
Yalçın Uzun Advances in Difference Equations        (2021) 2021:178 
https://doi.org/10.1186/s13662-021-03343-7

R E S E A R C H Open Access

Oscillatory behavior of nonlinear Hilfer
fractional difference equations
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Abstract
In this paper, we study the oscillation behavior for higher order nonlinear Hilfer
fractional difference equations of the type

�
α,β
a y(x) + f1(x, y(x + α)) =ω(x) + f2(x, y(x + α)), x ∈Na+n–α ,

�
k–(n–γ )
a y(x)

∣
∣
x=a+n–γ = yk , k = 0, 1, . . . ,n,

where �α� = n, n ∈N0 and 0 ≤ β ≤ 1. We introduce some sufficient conditions for all
solutions and give an illustrative example for our results.
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1 Introduction
In recent years, fractional differential equations and fractional difference equations have
been attractive areas for researchers. This is because using in modeling real problems frac-
tional order equations gives highly accurate results rather than integer order equations
[1, 2]. Studying the behavior of solutions is very important for analyzing equations, so the
existence and uniqueness, stability, and oscillation of the solutions are the areas where
researchers have worked most, recently. Many studies have been done on the oscillation
of fractional differential equations [3–11], functional differential equations [12–15], and
dynamic equations on time scales [16, 17]. However, few researchers addressed the oscil-
lation of fractional difference equations [18–28].

In [29], Haider et al. introduced a new definition of a fractional difference operator which
is a generalization of Riemann–Liouville and Caputo type difference operator. This oper-
ator interpolates the Riemann–Liouville like fractional difference (β = 0) and the Caputo
like fractional difference (β = 1). The type-parameter produces more types of stationary
states and provides an extra degree of freedom on the initial condition. No one has studied,
to the best of our knowledge, the oscillation of equations involving the Hilfer difference
operator in the literature.
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In [5], Grace et al. initiated the oscillation theory for fractional differential equations of
the form

Dα
a y(x) + f1(x, y) = ν(x) + f2(x, y), lim

t→a+
J1–α
a y(x) = b1,

where Dα
a is the Riemann–Liouville differential operator of order α, 0 < α ≤ 1 and the

functions f1, f2, ν are continuous. The results are also stated when the Riemann–Liouville
differential operator is replaced by Caputo’s differential operator.

In [21], Marian et al. gave similar conclusions for the oscillation behavior of the nonlin-
ear fractional difference equations of the form

�αy(x) + f1
(

x, y(x + α)
)

= ν(x) + f2
(

x, y(x + α)
)

, x ∈N0,

�α–1y(x)
∣
∣
x=0 = x0,

(1)

where �α denotes the Riemann–Liouville like discrete fractional difference operator of
order α, 0 < α ≤ 1. In [22], Marian et al. obtained some new results for the initial value
problem (1).

In [20], Kısalar et al. considered higher order fractional nonlinear difference equation of
the form

�αy(x) + f1
(

x, y(x + α)
)

= ν(x) + f2
(

x, y(x + α)
)

, x ∈N0, m – 1 < α ≤ m,

�α–1y(x)
∣
∣
x=0 = x0,

where �α denotes the Riemann–Liouville like discrete fractional difference operator of
order α and m ≥ 1.

This paper aims to state some oscillation criteria for a class of higher order nonlinear
Hilfer fractional difference equations. Some sufficient conditions will be given for the os-
cillation of the solution of Hilfer fractional difference equations. The results also contain
new conditions for the oscillation of the solutions of the Riemann–Liouville and Caputo
difference equations.

2 Preliminaries
Definition 1 ([30]) Suppose f is a real valued function defined on Na and α > 0. Then the
αth fractional sum of f is defined by

�–α
a f (x) :=

x–α
∑

t=a
hα–1

(

x,σ (t)
)

f (t) (2)

for x ∈ Na+α , where tα is the generalized falling function and hα(t, τ ) = (t–τ )α

(α+1) is the αth

fractional Taylor monomial.

