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results reported in the literature.
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1 Preliminaries
Consider a certain function f : [a, b] ⊆R →R. This function is said to be convex if

f
(
tx + (1 – t)y

) ≤ tf (x) + (1 – t)f (y)

is satisfied for any x, y ∈ [a, b], being t ∈ [0, 1]. Likewise, f is called concave if –f is convex.
One of the most important inequalities that have attracted many experts in the last few

decades is the famous Hermite–Hadamard inequality

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
(1.1)

that holds for any function f convex on the interval [a, b]. This inequality was published
by Hermite in 1883 and, independently, by Hadamard in 1893. It gives an estimation of
the mean value of a convex function, and it is important to note that it also provides a
refinement to the Jensen inequality. The interested reader is referred to [3, 4, 10, 13–16,
21, 22, 27–30] and the references therein for more information and other extensions of
the Hermite–Hadamard inequality.

In this paper, following that path, we present a new integral operator (that we could
call “integral of one function with respect to another” for reasons that we will see later)
and apply it to the study of generalized inequalities, more general than (1.1), this time the
so-called Hermite–Hadamard–Fejér inequality.

We assume that the reader is familiar with the classic definition of the Riemann integral,
so we do not present it.
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As we know, basically there are two types of fractional differential operators, Riemann–
Liouville and Caputo, respectively:

RLDαf (t) =
d
dt

{
J1–α
F ,a (f )(t)

}
,

CDαf (t) = J1–α
F ,a

(
df
dt

)
(t),

with certain kernel F . In particular, we will deal with real integral operators defined on R

of the RL-type.
One of the first operators that can be called fractional is the Riemann–Liouville frac-

tional derivative of order α ∈C, Re(α) ≥ 0 defined by [6].

Definition 1.1 Let f ∈ L1((a, b);R), (a, b) ∈ R
2, a < b. The right- and left-hand side

Riemann–Liouville fractional integrals of order α > 0 are defined by

RLJα
a+ f (t) =

1
�(α)

∫ t

a
(t – s)α–1f (s) ds, t > a,

RLJα
b– f (t) =

1
�(α)

∫ b

t
(s – t)α–1f (s) ds, t < b,

and their corresponding differential operators are given by

Dα
a+ f (t) =

d
dt

(RLJ1–α
a+ f (t)

)
=

1
�(1 – α)

d
dt

∫ t

a

f (t)
(t – s)α

ds,

Dα
b– f (t) = –

d
dt

(RLJ1–α
b– f (t)

)
= –

1
�(1 – α)

d
dt

∫ b

t

f (t)
(s – t)α

ds.

There have been many fractional integrals defined and investigated in the recent years,
for example, so-called Hadamard, Katugampola, k-fractional integrals, etc. (see e.g. [1, 2,
11, 17, 23, 24, 26]).

Now, we give the definition of a general fractional integral. Throughout the work we
consider that the integral operator kernel T defined below is an absolutely continuous
function (see [8]).

Definition 1.2 Let I be an interval I ⊆R, a, b, t ∈ I , and α ∈R. The integral operators Jα
T ,

right and left, are defined for every locally integrable function f on I as follows:

Jα
T ,a+(f )(t) =

∫ t

a

f (s)
T(t – s,α)

ds, t > a,

Jα
T ,b–(f )(t) =

∫ b

t

f (s)
T(s – t,α)

ds, b > t.

It is easy to see that the case of the Jα
T operators defined above contains, as particu-

lar cases, the integral operators obtained from conformable and non-conformable local
derivatives. However, we will see that it goes much further by containing the cases pre-
sented before. It is clear that from our definition new extensions and generalizations of
known integral operators can be defined and many integral operators can be considered
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particular cases of the integral operator defined above, we let the reader complete this
analysis. For simplicity of notation, let us denote (see [14])

(a,b)Jα
T ,a+(f )(b) =

∫ b

a

f (s)
T( b–s

b–a ,α)
ds,

(a,b)Jα
T ,b–(f )(a) =

∫ b

a

f (s)
T( s–a

b–a ,α)
ds.

We also use the “central” integral operator defined by (see [31])

Jα
T ,a(f )(b) =

∫ b

a

f (t)
T(t,α)

dt, b > a.

We present the definition of generalized derivative that was defined in [19].

Definition 1.3 For a function f : [0,∞) →R, the Nα
T -derivative of f is defined by

Nα
T f (t) = lim

ε→0

f (t + εT(t,α)) – f (t)
ε

for all t > 0, α ∈ (0, 1), T(t,α) being some function.

We can also define the lateral derivative operators (right and left) in the case of our
generalized derivative. For this, it is sufficient to consider them from the correspond-
ing integral operator. To do this, just make use of the fact that if f is differentiable, then
Nα

T f (t) = T(t,α)f ′(t), where f ′(t) is the ordinary derivative. For the right derivative we have
(Nα,b

T ,a+f )(t) = T(b – t,α)f ′(t), similar to the left one. The interested reader can consult [19]
to study the properties of operator Nα

T and additional details.
Similar calculations as in [7] show that the following properties hold.

