, E∗, I∗, Q∗, R∗) is locally asymptotically stable. So, we have
Theorem 1.

Theorem 1 For system (2), when the hypotheses (P0)–(P1) hold true, then G∗(S∗, E∗, I∗,
Q∗, R∗) is locally asymptotically stable when τ1 ∈ [0, τ10); system (2) undergoes a Hopf bi-
furcation at G∗(S∗, E∗, I∗, Q∗, R∗) when τ1 = τ10, once τ1 exceeds τ10, system (2) becomes
unstable.

Case 3. τ1 = 0, τ2 > 0. Then Eq. (6) becomes

[
F0(λ) + F1(λ)

]
+

[
F2(λ) + F3(λ)

]
e–λτ2 +

[
F4(λ) + F5(λ)

]
e–2λτ2 + F6(λ)e–3λτ2 = 0. (14)

Multiplying eλτ2 on both sides of Eq. (14), we obtain

[
F0(λ) + F1(λ)

]
eλτ2 +

[
F2(λ) + F3(λ)

]
+

[
F4(λ) + F5(λ)

]
e–λτ2 + F6(λ)e–2λτ2 = 0. (15)

Taking λ = iω2 into Eq. (15), we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(M21 + M23) cos τ2ω2 + (M22 + M24) sin τ2ω2 + N21

= –M25 cos 2τ2ω2 – M26 sin 2τ2ω2,

(M24 – M22) cos τ2ω2 + (M21 – M23) sin τ2ω2 + N22

= –M26 cos 2τ2ω2 + M25 sin 2τ2ω2,

(16)

with

M21 =
(
F0

0 + F0
1
)

–
(
F2

0 + F2
1
)
ω2

2 +
(
F4

0 + F4
1
)
ω4

2,

M22 =
(
F3

0 + F3
1
)
ω3

2 –
(
F1

0 + F1
1
)
ω2 – ω5

2,

M23 =
(
F0

4 + F0
5
)

–
(
F2

4 + F2
5
)
ω2

2,

M24 =
(
F1

4 + F1
5
)
ω2 – F3

4 ω3
2,

M25 = F0
6 – F2

6 ω2
2,

M26 = F1
6 ω2,

N21 = F0
2 + F0

3 –
(
F2

2 + F2
3
)
ω2

2 + F4
2 ω4

2,

N22 =
(
F1

2 + F1
3
)
ω2 –

(
F3

2 + F3
3
)
ω3

2.

Squaring both sides of two equations in Eq. (16), and adding them up, we obtain

M2
21 + M2

22 + M2
23 + M2

24 – M2
25 – M2

26 + N2
21 + N2

22

+ 2(M21M23 – M22M24)
[
2(cosω2τ2)2 – 1

]
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+ 2N21(M22 + M24) sinω2τ2 + 2N22(M21 – M23) sinω2τ2

+ 2N22(M24 – M22) cosω2τ2

+ 4(M22M23 + M21M24) cosω2τ2 sinω2τ2 + 2N21(M21 + M23) cosω2τ2 = 0. (17)

We have cos2 τ2ω2 + sin2 τ2ω2 = 1, sin τ2ω2 = ±√
1 – cos2 τ2ω2.

(1) If sin τ2ω2 =
√

1 – cos2 τ2ω2, after calculation, we have

M2
21 + M2

22 + M2
23 + M2

24 – M2
25 – M2

26 + N2
21 + N2

22

+ 2(M21M23 – M22M24)
[
2(cosω2τ2)2 – 1

]

+ 4(M22M23 + M21M24) cosω2τ2
√

1 – cos2 τ2ω2 + 2N21(M21 + M23) cosω2τ2

+ 2N21(M22 + M24)
√

1 – cos2 τ2ω2 + 2N22(M21 – M23)
√

1 – cos2 τ2ω2

+ 2N22(M24 – M22) cosω2τ2 = 0. (18)

