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Abstract
This paper derives several sufficient conditions for the existence of three solutions to
the Dirichlet problem for a second-order self-adjoint difference equation involving
p-Laplacian through the critical point theory. Furthermore, by using the strong
maximum principle, we prove that the three solutions are positive under appropriate
assumptions on the nonlinearity. Finally, we present three examples to confirm our
results.
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1 Introduction
For the set of real numbers R, the set of integers Z, and the set of natural numbers N, let
us denote Z(a) = {a, a + 1, . . . } and Z(a, b) = {a, a + 1, . . . , b} when a ≤ b.

Consider the following Dirichlet boundary value problem:

⎧
⎨

⎩

�[p(k)φp(�u(k – 1))] + λf (k, u(k)) = 0, k ∈ Z(1, T),

u(0) = u(T + 1) = 0,
(1.1)

where T ∈ N, � is the forward difference operator denoted by �u(k) = u(k + 1) – u(k),
�2u(k) = �(�u(k)), φp is the p-Laplacian operator, namely, φp(s) = |s|p–2s, p > 1, f (k, ·) ∈
C(R, R) for each k ∈ Z(1, T).

Difference equations have been widely applied as mathematical models in biology,
physics, and other research fields [1–5]. For instance, the qualitative analysis of equations
with p-Laplacian-like operators has become an important research topic due to the fact
that these equations arise in a variety of real world problems such as in the study of non-
Newtonian fluid theory and the turbulent flow of a polytrophic gas in a porous medium;
see [6–8] for more details. Accordingly, the research of the difference equations has at-
tracted much attention in recent years. The upper and lower solution techniques, as well
as the fixed point methods [9, 10], are useful tools in researching the BVPs of difference
equations. In 2003, the second-order difference equation was first studied by Yu and Guo
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[11] via the critical point theory, and some results on the existence of periodic solutions
and subharmonic solutions were obtained. Since then, many researchers have explored
the difference equations by mainly using the critical point theory to show a lot of inter-
esting results on BVPs [12–19], periodic solutions [11, 20–22], and homoclinic solutions
[23–33].

In [21], Yu et al. studied the following second-order difference equation:

�
[
p(t)�u(t – 1)

]
+ q(t)u(t) = f

(
t, u(t)

)
, t ∈ Z. (1.2)

Based on the critical point theory, some sufficient conditions to prove the existence of
periodic solutions of (1.2) were derived. In [31], the variational method was also explored
to prove the existence of nontrivial homoclinic orbits for (1.2).

In [34], Ma studied the following homogeneous and linear difference equation:

�
[
p(t)�u(t – 1)

]
+ q(t)u(t) = 0, t ∈ Z(1), (1.3)

and some results on recessive and dominant solutions were established. In [35], Long, Yu,
and Guo considered the disconjugacy and the C-disfocality of (1.3), and several sufficient
conditions were derived explicitly in terms of equation coefficients.

For p(k) ≡ 1 in (1.1), Jiang and Zhou [36] showed the existence of three solutions of
(1.1). The aim of this paper is to prove that the three solutions exist for (1.1) by using
different methods. Moreover, by using a new strong maximum principle established in
this paper, we prove that the three solutions are positive under suitable conditions. Even
in the special case p(k) ≡ 1, the existence results of three nontrivial solutions for (1.1) are
new. However, as shown in the last Example 4.3, the conclusion about the three solutions
using [36, Theorem 3.1] cannot be acquired.

The rest of this paper is organized as follows. Some preliminaries are presented in Sect. 2.
Our main results are given in Sect. 3. Finally, we give three examples to confirm our find-
ings in Sect. 4.

2 Preliminaries
Let X denote a finite-dimensional real Banach space and let Iλ : X → R be a functional
satisfying the following structure hypothesis:

(H1) Iλ(u) = �(u) – λ�(u) for u ∈ X , where λ > 0, �,� : X → R are two continuous
functions of class C1 on X with � is coercive, that is, lim‖u‖→∞ �(u) = +∞.