Definition 2 ([30]) Let f be a real valued function defined on Na and �α� = n. Then the
αth Riemann–Liouville fractional difference of f , defined by

�α
a f (x) := �n�–(n–α)

a f (x), x ∈Na+n–α . (3)
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Lemma 1 ([30]) Let f : Na →R, k ∈ N0, m – 1 < α < m and n – 1 < β ≤ n. Then
1 �–α

a+n–β�
β
a f (x) = �

β–α
a f (x) –

∑n–1
i=0 hα–n+i(x, a + n – α)�i–(n–β)

a f (a + n – β), for
x ∈Na+n–β+α .

2 �
β
a+α�–α

a f (x) = �
β–α
a f (x), for x ∈Na+α+n–β .

3 �–α
a+β�

–β
a f (x) = �

–(α+β)
a = �

–β
a+α�–α

a f (x), for x ∈Na+α+β .
4 �k�α

a f (x) = �k+α
a f (x), for x ∈Na+m–α .

Theorem 1 (Fractional sum power rule [30]) Let μ ≥ 0 and ν > 0. Then

�–ν
a+μ(t – a)μ =


(μ + 1)

(μ + ν + 1)

(t – a)μ+ν (4)

for t ∈Na + μ + ν .

In [29], Haider et al. introduced a Hilfer like fractional difference operator.

Definition 3 Assume f : Na → R. Then the fractional difference of order n – 1 < α < n
and type 0 ≤ β ≤ 1 is defined by

�α,β
a f (x) = �

–β(n–α)
a+(1–β)(n–α)�

n�–(1–β)(n–α)
a f (x) (5)

for x ∈Na+n–α .

Lemma 2 The Hilfer fractional difference can be written as follows:

�α,β
a f (x) = �α–γ

a+n–γ �n�–(n–γ )
a f (x),

where γ = α + β(n – α).

Lemma 3 Let f be a real valued function defined on Na, n – 1 < α < n and 0 ≤ β ≤ 1. Then
(i) �–α

a+n–α[�α,β
a f (x)] = �

–(α+βn–αβ)
a+(1–β)(n–α)�

α+βn–αβ
a f (x),

(ii) �
α,β
a+α[�–α

a f (x)] = �
–β(n–α)
a+(n–βn+αβ)�

β(n–α)
a f (x),

for x ∈ Na+1.

Proof (i) We have

�–α
a+n–α

[

�α,β
a f (x)

]

= �–α
a+n–α�

–β(n–α)
a+(1–β)(n–α)�

n�–(1–β)(n–α)
a f (x)

= �
–(α+β(n–α))
a+(1–β)(n–α)�

n–(1–β)(n–α)
a f (x)

= �
–(α+βn–αβ)
a+(1–β)(n–α)�

α+βn–αβ
a f (x).

(ii) We have

�α,β
a+α

[

�–α
a f (x)

]

= �
–β(n–α)
a+α+(1–β)(n–α)�

n�–(1–β)(n–α)
a+α �–α

a f (x)

= �
–β(n–α)
a+α+(1–β)(n–α)�

n�–((1–β)(n–α)+α)
a f (x)

= �
–β(n–α)
a+(n–βn+αβ)�

β(n–α)
a f (x). �
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In this paper, we denote the oscillation criterion of the nonlinear Hilfer like fractional
difference equation

�α,β
a y(x) + f1

(

x, y(x + α)
)

= ω(x) + f2
(

x, y(x + α)
)

, x ∈ Na+n–α , (6)

�k–(n–γ )
a y(x)

∣
∣
x=a+n–γ

= yk , k = 0, 1, . . . , n,

where n – 1 < α ≤ n (n ∈ N0) and 0 ≤ β ≤ 1, ω and fk : [0, +∞) × R → R, k = 1, 2 are
continuous.