Let f1(ω2) = cos τ2ω2, and we suppose that (P2): f1(ω2) = cos τ2ω2 has at least a positive
root ω21, which makes Eq. (18) hold. Thus,

τ
(i)
21 =

1
ω21

× [
arccos

(
f1(ω21)

)
+ 2iπ

]
, i = 0, 1, 2, . . . . (19)

(2) If sin τ2ω2 = –
√

1 – cos2 τ2ω2, in the same way, we have

M2
21 + M2

22 + M2
23 + M2

24 – M2
25 – M2

26 + N2
21 + N2

22

+ 2(M21M23 – M22M24)
[
2(cosω2τ2)2 – 1

]

– 4(M22M23 + M21M24) cosω2τ2
√

1 – cos2 τ2ω2 + 2N21(M21 + M23) cosω2τ2

– 2N21(M22 + M24)
√

1 – cos2 τ2ω2 – 2N22(M21 – M23)
√

1 – cos2 τ2ω2

+ 2N22(M24 – M22) cosω2τ2 = 0. (20)

Let f2(ω2) = cos τ2ω2, we suppose that (P3): f2(ω2) = cos τ2ω2 has at least a positive root
ω22, which makes Eq. (26) hold. Thus,

τ
(i)
22 =

1
ω22

× [
arccos

(
f2(ω22)

)
+ 2iπ

]
, i = 0, 1, 2, . . . . (21)

For convenience, we choose

τ20 = min
{
τ

(i)
21 , τ (i)

22
}

, i = 0, 1, 2, . . . , (22)

where τ
(i)
21 , τ (i)

21 is defined by Eq. (19) and Eq. (21).
Taking the derivative of λ with respect to τ2, we obtain

[
dλ

dτ2

]–1

=
(F ′

0 + F ′
1)eλτ2 + (F ′

2 + F ′
3) + (F ′

4 + F ′
5)e–λτ2 + F ′

6e–2λτ2

–λ(F0 + F1)eλτ2 + λ(F4 + F5)e–λτ2 + 2λF6e–2λτ2
–

τ2

λ
. (23)
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According to [26], when the hypothesis (P4): Re[dλ/dτ2]–1
τ2=τ20 �= 0 holds, consequently,

we have Theorem 2.

Theorem 2 For system (2), when the hypotheses (P2)–(P4) hold, then G∗(S∗, E∗, I∗, Q∗, R∗)
is locally asymptotically stable when τ2 ∈ [0, τ20); for system (2) there appears a Hopf bifur-
cation at G∗(S∗, E∗, I∗, Q∗, R∗) when τ2 = τ20; system (2) becomes unstable when τ2 ≥ τ20.

Case 4. τ1 = τ2 = τ∗. Then Eq. (6) becomes

F0(λ) +
[
F1(λ) + F2(λ)

]
e–λτ∗ +

[
F3(λ) + F4(λ)

]
e–2λτ∗ +

[
F5(λ) + F6(λ)

]
e–3λτ∗ = 0. (24)

Multiplying eλτ∗ on both sides of Eq. (24), then we have

F0(λ)eλτ∗ +
[
F1(λ) + F2(λ)

]
+

[
F3(λ) + F4(λ)

]
e–λτ∗ +

[
F5(λ) + F6(λ)

]
e–2λτ∗ = 0. (25)

Substituting λ = iω3 into Eq. (25), we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(M31 + M33) cos τ∗ω3 + (M32 + M34) sin τ∗ω3 + N31

= –M35 cos 2τ∗ω3 – M36 sin 2τ∗ω3,

(M34 – M32) cos τ∗ω3 + (M31 – M33) sin τ∗ω3 + N32

= –M36 cos 2τ∗ω3 + M35 sin 2τ∗ω3,

(26)

with

M31 = F0
0 – F2

0 ω2
3 + F4

0 ω4
3,

M32 = F3
0 ω3

3 – F1
0 ω3 – ω5

3,

M33 =
(
F0

3 + F0
4
)