The following lemma comes from Corollary 3.1 of [37].

Lemma 2.1 Assume that (H1) holds together with the following conditions:
(H2) � is convex and infX � = �(0) = �(0) = 0;
(H3) If x1, x2 are local minima for the functional Iλ(u) = �(u)–λ�(u) such that �(x1) ≥ 0

and �(x2) ≥ 0, then

inf
t∈[0,1]

�
(
tx1 + (1 – t)x2

) ≥ 0.

Further, assume that there are two positive constants ρ1, ρ2 and v̄ ∈ X, with ρ1 < �(v̄) < ρ2
2 ,

such that
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(i)
supu∈�–1(–∞,ρ1) �(u)

ρ1
< 1

2
�(v̄)
�(v̄) ,

(ii)
supu∈�–1(–∞,ρ2) �(u)

ρ2
< 1

4
�(v̄)
�(v̄) .

Then, for λ ∈ ( 2�(v̄)
�(v̄) , min{ ρ1

supu∈�–1(–∞,ρ1) �(u) , ρ2/2
supu∈�–1(–∞,ρ2) �(u) }), the functional Iλ admits at

least three distinct critical points u1, u2, u3 such that u1 ∈ �–1(–∞,ρ1), u2 ∈ �–1(ρ1,ρ2/2),
and u3 ∈ �–1(–∞,ρ2).

Let us introduce another condition as follows:
(�) Let (X,‖ · ‖) be a real finite-dimensional Banach space, and let �,� : X → R be two

continuously Gâteaux differentiable functionals, with � being coercive and infX � =
�(0) = �(0) = 0.

Lemma 2.2 ([38, Theorem 4.1]) Assume that (�) holds and there exist r > 0 and x̄ ∈ X,
with r < �(x̄), such that

(a1) sup�(x)≤r �(x)
r < �(x̄)

�(x̄) ,
(a2) For each λ ∈ �r := ( �(x̄)

�(x̄) , r
sup�(x)≤r �(x) ), the functional � – λ� is coercive.

Then, for each λ ∈ �r , the functional � – λ� has at least three distinct critical points in X.

Consider the T-dimensional Banach space

X =
{

u : Z(0, T + 1) → R : u(0) = u(T + 1) = 0
}

,

equipped with a norm ‖ · ‖ given by

‖u‖ =

(T+1∑

k=1

∣
∣�u(k – 1)

∣
∣p

) 1
p

, u ∈ X.

Define two functionals on X as follows:

�(u) =
1
p

T+1∑

k=1

p(k)
∣
∣�u(k – 1)

∣
∣p, �(u) =

T∑

k=1

F
(
k, u(k)

)
, u ∈ X, (2.1)

where F(k, ξ ) =
∫ ξ

0 f (k, s) ds for ξ ∈ R. Obviously, �,� ∈ C1(X, R).
Define

Iλ(u) = �(u) – λ�(u), u ∈ X. (2.2)

Through careful calculations, for each u, v ∈ X, we see that

I ′
λ(u)(v) = lim

t→0

Iλ(u + tv) – Iλ(u)
t

=
T+1∑

k=1

p(k)
∣
∣�u(k – 1)

∣
∣p–2�u(k – 1)�v(k – 1) – λ

T∑

k=1

f
(
k, u(k)

)
v(k)

=
T∑

k=1

p(k)φp
(�u(k – 1)

)�v(k – 1) – p(T + 1)φp
(�u(T)

)
v(T)
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– λ

T∑

k=1

f
(
k, u(k)

)
v(k)

= p(k)φp
(�u(k – 1)

)
v(k – 1)|T+1

1 –
T∑

k=1

�[
p(k)φp

(�u(k – 1)
)]

v(k)

– p(T + 1)φp
(�u(T)

)
v(T) – λ

T∑

k=1

f
(
k, u(k)

)
v(k)

= –

{ T∑

k=1

�[
p(k)φp

(�u(k – 1)
)]

+ λ

T∑

k=1

f
(
k, u(k)

)
}

v(k).