Lemma 4 ([31]; Young’s inequality)
(i) Assume χ , ξ ≥ 0, u > 1 and 1

u + 1
v = 1. Then the following inequality holds if and only

if ξ = χu–1:

χξ ≤ 1
u

χu +
1
v
ξ v. (7)

(ii) Assume χ ≥ 0, ξ > 0, 0 < u < 1 and 1
u + 1

v = 1. Then the following inequality holds if
and only if ξ = χu–1:

χξ ≥ 1
u

χu +
1
v
ξ v. (8)

Lemma 5 The unique solution of the initial value problem (6) is

y(x) =
n–1
∑

k=0

hγ –n+k(x, a + n – γ )yk

+
x–α
∑

t=a+1–α

hα–1
(

x,σ (t)
)[

ω(t) + f2
(

t, y(t + α)
)

– f1(t, y(t + α)
]

(9)

for all x ∈ Na+1.

Proof Applying the �–α
a+1–α operator to both sides of (6), we get

�–α
a+1–α�α,β

a y(x) = �–α
a+1–α

[

ω(x) + f2
(

x, y(x + α)
)

– f1
(

x, y(x + α)
)]

. (10)

Using equation (i) in Lemma 3 for the left-hand side of (10), we have

�–α
a+1–α�α,β

a y(x) = �
–(α+βn–αβ)
a+(1–β)(n–α)�

α+βn–αβ
a y(x)

= y(x) –
n–1
∑

k=0

hα+β(n–α)–n+k
(

x, a + n – α – β(n – α)
)

× �k–(n–α–β(n–α))
a y

(

a + n – α – β(n – α)
)

= y(x) –
n–1
∑

k=0

hγ –n+k(x, a + n – γ )�k–(n–γ )
a y(a + n – γ ),
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where γ = α + β(n – α). Hence,

y(x) =
n–1
∑

k=0

hγ –n+k(x, a + n – γ )�k–(n–γ )
a y(a + n – γ )

+ �–α
a+1–α

[

ω(x) + f2
(

x, y(x + α)
)

– f1
(

x, y(x + α)
)]

=
n–1
∑

k=0

hγ –n+k(x, a + n – γ )yk

+
x–α
∑

t=a+1–α

hα–1
(

x,σ (t)
)[

ω(t) + f2
(

t, y(t + α)
)

– f1(t, y(t + α)
]

.

This completes the proof. �

3 Main results
In this section, we will contemplate the following conditions:

fk(x, y)
y

> 0, (k = 1, 2), y 	= 0, x ≥ x0, (11)

and

∣
∣f1(x, y)

∣
∣ ≥ ∣

∣q1(x)
∣
∣|y|μ and

∣
∣f2(x, y)

∣
∣ ≤ ∣

∣q2(x)
∣
∣|y|ν , y 	= 0, x ≥ x0, (12)

where qk : [x0,∞) → R
+, k = 1, 2 are continuous functions and μ,ν > 0 are real numbers.

Also, we obtain another oscillation criterion using the following condition:

∣
∣f1(x, y)

∣
∣ ≤ ∣

∣q1(x)
∣
∣|y|μ and

∣
∣f2(x, y)

∣
∣ ≥ ∣

∣q2(x)
∣
∣|y|ν , y 	= 0, x ≥ x0, (13)

where qk : [x0,∞) →R
+, k = 1, 2, are continuous functions and μ,ν > 0 are real numbers.

Theorem 2 Assume the conditions (11) and (12) hold for μ > ν . If

lim inf
x→∞ x1–γ

x–α
∑

t=T

hα–1
(

x,σ (t)
)[

ω(t) + Kμ,ν(t)
]

= –∞ (14)

and

lim sup
x→∞

x1–γ

x–α
∑

t=T

hα–1
(

x,σ (t)
)[

ω(t) – Kμ,ν(t)
]

= ∞, (15)

where Kμ,ν(t) = (μ/ν – 1)[νq2(t)/μ]μ/(μ–ν)qν/(ν–μ)
1 (t), then every solution of (6) is oscillatory

for every sufficiently large T .