–
(
F2

3 + F2
4
)
ω2

3,

M34 =
(
F1

3 + F1
4
)
ω3 –

(
F3

3 + F3
4
)
ω3

3,

M35 =
(
F0

5 + F0
6
)

–
(
F2

5 + F2
6
)
ω2

3,

M36 =
(
F1

5 + F1
6
)
ω3,

N31 =
(
F0

1 + F0
2
)

–
(
F2

1 + F2
2
)
ω2

3 +
(
F4

1 + F4
2
)
ω4

3,

N32 =
(
F1

1 + F1
2
)
ω3 –

(
F3

1 + F3
2
)
ω3

3.

Squaring both sides of the two equations in Eq. (26), and summing them, we have

(M31 + M33)2 cos2 τ∗ω3 + (M32 + M34)2 sin2 τ∗ω3

+ 2(M31 + M33)(M32 + M34) cos τ∗ω3 sin τ∗ω3

+ 2N31(M31 + M33) cos τ∗ω3 + 2N31(M32 + M34) sin τ∗ω3

+ (M34 – M32)2 cos2 τ∗ω3 + N2
31 + N2

32

+ (M31 – M33)2 sin2 τ∗ω3 + 2N32(M34 – M32) cos τ∗ω3
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+ 2N32(M31 – M33) sin τ∗ω3 – M2
35 – M2

36

+ 2(M34 – M32)(M31 – M33) cos τ∗ω3 sin τ∗ω3 = 0. (27)

We have sin τ∗ω3 = ±√
1 – cos2 τ∗ω3.

(1) If sin τ∗ω3 =
√

1 – cos2 τ∗ω3, from Eq. (27), we can get

(M31 + M33)2 cos2 τ∗ω3 + (M32 + M34)2(1 – cos2 τ∗ω3
)

+ N2
31 + N2

32 – M2
35 – M2

36

+ 2(M31 + M33)(M32 + M34) cos τ∗ω3
√

1 – cos2 τ∗ω3

+ 2N31(M31 + M33) cos τ∗ω3

+ (M34 – M32)2 cos2 τ∗ω3 + (M31 – M33)2(1 – cos2 τ∗ω3
)

+ 2N32(M34 – M32) cos τ∗ω3

+ 2N32(M31 – M33)
√

1 – cos2 τ∗ω3

+ 2(M34 – M32)(M31 – M33) cos τ∗ω3
√

1 – cos2 τ∗ω3

+ 2N31(M32 + M34)
√

1 – cos2 τ∗ω3 = 0. (28)

Let f3(ω3) = cos τ∗ω3, and we suppose that (P5): f3(ω3) = cos τ∗ω3 has at least a positive
root ω31, which makes Eq. (28) hold. Thus,

τ
(i)
∗1 =

1
ω31

× [
arccos

(
f3(ω31)

)
+ 2iπ

]
, i = 0, 1, 2, . . . . (29)

(2) If sin τ∗ω3 = –
√

1 – cos2 τ∗ω3, after calculation, we have

(M31 + M33)2 cos2 τ∗ω3 + (M32 + M34)2(1 – cos2 τ∗ω3
)

+ N2
31 + N2

32 – M2
35 – M2

36

– 2(M31 + M33)(M32 + M34) cos τ∗ω3
√

1 – cos2 τ∗ω3

+ 2N31(M31 + M33) cos τ∗ω3

+ (M34 – M32)2 cos2 τ∗ω3 + (M31 – M33)2(1 – cos2 τ∗ω3
)

+ 2N32(M34 – M32) cos τ∗ω3

– 2N32(M31 – M33)
√

1 – cos2 τ∗ω3

– 2(M34 – M32)(M31 – M33) cos τ∗ω3
√

1 – cos2 τ∗ω3

– 2N31(M32 + M34)
√

1 – cos2 τ∗ω3 = 0. (30)