Thus

I ′
λ(u)(v) = –

T∑

k=1

{�[
p(k)φp

(�u(k – 1)
)]

+ λf
(
k, u(k)

)}
v(k) = 0 (2.3)

is equivalent to

�[
p(k)φp

(�u(k – 1)
)]

+ λf
(
k, u(k)

)
= 0 (2.4)

for any k ∈ Z(1, T) with u(0) = u(T + 1) = 0. That is, each critical point of the functional
Iλ corresponds to a solution of (1.1). Therefore, we simplify the solution of (1.1) into the
problem of finding the critical points of Iλ on X.

Lemma 2.3 ([36]) For any u ∈ X and p > 1, one has

max
k∈Z(1,T)

∣
∣u(k)

∣
∣ ≤ (T + 1)(p–1)/p

2
‖u‖. (2.5)

Lemma 2.4 Assume that u ∈ X is such that either

u(k) > 0 or – �[
p(k)φp

(�u(k – 1)
)] ≥ 0, (2.6)

for k ∈ Z(1, T). Then, either u(k) > 0 for all k ∈ Z(1, T) or u ≡ 0.

Proof Let j ∈ Z(1, T) and

u(j) = min
{

u(k) : k ∈ N(1, T)
}

.

If u(j) > 0, then it is clear that u(k) > 0 for all k ∈ Z(1, T). If u(j) ≤ 0, then u(j) = min{u(k) :
k ∈ N(0, T + 1)}, since �u(j – 1) = u(j) – u(j – 1) ≤ 0 and �u(j) = u(j + 1) – u(j) ≥ 0. As
φp(0) = 0 and φp(s) is increasing in s, we obtain

φp
(�u(j)

) ≥ 0 ≥ φp
(�u(j – 1)

)
. (2.7)

Owing to p(j + 1) > 0 and p(j) > 0, it holds that

p(j + 1)φp
(�u(j)

) ≥ 0 ≥ p(j)φp
(�u(j – 1)

)
. (2.8)
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On the other hand, by (2.6), we have

p(j + 1)φp
(�u(j)

) ≤ p(j)φp
(�u(j – 1)

)
. (2.9)

By combining (2.8) with (2.9), we have p(j + 1)φp(�u(j)) = 0 = p(j)φp(�u(j – 1)).
Thus, u(j + 1) = u(j – 1) = u(j). If j + 1 = T + 1, then we can get u(j) = 0. Otherwise,

j + 1 ∈ N(1, T). Replacing j by j + 1, we can get u(j + 2) = u(j + 1). Continuing this process
T + 1 – j times, we have u(j) = u(j + 1) = u(j + 2) = · · · = u(T + 1) = 0. Similarly, we have
u(j) = u(j – 1) = u(j – 2) = · · · = u(0) = 0. Thus, u ≡ 0 and the proof is completed. �

3 Main results
For two positive constants c and q, we denote


(c) =
∑T

k=1 F(k, c)
cp , Fq :=

T∑

k=1

F(k, q), min
k∈Z(1,T)

{
p(k)

}
= m > 0.

Theorem 3.1 Suppose that for k ∈ Z(1, T), f (k, u) is a continuous function with respect to
u, and c1, c2, and d are positive constants, with

2c1m
1
P

(T + 1)
p–1

p (p(1) + p(T + 1))
1
p

< d <
2c2m

1
P

(T + 1)
p–1

p (2(p(1) + p(T + 1)))
1
p

, (3.1)

such that
(e1) max{
(c1), 2
(c2)} < 2p–1m

(p(1)+p(T+1))(T+1)p–1 
(d).
Then, for each

λ ∈
(

2(p(1) + p(T + 1))
p
(d)

,
m2p

p((T + 1)p–1) max{
(c1), 2
(c2)}
)

,

problem (1.1) has at least three solutions ui (i = 1, 2, 3), with u1 ∈ �–1(–∞,ρ1), u2 ∈
�–1(ρ1,ρ2/2), and u3 ∈ �–1(–∞,ρ2), where ρ1 = m(2c1)p

p((T+1)p–1) , ρ2 = m(2c2)p

p((T+1)p–1) .