Proof Suppose y(x) is a non-oscillatory solution of Eq. (6). In this case, assume that T > a
is sufficiently large such that y(x) > 0 for x ≥ T .
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Let F(x) = ω(x) + f2(x, y(x + α)) – f1(x, y(x + α)). Then we have

y(x) =
n–1
∑

k=0

hγ –n+k(x, a + n – γ )yk +
x–α
∑

t=a+1–α

hα–1
(

x,σ (t)
)

F(t)

≤
n–1
∑

k=0

hγ –n+k(x, a + n – γ )|yk| +
x–α
∑

t=a+1–α

hα–1
(

x,σ (t)
)∣
∣F(t)

∣
∣

+
x–α
∑

t=T

hα–1
(

x,σ (t)
)[

ω(t) + f2
(

t, y(t + α)
)

– f1
(

t, y(t + α)
)]

≤
n–1
∑

k=0

hγ –n+k(x, a + n – γ )|yk| +
T–1
∑

t=a+1–α

hα–1
(

x,σ (t)
)∣
∣F(t)

∣
∣ (16)

+
x–α
∑

t=T

hα–1
(

x,σ (t)
)[

ω(t) + q2(t)yν(t + α) – q1(t)yμ(t + α)
]

.

Define

(x) =
n–1
∑

k=0

hγ –n+k(x, a + n – γ )|yk|

and

�(x, T) =
T–1
∑

t=a+1–α

hα–1
(

x,σ (t)
)∣
∣F(t)

∣
∣;

hence

y(x) ≤ (x) + �(x, T) +
x–α
∑

t=T

hα–1
(

x,σ (t)
)[

ω(t) + q2(t)yν(t + α) – q1(t)yμ(t + α)
]

, (17)

for x > T . Let t ≥ T and take χ = |y|ν , ξ = νq2(t)/(μq1(t)), u = μ/ν and v = μ/(μ – ν). Then
we have

q2(t)
∣
∣y(t + α)

∣
∣
ν – q1(t)

∣
∣y(t + α)

∣
∣
μ =

μq1(t)
ν

[
∣
∣y(t + α)

∣
∣
ν νq2(t)
μq1(t)

–
(|y(t + α)|ν)μ/ν

μ/ν

]

=
μq1(t)

ν

[

χξ –
1
u

χu
]

≤ μq1(t)
ν

1
v
ξ v = Kμ,ν(t).

(18)

Using (18) in inequality (17) we obtain

y(x) ≤ (x) + �(x, T) +
x–α
∑

t=T

hα–1
(

x,σ (t)
)[

ω(t) + Kμ,ν(t)
]

, x > T . (19)
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Multiplying both sides of (19) with 
(γ )x1–γ , we get

0 < 
(γ )x1–γ y(x) ≤ 
(γ )x1–γ (x) + 
(γ )x1–γ �(x, T)

+ 
(γ )x1–γ

x–α
∑

t=T

hα–1
(

x,σ (t)
)[

ω(t) + Kμ,ν(t)
] (20)

for t ≥ T . We consider two cases.
Case (i). Assume 0 < α ≤ 1. Then n = 1 and 0 < γ ≤ 1. Also we have (x) = |y0|hγ –1(x, a +

1 – γ ) for x ≥ T , and


(γ )x1–γ (x) = 
(γ )x1–γ |y0|hγ –1(x, a + 1 – γ )

= |y0|x1–γ
(

x – (a + 1 – γ )
)γ –1

= |y0|x1–γ 
(x – (a + 1 – γ ) + 1)

(x – (a + 1 – γ ) – (γ – 1) + 1)

= |y0|x1–γ 
(x – a + γ )

(x – a + γ + (1 – γ ))

and


(γ )x1–γ �(x, T) = 
(γ )x1–γ

T–1
∑

t=a+1–α

hα–1
(

x,σ (t)
)∣
∣F(t)

∣
∣

=

(γ )

(α)

T–1
∑

t=a+1–α

x1–γ (x – t – 1)α–1∣∣F(t)
∣
∣

=

(γ )

(α)

T–1
∑

t=a+1–α

x1–γ 
(x – t)

(x – t + 1 – α)

∣
∣F(t)