Let f4(ω3) = cos τ∗ω3, and we suppose that (P6): f4(ω3) = cos τ∗ω3 has at least a positive
root ω32, which makes Eq. (30) hold. Thus,

τ
(i)
∗2 =

1
ω32

× [
arccos

(
f4(ω32)

)
+ 2iπ

]
, i = 0, 1, 2, . . . . (31)
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Define

τ∗0 = min
{
τ

(i)
∗1 , τ (i)

∗2
}

, i = 0, 1, 2, . . . , (32)

where τ
(i)
∗1 and τ

(i)
∗2 are defined by Eq. (29) and Eq. (31), respectively.

Then after taking the derivative to τ∗ of λ, we can get

[
dλ

dτ∗

]–1

=
F ′

0(λ)eλτ∗ + [F ′
1(λ) + F ′

2(λ)] + [F ′
3(λ) + F ′

4(λ)]e–λτ∗ + (F ′
5 + F ′

6)(λ)e–2λτ∗

–λF0(λ)eλτ∗ + λ[F3(λ) + F4(λ)]e–λτ∗ + 2λ(F5(λ) + F6(λ))e–2λτ∗

–
τ∗
λ

. (33)

According to [26], when the hypothesis (P7): Re[dλ/dτ∗]–1
τ∗=τ∗0 �= 0 holds, the virus-

existence equilibrium G∗(S∗, E∗, I∗, Q∗, R∗) is locally asymptotically stable. Therefore, The-
orem 3 can be obtained.

Theorem 3 For system (2), when the hypotheses (P5)–(P7) hold, then G∗(S∗, E∗, I∗, Q∗, R∗)
is locally asymptotically stable when τ∗ ∈ [0, τ∗0); system (2) undergoes a Hopf bifurcation
at G∗(S∗, E∗, I∗, Q∗, R∗) when τ∗ = τ∗0; system (2) becomes unstable when τ∗ ≥ τ∗0.

Case 5. τ1 > τ2, τ2 ∈ (0, τ20). Then Eq. (6) becomes

[
F0(λ) + F2(λ) + F3(λ) + F4(λ) + F5(λ) + F6(λ)

]
+

[
F1(λ) + F3(λ) + F5(λ)

]
e–λτ1 = 0. (34)

Let λ = iω4. Separating the real and imaginary parts, we obtain

⎧
⎨

⎩

M41 cos τ1ω4 + M42 sin τ1ω4 = –N41,

M42 cos τ1ω4 – M41 sin τ1ω4 = –N42,
(35)

with

M41 =
(
F0

1 + F0
3 + F0

5
)

–
(
F2

1 + F2
3 + F2

5
)
ω2

1 + F4
1 ω4

1,

M42 =
(
F1

1 + F1
3 + F1

5
)
ω1 –

(
F3

1 + F3
3
)
ω3

1,

N41 =
(
F0

0 + F0
2 + F0

3 + F0
4 + F0

5 + F0
6
)

–
(
F2

0 + F2
2 + F2

3 + F2
4 + F2

5 + F2
6
)
ω1 +

(
F4

0 + F4
2
)
ω1,

N42 =
(
F0

0 + F0
2 + F0

3 + F0
4 + F0

5 + F0
6
)
ω1 –

(
F3

0 + F3
2 + F3

3 + F3
4
)
ω3

1.

Squaring both sides of two equations in Eq. (35), and summing them, Eq. (36) can be
obtained:

M2
41 + M2

42 = N2
41 + N2

42. (36)

We suppose that (P8): Eq. (36) has at least one positive real root ω40. Solving Eq. (36),
we obtain

τ
(k)
1 =

1
ω40

×
[

arccos
M41N41 + M42N42

M2
41 + M2

42
+ 2kπ

]

, k = 0, 1, 2, . . . . (37)
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For convenience, we define

τ10 = min
{
τ

(k)
1 , k = 0, 1, 2, . . .