Proof Our idea is to use Lemma 2.1 to confirm our conclusion. First, we prove the coer-
civity of �. Since

�(u) =
1
p

T+1∑

k=1

p(k)
∣
∣�u(k – 1)

∣
∣p

≥ 1
p

m
T+1∑

k=1

∣
∣�u(k – 1)

∣
∣p

=
m
p

‖u‖p,

(3.2)

we see that � is coercive.
Next, we prove that � is convex. Consider y = xp for x ≥ 0. By taking the derivative of y

with respect to x, we have

y′ = pxp–1, y′′ = p(p – 1)xp–2 ≥ 0.
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So, y = xp is convex on [0, +∞). That is, xp
1+xp

2
2 ≥ ( x1+x2

2 )p. From

�

(
u1 + u2

2

)

=
1
p

T∑

k=1

p(k)
∣
∣
∣
∣�

u1(k) + u2(k)
2

∣
∣
∣
∣

p

≤ 1
p

T∑

k=1

p(k)
( |�u1(k)| + |�u2(k)|

2

)p

≤ 1
p

T∑

k=1

p(k)
( |�u1(k)|p + |�u2(k)|p

2

)

(3.3)

=
1
2

(
1
p

T∑

k=1

p(k)
∣
∣�u1(k)

∣
∣p +

1
p

T∑

k=1

p(k)
∣
∣�u2(k)

∣
∣p

)

=
1
2
(
�(u1) + �(u2)

)
,

we know that � is convex. From the definitions of � and � , we have

inf
X

� = �(0) = �(0) = 0.

Therefore, � and � satisfy hypotheses (H1) and (H2) of Lemma 2.1. Now, let x1 and x2

be two local minima for Iλ. Then, x1 and x2 are two critical points of Iλ. In this case, x1

and x2 are two solutions of (1.1). By Lemma 2.4, we have x1 ≥ 0 and x2 ≥ 0. Consequently,
we obtain tx1 + (1 – t)x2 ≥ 0 for t ∈ [0, 1]. It follows that �(tx1 + (1 – t)x2) ≥ 0 and (H3) is
verified.

When ‖u‖ ≤ ( pρ1
m )

1
p , by Lemma 2.3, we have

max
k∈Z(1,T)

∣
∣u(k)

∣
∣ ≤ (T + 1)(p–1)/p

2

(
pρ1

m

) 1
p

= c1.

Similarly, it holds that

max
k∈Z(1,T)

∣
∣u(k)

∣
∣ ≤ (T + 1)(p–1)/p

2

(
pρ2

m

) 1
p

= c2

for u ∈ X with ‖u‖ ≤ ( pρ2
m )

1
p . Taken together, we have

supu∈�–1(–∞,ρ1) �(u)
ρ1

≤
sup

‖u‖<( pρ1
m )

1
p

∑T
k=1 F(k, u(k))

ρ1

≤
∑T

k=1 F(k, c1)
ρ1

=
p((T + 1)p–1)

m(2c1)p

T∑

k=1

F(k, c1)

=
p((T + 1)p–1)

m2p 
(c1),

(3.4)
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and

supu∈�–1(–∞,ρ2) �(u)
ρ2

≤
sup

‖u‖<( pρ2
m )

1
p

∑T
k=1 F(k, u(k))

ρ2

≤
∑T

k=1 F(k, c2)
ρ2

=
p((T + 1)p–1)

m(2c2)p

T∑

k=1

F(k, c2)

=
p((T + 1)p–1)

m2p 
(c2).

(3.5)

By (3.4) and (3.5), we verify assumptions (i) and (ii) of Lemma 2.1.
On the other hand, select v̄ ∈ X such that

v̄ =

⎧
⎨

⎩

d, if k ∈ Z(1, T),

0, if k = 0 or k = T + 1.