∣
∣

=

(γ )

(α)

T–1
∑

t=a+1–α

(

x1–α
)1–β 
(x – t)


(x – t + 1 – α)
∣
∣F(t)

∣
∣

=

(γ )

(α)

T–1
∑

t=a+1–α

1
(x1–α)β

x1–α 
(x – t)

(x – t + 1 – α)

∣
∣F(t)

∣
∣

and using the asymptotic expansion formula

lim
x→∞


(x)xε


(x + ε)
= 1, ε > 0,

we have

lim
x→∞

[


(γ )x1–γ (x) + 
(γ )x1–γ �(x, T)
]

= M < ∞, x > T . (21)

Taking the limit inferior of inequality (20) as x → ∞,

lim inf
x→∞ x1–γ

x–α
∑

t=T

hα–1
(

x,σ (t)
)[

ω(t) + Kμ,ν(t)
]

> –M > –∞

and we have a contradiction to (14).
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Case (ii). Assume n – 1 < α < n, n ≥ 2. Then n – 1 < γ < n and γ > α with γ = α +β(n –α);


(γ )x1–γ (x) = 
(γ )x1–γ

n–1
∑

k=0

hγ –n+k(x, a + n – γ )|yk|

= 
(γ )
n–1
∑

k=0

x1–γ (x – a – n + γ )γ –n+k


(γ – n + k + 1)
|yk|

= 
(γ )
n–1
∑

k=0


(x – a – n + γ + 1)
xγ –1
(x – a – k + 1)
(γ – n + k + 1)

|yk|

= 
(γ )
n–1
∑

k=0


(x – a – n + γ + 1)

(x – a – k + γ )

× 
(x – a – k + γ )
xγ –1
(x – a – k + 1)

× 1

(γ – n + k + 1)

|yk|

= 
(γ )
n–1
∑

k=0

1
(x – a + γ – (k – 1)) · · · (x – a + γ – (n – 1))

× 
(x – a – k + γ )
xγ –1
(x – a – k + 1)

× 1

(γ – n + k + 1)

|yk|

and


(γ )x1–γ �(x, T) = 
(γ )x1–γ

T–1
∑

t=a+1–α

hα–1
(

x,σ (t)
)∣
∣F(t)

∣
∣

=

(γ )

(α)

T–1
∑

t=a+1–α

x1–γ (x – t – 1)α–1∣∣F(t)
∣
∣

=

(γ )

(α)

T–1
∑

t=a+1–α


(x – t)
xγ –1
(x – t + 1 – α)

∣
∣F(t)

∣
∣

=

(γ )

(α)

T–1
∑

t=a+1–α


(x – t)
xα–1+β(n–α)
(x – t + 1 – α)

∣
∣F(t)

∣
∣

=

(γ )

(α)

T–1
∑

t=a+1–α

1
xβ(n–α)


(x – t)
xα–1
(x – t + 1 – α)

∣
∣F(t)

∣
∣.

Then using the asymptotic expansion formula, we obtain

lim
x→∞

[


(γ )x1–γ (x) + 
(γ )x1–γ �(x, T)
]

= 0, x ≥ T .

Hence, taking the limit inferior of inequality (20) as x → ∞, we get

lim inf
x→∞ x1–γ

x–α
∑

t=T

hα–1
(

x,σ (t)
)[

ω(t) + Kμ,ν(t)
]

> 0,

which is a contradiction to condition (14).
Thus we complete the proof of the theorem. �
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Theorem 3 Suppose α ≥ 1 and assume that (11) and (13) valid for μ < ν . If

lim inf
x→∞ x1–γ

x–α
∑

t=T

hα–1
(

x,σ (t)
)[

ω(t) – Kμ,ν(t)
]

= –∞ (22)

and

lim sup
x→∞

x1–γ

x–α
∑

t=T

hα–1
(

x,σ (t)
)[

ω(t) + Kμ,ν(t)
]

= ∞, (23)

where Kμ,ν(t) is defined as in Theorem 2, then for every sufficiently large T every bounded
solution of (6) is oscillatory.