}
, (38)

where τ
(k)
1 is defined by Eq. (37).

Taking the derivative to τ1 of λ, we can get

[
dλ

dτ1

]–1

=
[F ′

0(λ) + F ′
2(λ) + F ′

3(λ) + F ′
4(λ) + F ′

5(λ) + F ′
6(λ)] + [F ′

1(λ) + F ′
3(λ) + F ′

5(λ)]e–λτ1

λ[F1(λ) + F3(λ) + F ′
5(λ)]e–λτ1

–
τ1

λ
. (39)

According to [26], when the hypothesis (P9): Re[dλ/dτ1]–1
τ1=τ10 �= 0 holds, the virus-

existence equilibrium G∗(S∗, E∗, I∗, Q∗, R∗) is locally asymptotically stable. So, we have
Theorem 4.

Theorem 4 For system (2), when the hypotheses (P8)–(P9) is true, then G∗(S∗, E∗, I∗, Q∗, R∗)
is locally asymptotically stable when τ1 ∈ (0, τ10); system (2) undergoes a Hopf bifurcation
at G∗(S∗, E∗, I∗, Q∗, R∗) when τ1 = τ10; once τ1 exceeds τ10, system (2) becomes unstable.

4 Direction and stability of Hopf bifurcation
It is important for controlling chaos to research direction and stability of the Hopf bifur-
cation. In this section, we use manifold theory in [27] to discuss direction and stability
of the Hopf bifurcation of system (2). We assume that τ ∗

2 < τ ∗
1 , where τ ∗

2 ∈ (0, τ20). Let
τ1 = τ ∗

1 + ω(ω ∈ R), ρ1 = S(τ1t), ρ2 = E(τ1t), ρ3 = I(τ1t), ρ4 = Q(τ1t), ρ5 = R(τ1t). System (2)
becomes

ρ̇(t) = Lω(ρt) + F(ω,ρt), (40)

where ρ(t) = (ρ1,ρ2,ρ3,ρ4,ρ5)T ∈ C = C([–1, 0], R5) and Lω : C → R5 and F : R × C → R5

are defined as

Lωφ =
(
τ ∗

1 + ω
)
(

A′φ(0) + B′φ
(

–
τ ∗

2
τ ∗

1

)

+ C′φ(–1)
)

(41)

and

F(ω,φ) =
(
τ ∗

1 + ω
)
[F1, F2, 0, 0, 0]T , (42)

with

A′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 a12 a13 0 0
a21 a22 a23 0 0
0 0 a33 0 0
0 a42 a43 a44 0
0 0 0 0 a55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, B′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 b22 0 0 0
0 b32 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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C′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 c22 0 0 0
0 0 c33 0 0
0 0 0 c44 0
0 c52 c53 c54 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

F1 = –β2φ1(0)φ2(0) – β1φ1(0)φ3(0) + · · · ,

F2 = β2φ1(0)φ2(0) + β1φ1(0)φ3(0) + · · · .

By the Riesz representation theorem, η(ϑ ,ω) can be defined, and ϑ ∈ [–1, 0). Thus,

Lωφ =
∫ 0

–1
dη(ϑ ,ω)φ(ϑ). (43)

For convenience, we choose

η(ϑ ,ω) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(τ ∗
1 + ω)(A′ + B′ + C′), ϑ = 0,

(τ ∗
1 + ω)(B′ + C′), ϑ ∈ [– τ∗

2
τ∗

1
, 0),

(τ ∗
1 + ω)(C′), ϑ ∈ (–1, – τ∗

2
τ∗

1
),

0, ϑ = –1,

(44)

with �(ϑ) the Dirac delta function.
For φ ∈ C([–1, 0], R5), define

A(ω)φ =

⎧
⎨

⎩

dφ(ϑ)
dϑ

, –1 ≤ ϑ < 0,
∫ 0

–1 dη(ϑ ,ω)φ(ϑ), ϑ = 0,

and

R(ω)φ =

⎧
⎨

⎩

0, –1 ≤ ϑ < 0,

F(ω,φ), ϑ = 0.