Then we have �(v̄) = (p(1)+p(T+1))dp

p . Hence, from (3.1), we obtain

ρ1 < �(v̄) <
ρ2

2
.

Moreover, we have

2�(v̄)
�(v̄)

=
2(p(1) + p(T + 1))

p
(d)
. (3.6)

By Lemma 2.1, for λ ∈ ( 2(p(1)+p(T+1))
p
(d) , m2p

p((T+1)p–1) max{
(c1),2
(c2)} ), problem (1.1) has at least
three solutions ui (i = 1, 2, 3), and

u1 ∈ �–1
(

–∞,
m(2c1)p

p((T + 1)p–1)

)

,

u2 ∈ �–1
(

m(2c1)p

p((T + 1)p–1)
,

m(2c2)p

2p((T + 1)p–1)

)

,

u3 ∈ �–1
(

–∞,
m(2c2)p

p((T + 1)p–1)

)

.

Thus, the proof of Theorem 3.1 is completed. �

Let

f (k, u) =

⎧
⎨

⎩

α(k)y(u), if u ≥ 0,

0, if u < 0,

for all (k, u) ∈ Z(1, T) × R.
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Next, we consider the following discrete system:
⎧
⎨

⎩

�[p(k)φp(�u(k – 1))] + λα(k)y(u(k)) = 0, k ∈ Z(1, T),

u(0) = u(T + 1) = 0,
(3.7)

where α : Z(1, T) → R is a continuous function and y : [0, +∞) → R is a nonnegative con-
tinuous function with y(0) = 0.

Corollary 3.1 Suppose that c1, c2, and d are positive constants satisfying (3.1), and

(e2) max{
∫ c1

0 y(ξ ) dξ

cp
1

, 2
∫ c2

0 y(ξ ) dξ

cp
2

} < m2p–1 ∫ d
0 y(ξ ) dξ

(p(1)+p(T+1))(T+1)p–1dp .
Then, for each

λ ∈ 1
∑T

k=1 α(k)

(
2(p(1) + p(T + 1))dp

p
∫ d

0 y(ξ ) dξ
,

m2p

p((T + 1)p–1) max{
∫ c1

0 y(ξ ) dξ

cp
1

, 2
∫ c2

0 y(ξ ) dξ

cp
2

}

)

,

problem (3.7) has at least two positive solutions.

Next, let us give another theorem as follows:

Theorem 3.2 Suppose that c and d are positive constants such that

1
p
|d|p(p(1) + p(T + 1)

)
>

m(2c)p

p(T + 1)p–1 , (3.8)

and satisfying
(i) f (k, ξ ) > 0 for each k ∈ Z(1, T) and ξ ∈ [–c, d];

(ii) pFd

|d|p(p(1)+p(T+1)) > Fcp(T+1)p–1

m(2c)p ;
(iii) lim sup|ξ |→+∞

F(k,ξ )
|ξ |p < Fc

Tcp .
Then, for each λ ∈ �r := ( |d|p(p(1)+p(T+1))

pFd , m(2c)p

Fcp(T+1)p–1 ), problem (1.1) has at least three non-
trivial solutions.

Proof Apparently, condition (�) in Lemma 2.2 is tenable. Theorem 3.2 can be established
after verifying (a1) and (a2) in Lemma 2.2.

Let

r =
m(2c)p

p(T + 1)p–1 .

For u ∈ X and �(u) ≤ r, according to (3.2) and due to ‖u‖ ≥ 1, we have

‖u‖ ≤
(

p
m

�(u)
) 1

p
≤

(
p
m

r
) 1

p
=

2c

(T + 1)
p–1

p
.