Proof Assume y(x) is a non-oscillatory and bounded solution of (6). Then for M1, M2 ∈R

M1 ≤ y(x) ≤ M2, x ≥ a. (24)

Suppose that y(x) > 0 for x ≥ T > a. Using inequality (8) and condition (13), we get

q2(t)
∣
∣y(t + α)

∣
∣
ν – q1(t)

∣
∣y(t + α)

∣
∣
μ ≥ Kμ,ν(t), t ≥ T , (25)

similarly to Theorem 2. Define

(x) =
n–1
∑

k=0

hγ –n+k(x, a + n – γ )|yk|

and

�(x, T) =
T–1
∑

t=a+1–α

hα–1
(

x,σ (t)
)∣
∣F(t)

∣
∣.

Then we obtain for x ≥ T


(γ )x1–γ y(x) ≥ 
(γ )x1–γ (x) + 
(γ )x1–γ �(x, T)

+ 
(γ )x1–γ

x–α
∑

t=T

hα–1
(

x,σ (t)
)[

ω(t) + Kμ,ν(t)
]

, x > T ,
(26)

and also using (24)


(γ )x1–γ M2 ≥ 
(γ )x1–γ (x) + 
(γ )x1–γ �(x, T)

+ 
(γ )x1–γ

x–α
∑

t=T

hα–1
(

x,σ (t)
)[

ω(t) + Kμ,ν(t)
]

, x > T .
(27)

We consider two cases for the proof.
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Case (i) Assume α = 1. Then γ = 1 and (x) = hγ –1(x, a + 1 – γ )|y0| = |y0|, �(x, T) =
∑T–1

t=a |F(t)|. Hence, we see from (27)

[

M2 – |y0| –
T–1
∑

t=a

∣
∣F(t)

∣
∣

]

≥
x–α
∑

t=T

hα–1
(

x,σ (t)
)[

ω(t) + Kμ,ν(t)
]

, x > T ,

and

lim sup
x→∞

x1–γ

x–α
∑

t=T

hα–1
(

x,σ (t)
)[

ω(t) + Kμ,ν(t)
] ≤

[

M2 – |y0| –
T–1
∑

t=a

∣
∣F(t)

∣
∣

]

< ∞,

which is a contradiction to (23).
Case (ii) Assume α > 1. Then γ > 1. As in the proof of Theorem 2, using the asymptotic

expansion formula we have

lim
x→∞

[


(γ )x1–γ (x) + 
(γ )x1–γ �(x, T)
]

= 0, x ≥ T .

Since limx→∞ x1–γ = 0, from (27)

lim sup
x→∞

x1–γ

x–α
∑

t=T

hα–1
(

x,σ (t)
)[

ω(t) + Kμ,ν(t)
] ≤ 0 < ∞,

which is a contradiction to (23). �

Example 1 Consider the following initial value problem:

�
1
3 , 1

2 y(x) + y2
(

x +
1
3

)

ex+ 1
3 =

3
2
( 2

3 )

(
6
5

x
5
3 – x

2
3

)

+ y
1
5

(

x +
1
3

)

ex+ 1
3

+
((

x +
1
3

)4

–
(

x +
1
3

) 2
5
)

ex+ 1
3 ,

(28)

�–(1– 2
3 )y

(
1
3

)

= 0,

where α = 1/3, β = 1/2 and γ = 2/3. y(x) = x2 is a non-oscillatory solution of (28). Here, μ =
2, ν = 1/5, q1(x) = q2(x) = ex+ 1

3 and ω(x) = 3
2
( 2

3 )
( 6

5 x
5
3 – x

2
3 ) + ((x + 1

3 )4 – (x + 1
3 )

2
5 )ex+ 1

3 . How-
ever, condition (14) is not fulfilled because of ω(x) ≥ 0 and lim infx→∞ x1–γ

∑x–α
t=a+1–α hα–1(x,

σ (t))[ω(t) + Kμ,ν(t)] ≥ 0.
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