Then system (2) is equivalent to

ρ̇(t) = A(ω)ρt + R(ω)ρt . (45)

For ψ ∈ C1([0, 1], (R5)∗), define

A∗(ψ) =

⎧
⎨

⎩

– dψ(s)
ds , 0 < s ≤ 1,

∫ 0
–1 dηT (s, 0)ψ(–s), s = 0,

and the bilinear inner form for A(0) and A∗

〈
ψ(s),φ(ϑ)

〉
= ψ̄(0)φ(0) –

∫ 0

ϑ=–1

∫ ϑ

ς=0
ψ̄(ς – ϑ) dη(ϑ)φ(ς ) dς , (46)

where η(ϑ) = η(ϑ , 0).
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Let n(ϑ) = (1, n2, n3, n4, n5)T eiτ∗
1 ω∗

1ϑ and n∗(s) = D(1, n∗
2, n∗

3, n∗
4, n∗

5)T eiτ∗
1 ω∗

1s. Based on the
definitions of A(0) and A∗(0), we can obtain

n2 =
a21 + n3a23

iω∗
1 – a22 – b22e–iτ∗

1 ω∗
1 – c22e–iτ∗

2 ω∗
1

,

n3 =
a21b32e–iτ∗

1 ω∗
1

χ – a23b32e–iτ∗
1 ω∗

1
,

n4 =
a42n2 + a43n3

iω∗
1 – a44 – c44e–iτ∗

2 ω∗
1

,

n5 =
χ2

iω∗
1 – a55

,

n∗
2 = –

iω∗
1 + a11

a21
,

n∗
3 = –

a23n∗
2

iτ ∗
1 ω∗

1 + a33 + c33e–iτ∗
2 ω∗

1
,

n∗
4 = 0,

n∗
5 = 0,

where

χ1 =
(
iω∗

1 – a22 – b22e–iτ∗
1 ω∗

1 – c22e–iτ∗
2 ω∗

1
)(

iω∗
1 – a33 – b32e–iτ∗

1 ω∗
1 – c33e–iτ∗

2 ω∗
1
)
,

χ2 = c52n2e–iτ∗
2 ω∗

1 + c53n3e–iτ∗
2 ω∗

1 + c54n4e–iτ∗
2 ω∗

1 .

Then we have

D̄ =
[
1 + n2n̄∗

2 + n3n̄∗
3 + n4n̄∗

4 + n5n̄∗
5 + τ ∗

1 e–iτ∗
1 ω∗

1 n2
(
b22n̄∗

2 + b32n̄∗
3
)

+ τ ∗
2 e–iτ∗

2 ω∗
1 n2

(
c22n̄∗

2 + c52n̄∗
5
)

+ τ ∗
2 e–iτ∗

2 ω∗
1 n4

(
c33n̄∗

3 + c53n̄∗
5
)

+ τ ∗
2 e–iτ∗

2 ω∗
1 n4

(
c44n̄∗

4 + c54n̄∗
5
)]–1.

Next, we can obtain g20, g11, g02 and g21 by means of the method in [13]:

g20 = 2τ ∗
1 D̄

(
n̄∗

2 – 1
)[

β2(n2 + n̄2) + β1(n3 + n̄3))
]
,

g11 = 2τ ∗
1 D̄

(
n̄∗

2 – 1
)[

β2(n2 + n̄2) + β1(n3 + n̄3))
]
,

g02 = 2τ ∗
1 D̄

(
n̄∗

2 – 1
)
[β2n̄2 + β1n̄3],

g21 = 2τ ∗
1 D̄

(
n̄∗

2 – 1
)
[

β2

(

W (2)
11 (0) +

1
2

W (2)
20 (0) + n2W (1)

11 (0) +
n̄2

2
W (1)

20 (0)
)