Using Lemma 2.3, we have ‖u‖∞ ≤ c. Thus,

sup�(u)≤r �(u)
r

≤ sup‖u‖∞≤c
∑T

k=1 F(k, u(k))
r

≤
∑T

k=1 max|s|≤c F(k, s)
r

=
Fcp(T + 1)p–1

m(2c)p . (3.9)
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Now, fix

ū(k) =

⎧
⎨

⎩

d, if k ∈ Z(1, T),

0, if k = 0 or k = T + 1.

Clearly, ū ∈ X. It follows from (3.8) that

�(ū) =
1
p
|d|p(p(1) + p(T + 1)

)
>

m(2c)p

p(T + 1)p–1 = r.

Moreover, one has

�(ū)
�(ū)

=
p
∑T

k=1 F(k, d)
|d|p(p(1) + p(T + 1))

=
pFd

|d|p(p(1) + p(T + 1))
. (3.10)

Therefore, by (3.9) and (3.10), condition (a1) follows.
In order to verify the coercivity of the functional � – λ� , we first suppose that

lim sup
|ξ |→+∞

F(k, ξ )
|ξ |p ≥ 0.

According to condition (iii), there exists ε such that lim sup|ξ |→+∞
F(k,ξ )
|ξ |p < ε < Fc

Tcp . Thus,
there exists a positive constant hε such that

F(k, ξ ) ≤ ε|ξ |p + hε ,

for each ξ ∈ R and k ∈ Z(1, T). According to Lemma 2.3 and due to λ < m(2c)p

Fcp(T+1)p–1 , one has

λ

T∑

k=1

F
(
k, u(k)

) ≤ λ

T∑

k=1

[
ε
∣
∣u(k)

∣
∣p + hε

]

≤ λεT(T + 1)p–1

2p ‖u‖p + λThε

<
εTmcp

Fcp
‖u‖p +

m(2c)pT
Fcp(T + 1)p–1 hε

(3.11)

for each u ∈ X. Therefore, we have

�(u) – λ�(u) =
1
p

T+1∑

k=1

p(k)
∣
∣�u(k – 1)

∣
∣p – λ

T∑

k=1

F
(
k, u(k)

)

>
m
p

‖u‖p –
εTmcp

Fcp
‖u‖p –

m(2c)pT
Fcp(T + 1)p–1 hε

=
[

m
p

–
εTmcp

Fcp

]

‖u‖p –
m(2c)pT

Fcp(T + 1)p–1 hε

(3.12)

for ‖u‖ ≥ 1. This gives lim‖u‖→+∞ �(u) – λ�(u) = +∞.
On the other hand, if

lim sup
|ξ |→+∞

F(k, ξ )
|ξ |p < 0,
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there is a positive constant hε such that F(k, ξ ) ≤ hε , and so arguing as before we have

�(u) – λ�(u) =
1
p

T+1∑

k=1

p(k)
∣
∣�u(k – 1)

∣
∣p – λ

T∑

k=1

F
(
k, u(k)

)

>
m
p

‖u‖p –
m(2c)pT

Fcp(T + 1)p–1 hε

(3.13)

for ‖u‖ ≥ 1. Again, we obtain lim‖u‖→+∞ �(u) – λ�(u) = +∞, and thereby condition (a2)
holds.

In summary, all the hypotheses in Lemma 2.2 have been demonstrated to be true. There-
fore, the functional �(u) –λ�(u) has at least three different critical points for each λ ∈ �r ,
and the proof is completed. �

Now, let

F+(k, ξ ) =
∫ ξ

0
f
(
k, t+)

dt, (k, ξ ) ∈ Z(1, T) × R,

where t+ = max{0, t} and I+
λ = � – λ�+. Here � is defined by (2.1) and

�+(u) :=
T∑

k=1

F+(
k, u(k)

)
.