+ β1

(

W (3)
11 (0) +

1
2

W (3)
20 (0) + n2W (1)

11 (0) +
n̄3

2
W (1)

20 (0)
)]

,

with

W20(ϑ) =
ig20n(0)
τ ∗

1 ω∗
1

eiτ∗
1 ω∗

1ϑ +
iḡ02n̄(0)
3τ ∗

1 ω∗
1

e–iτ∗
1 ω∗

1ϑ + U1e2iτ∗
1 ω∗

1ϑ ,

W11(ϑ) = –
ig11n(0)
τ ∗

1 ω∗
1

eiτ∗
1 ω∗

1ϑ +
iḡ11n̄(0)
τ ∗

1 ω∗
1

e–iτ∗
1 ω∗

1ϑ + U2.
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U1 and U2 can be computed by

U1 = 2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a∗
11 –a12 –a13 0 0

–a21 a∗
22 0 0 0

0 –b32e–iτ∗
1 ω∗

1 a∗
33 0 0

0 –a42 –a43 a∗
44 0

0 –c52e–iτ∗
2 ω∗

1 –c53e–iτ∗
2 ω∗

1 –c54e–iτ∗
2 ω∗

1 a∗
55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

–1

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

U (1)
1

U (2)
1

0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

U2 = –

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 a12 a13 0 0
a21 a22 + b22 + c22 a23 0 0
0 b32 a33 + c33 0 0
0 a42 a43 a44 + c44 0
0 c52 c53 c54 a55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

–1

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

U (1)
2

U (2)
2

0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

a∗
11 = 2iω∗

1 – a11,

a∗
22 = 2iω∗

1 – a22 – b22e–iτ∗
1 ω∗

1 – c22e–iτ∗
2 ω∗

1 ,

a∗
33 = 2iω∗

1 – a33 – c33e–iτ∗
2 ω∗

1 ,

a∗
44 = 2iω∗

1 – a44 – c44e–iτ∗
2 ω∗

1 ,

a∗
55 = 2iω∗

1 – a55,

and

U (1)
1 = –β2n2 – β1n3,

U (2)
1 = β2n2 + β1n3,

U (1)
2 = –β2(n2 + n̄2) – β1(n3 + n̄3),

U (2)
2 = β2(n2 + n̄2) + β1(n3 + n̄3).

Then we can obtain

C1(0) =
i

2τ ∗
1 ω∗

1

(

g11g20 – 2|g11|2 –
|g02|2

3

)

+
g21

2
,

μ2 = –
Re{C1(0)}
Re{λ′(τ ∗

1 )} ,

β2 = 2Re
{

C1(0)
}

,

T2 = –
Im{C1(0)} + μ2Im{λ′(τ ∗

1 )}
τ ∗

1 ω∗
1

.

(47)

Thus, we have Theorem 4 about the Hopf bifurcation at τ ∗
1 .

Theorem 5 For system (2), the following results hold. If μ2 > 0 (μ2 < 0), then the Hopf bifur-
cation is supercritical (subcritical); if β2 < 0 (β2 > 0), then the bifurcating periodic solutions



Yang and Zhang Advances in Difference Equations        (2021) 2021:191 Page 16 of 21

are stable (unstable); if T2 > 0 (T2 < 0), then the period of the bifurcating periodic solutions
increase (decrease).