Clearly, I+
λ ∈ C1(X, R) and the critical points of I+

λ provide the solutions to the following
problem:

⎧
⎨

⎩

�[p(k)φp(�u(k – 1))] + λf (k, u+(k)) = 0, k ∈ Z(1, T),

u(0) = u(T + 1) = 0.
(3.14)

We have the following

Corollary 3.2 Suppose that c and d are positive constants such that

1
p
|d|p(p(1) + p(T + 1)

)
>

m(2c)p

p(T + 1)p–1 , (3.15)

and satisfying
(i) f (k, ξ ) > 0 for each k ∈ Z(1, T) and ξ ∈ [0, d];

(ii) pFd

|d|p(p(1)+p(T+1)) > Fcp(T+1)p–1

m(2c)p ;
(iii) lim supξ→+∞

F(k,ξ )
ξp < Fc

Tcp .
Then, for each λ ∈ �r , problem (1.1) has at least three positive solutions.

Proof For any k ∈ Z(1, T), (3.14) should be considered with

f +(k, ξ ) =

⎧
⎨

⎩

f (k, ξ ), if ξ > 0,

f (k, 0), if ξ ≤ 0,

Under Theorem 3.2, one has that (i) is tenable.
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Moreover, we have

lim sup
ξ→–∞

F+(k, ξ )
|ξ |p = lim sup

ξ→–∞
ξ f (k, 0)

|ξ |p = – lim sup
ξ→–∞

f (k, 0)
|ξ |p–1 = 0 <

Fc

Tcp .

Consequently, all the requirements of Theorem 3.2 have been met. Besides, since u ≡ 0 is
not a solution to (3.14), it can be inferred that (3.14) has at least three nontrivial solutions.
Suppose that u = {u(k)} is a nontrivial solution. Then for any k ∈ Z(1, T), we have u(k) > 0
or

–�[
p(k)φp

(�u(k – 1)
)]

= λf
(
k, u+(k)

)
= λf (k, 0) > 0.

Therefore, according to Lemma 2.4, we may refer to u(k) > 0 for k ∈ Z(1, T). This u denotes
a positive solution. In addition, once u has been verified as a positive solution to (3.14),
it can be also considered as a positive solution of (1.1). Thus, Corollary 3.2 is demon-
strated. �

4 Examples
We show three examples to confirm our findings in this section.

Example 4.1 Let α : Z(1, 2) → R be positive and let y : [0, +∞) → R be a function defined
by

y(u) =

⎧
⎪⎪⎨

⎪⎪⎩

u8, 0 ≤ u < 2,

(4 – u)8, 2 ≤ u < 3,

1, u ≥ 3.

Let p = 3, c1 = 1, c2 = 8, d = 2, T = 2, m = 8, p(1) = 1, and p(3) = 2. Then

2c1m
1
P

(T + 1)
p–1

p (p(1) + p(T + 1))
1
p

=
2 × 1 × 8 1

3

(3) 2
3 (3) 1

3
≈ 1.333, (4.1)

and

2c2m
1
P

(T + 1)
p–1

p (2(p(1) + p(T + 1)))
1
p

=
2 × 8 × 8 1

3

(3) 2
3 (2 × (1 + 2)) 1

3
≈ 8.466. (4.2)

Thus, (3.1) holds. Since

∫ 1
0 y(ξ ) dξ

13 ≈ 0.111,
2
∫ 8

0 y(ξ ) dξ

83 ≈ 0.464,

and

8 × 22 ∫ 2
0 y(ξ ) dξ

33 × 23 ≈ 8.428,



Xiong and Zhou Advances in Difference Equations        (2021) 2021:192 Page 12 of 15

we obtain

max

{∫ 1
0 y(ξ ) dξ

13 ,
2
∫ 8

0 y(ξ ) dξ

83

}

<
8 × 22 ∫ 2

0 y(ξ ) dξ

33 × 23 .

Applying Corollary 3.1, for each λ ∈ (0.281B, 5.109B), where B = 1/
∑2

k=1 α(k), the follow-
ing problem:

⎧
⎨

⎩

�[p(k)φ3(�u(k – 1))] + λα(k)y(u(k)) = 0, k ∈ Z(1, 2),

u(0) = u(3) = 0,
(4.3)

has at least two positive solutions.

Next, let us discuss another example.

Example 4.2 Consider the boundary value problem (1.1) with

f (k, ξ ) = f (ξ ) = 3 + sin ξ + ξ cos ξ , ξ ∈ [0, 1],

for k ∈ Z(1, T). It follows that

F(k, ξ ) = F(ξ ) = ξ (3 + sin ξ ).

Letting c = 1, d = 2, p = 2, p(1) = 1, T = 4, p(5) = 2, and m = 8, one has

1
p
|d|p(p(1) + p(5)

)
= 6 >

m(2c)p

p5p–1 = 3.2.

Obviously, f (k, ξ ) > 0 holds for each ξ ∈ [0, 1] and k ∈ Z(1, T). Accordingly, condition (i)
in Corollary 3.2 can be obtained. Then, we have

Fcp5p–1

m(2c)p =
4(3 + sin 1) × 10

32
≈ 4.800, (4.4)

and

pFd

|d|p(p(1) + p(5))
=

4(6 + 2 sin 2)
6

≈ 5.212. (4.5)

Therefore, combining (4.4) and (4.5), condition (ii) in Corollary 3.2 is verified.

We can show condition (iii) in Corollary 3.2, as

lim sup
ξ→+∞

F(k, ξ )
ξp = lim sup

ξ→+∞
3 + sin ξ

ξp–1 = 0 <
Fc

Tcp .

In summary, all the conditions in Corollary 3.2 have been checked. Therefore, for each
λ ∈ �r = ( 6

4(6+2 sin 2) , 32
40(3+sin 1) ), problem (1.1) has at least three positive solutions.

Finally, let us discuss one more example.
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Example 4.3 Consider the special case of (1.1) with p(k) ≡ 1 and

f (k, u) = f (u) = 5 + sin u + u cos u, u ∈ [–1, 2],

for k ∈ Z(1, T). Therefore, we have

F(k, u) = F(u) = u(5 + sin u) – 5.

Letting c = 1, d = p = 2, T = 3, p(1) = p(4) = 1, and m = 1, one has

1
p
|d|p(p(1) + p(4)

)
= 4 >

m(2c)p

p4p–1 = 0.5.

We have f (k, u) > 0 for every u ∈ [–1, 2]. Thus, condition (i) in Theorem 3.2 is satisfied.
We also have

Fcp4p–1

m(2c)p =
3 sin 1 × 8

4
≈ 5.046 (4.6)

and

pFd

|d|p(p(1) + p(4))
=

3(5 + 2 sin 2)
4

≈ 5.115. (4.7)

Therefore, according to (4.6) and (4.7), condition (ii) of Theorem 3.2 holds.

Noting that

lim sup
|u|→+∞

F(k, u)
|u|p = lim sup

|u|→+∞
u(5 + sin u) – 5

|u|p = 0 <
Fc

Tcp ,

condition (iii) in Theorem 3.2 can be further verified.
In summary, all the conditions of Theorem 3.2 have been verified. Then, for each λ ∈

�r = ( 4
3(5+2 sin 2) , 1

6 sin 1 ), problem (1.1) has at least three nontrivial solutions.
We end this section by using the above hypothesis to compare our result with that of

[36, Theorem 3.1]. Through careful calculations, we obtain

max
(k,ξ )∈Z(1,T)×[–c,c]

F(k, ξ ) ≈ 0.841

and

(2c)p

T[(2c)p + 2(T + 1)p–1dp]

T∑

k=1

F(k, d) ≈ 0.758.

Then it holds that

max
(k,ξ )∈Z(1,T)×[–c,c]

F(k, ξ ) >
(2c)p

T[(2c)p + 2(T + 1)p–1dp]

T∑

k=1

F(k, d). (4.8)
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According to (4.8), it can be inferred that condition (A1) of [36, Theorem 3.1] is not sat-
isfied. This shows that the conclusion about the three solutions using [36, Theorem 3.1]
cannot be obtained.
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