5 Numerical simulations
Choosing λ = 0.5, β1 = 0.64, β2 = 0.185, β3 = 0.05, μ = 0.05, q1 = 0.12, α = 0.28, κ = 0.15,
d1 = 0.3, q2 = 0.99, r = 0.11, d2 = 0.25, q = 0.14, we use Matlab to verify the correctness of
above theorems. Then system (2) takes the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = 0.5 – 0.05S(t) – (0.185E(t) + 0.64I(t) + 0.05)S(t),

dE(t)
dt = (0.185E(t) + 0.64I(t) + 0.05)S(t) – 0.17E(t)

– 0.28E(t – τ1) – 0.15E(t – τ2),
dI(t)

dt = 0.28E(t – τ1) – 1.34I(t) – 0.11I(t – τ2),
dQ(t)

dt = 0.12E(t) + 0.99I(t) – 0.3Q(t) – 0.14Q(t – τ2),
dR(t)

dt = 0.15E(t – τ2) + 0.11I(t – τ2) + 0.14Q(t – τ2) – 0.05R(t),

(48)

from which we can obtain G∗(1.58, 0.7016, 0.1353, 0.4959, 3.793).
After calculation, we can obtain τ10 = 7.8879, τ20 = 6.3851, τ∗0 = 2.9393. The corre-

sponding values of ω are as follows: ω10 = 0.0927, ω20 = 0.1157, ω30 = 0.2514. We take
different combinations of τ as control variable to carry out numerical simulations. We
choose some parameters, which are smaller than τ , to carry out numerical simulation,
and the results are shown in Figs. 1, 3, 5 and 7. According to these figures, we can see
that when τ is smaller than the critical value, system (2) is locally asymptotically stable
at G∗(1.58, 0.7016, 0.1353, 0.4959, 3.793). Figures 2, 4, 6 and 8 show the results of numer-
ical simulation when the values of τ exceed the critical value, and it is easy to see that
when τ exceeds the critical value, system (2) becomes unstable and there appears a Hopf
bifurcation at G∗(1.58, 0.7016, 0.1353, 0.4959, 3.793).

Figure 1 Evolutions of S, E, I, Q, R for τ1 = 6.037 < τ10 along with time t
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Figure 2 Evolutions of S, E, I, Q, R for τ1 = 9.7291 > τ10 along with time t

Figure 3 Evolutions of S, E, I, Q, R for τ2 = 5.1264 < τ20 along with time t

6 Conclusions
In this paper, based on the model formulated in [25], we consider the influence of supply
chain transmission, hierarchical quarantine rate and time delay, and then we develop a
novel Susceptible–Expose–Infected–Quarantined–Recovered (SEIQR) COVID-19 prop-
agation model with two delays. In the new model, we analyze the existence of a virus-free
equilibrium and a virus-existence equilibrium. After analysis, we find that system (2) has
only a virus-existence equilibrium, and has no virus-free equilibrium. Afterwards, we take
the time delay as a bifurcation parameter, and research the local stability and the existence
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Figure 4 Evolutions of S, E, I, Q, R for τ2 = 8.9951 > τ20 along with time t

Figure 5 Evolutions of S, E, I, Q, R for τ∗ = 2.7471 < τ∗0 along with time t

of a Hopf bifurcation for the virus-existence equilibrium. Then we get the result when τ

is smaller than the key value, system (2) reaches a local stable state eventually; otherwise,
system (2) becomes unstable and there appears a Hopf bifurcation. The direction of the
Hopf bifurcation and the stability of bifurcating periodic solutions also have been deter-
mined, and some numerical simulations are used to prove the validity of the theoretical
results.

Compared with the model in [25], we consider the situation that people may be infected
by items in transmission. Besides, we assume that exposed individuals and infected indi-



Yang and Zhang Advances in Difference Equations        (2021) 2021:191 Page 19 of 21

Figure 6 Evolutions of S, E, I, Q, R for τ∗ = 3.1951 > τ∗0 along with time t

Figure 7 Evolutions of S, E, I, Q, R for τ1 = 2.5966 < τ10, τ2 = 2.299 along with time t

viduals have different quarantine rates, and this measure makes our new model practical.
Time delays are applied during analyzing the new model, too. In the future, we will con-
sider the nonlinear infection rate, which would lead to the increase of exposed individuals
and infected individuals.
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Figure 8 Evolutions of S, E, I, Q, R for τ1 = 4.6292 > τ10, τ2 = 2.299 along with time t
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