Theorem 1.4 Let f and g be Nα
T -differentiable at t > 0 and α ∈ (0, 1). Then

a) Nα
T (af + bg)(t) = aNα

T (f )(t) + bNα
T (g)(t);

b) Nα
T (tp) = T(t,α)ptp–1, p ∈ R;

c) Nα
T (λ) = 0, λ ∈R;

d) Nα
T (fg)(t) = fNα

T (g)(t) + gNα
T (f )(t);

e) Nα
T ( f

g )(t) = gNα
T (f )(t)–fNα

T (g)(t)
g2(t) ;

f ) If, in addition, f is differentiable, then Nα
T (f )(t) = T(t,α)f ′(t).

Remark 1.5 The relations a), c), d), and e) are similar to the classical results mathemat-
ical analysis, and these relationships are not established (or do not occur) for fractional
derivatives of global character (see [12] and [20] and the references cited there).

The following statement is analogous to the one known from the ordinary calculus (for
a similar result, see [18]).

Theorem 1.6 Let f be an Nα
T -differentiable function on (t0,∞). Then, for all t > t0, we have

a) If f is differentiable, then Jα
T ,t0

(Nα
T f (t)) = f (t) – f (t0).

b) Nα
T (Jα

T ,t0
f (t)) = f (t).
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Proof a) By definition, one can calculate

Jα
T ,t0

(
Nα

T f (t)
)

=
∫ t

t0

Nα
T f (s)

T(s,α)
ds =

∫ t

t0

T(s,α)f ′(s)
T(s,α)

ds = f (t) – f (t0).

b) Analogously, we have

Nα
T
(
Jα
T ,t0 f (t)

)
= T(t,α)

d
dt

[∫ t

t0

f (s)
T(s,α)

ds
]

= f (t). �

It is clear that many “classical” properties of integration theory can be proved without
much difficulty, for example, the well-known mean value theorems for integral calculus or
integration by parts.

Theorem 1.7 Let f and g be differentiable functions on (a, b), a < b. Then

Jα
T ,a

{[
Nα

T f (t)
]
g(t)

}
(b) =

[
f (t)g(t)

]b
a – Jα

T ,a
{

f (t)
[
Nα

T g(t)
]}

(b).

In [5], the so-called Hermite–Hadamard–Fejér inequality was established; it is the
weighted generalization of the Hermite–Hadamard inequality (1.1).

Theorem 1.8 Let f : [a, b] → R be a convex function and g : [a, b] → R
+
0 = [0,∞) be an

integrable function symmetric about a+b
2 . Then

f
(

a + b
2

)∫ b

a
g(x) dx ≤

∫ b

a
f (x)g(x) dx ≤ f (a) + f (b)

2

∫ b

a
g(x) dx. (1.2)

In this paper, we present a version of the Hermite–Hadamard–Fejér inequality for con-
vex functions via generalized integral of Definition 1.2, while several remarks presented
show the advantage of our framework.

2 Main results
Lemma 2.1 Let g : [a, b] → R, a < b, be an integrable function symmetric with respect to
a+b

2 . Then we have

Jα
T ,a+g(b) = Jα

T ,b–g(a) =
Jα
T ,a+g(b) + Jα

T ,b–g(a)
2

.

Proof Following [9] and taking into account the symmetry of g with respect to a+b
2 , we

have

Jα
T ,a+g(b) =

∫ b

a

g(t)
T(b – t,α)

dt =
∫ b

a

g(a + b – x)
T(x – a,α)

dx

=
∫ b

a

g(x)
T(x – a,α)

dx = Jα
T ,b–g(a).

This immediately implies the result needed. �

Remark 2.2 In case of T(t,α) = t1–α�(α), α > 0, Lemma 2.1 becomes [9, Lemma 2.1].
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Theorem 2.3 Let f : [a, b] → R, a < b, be a convex function and g : [a, b] → R
+
0 be an

integrable function symmetric about a+b
2 . Then

f
(

a + b
2

)
[

(a,b)Jα
T ,a+(g)(b) + (a,b)Jα

T ,b–(g)(a)
]

≤ (a,b)Jα
T ,a+(fg)(b) + (a,b)Jα

T ,b–(fg)(a)

≤ f (a) + f (b)
2

[
(a,b)Jα

T ,a+(g)(b) + (a,b)Jα
T ,b–(g)(a)

]
. (2.1)

Proof From the convexity of f , we have

2f
(

a + b
2

)
= 2f

(
ta + (1 – t)b + tb + (1 – t)a

2

)

≤ f
(
ta + (1 – t)b

)
+ f

(
tb + (1 – t)a

)

for any t ∈ [0, 1]. Multiplying the first and the last members of this inequality by g(tb+(1–t)a)
T(t,α)

and integrating on [0, 1], we obtain

2f
(

a + b
2

)∫ 1

0

g(tb + (1 – t)a)
T(t,α)

dt

≤
∫ 1

0

g(tb + (1 – t)a)[f (ta + (1 – t)b) + f (tb + (1 – t)a)]
T(t,α)

dt

=
∫ 1

0

g(tb + (1 – t)a)f (ta + (1 – t)b)
T(t,α)

dt

+
∫ 1

0

g(tb + (1 – t)a)f (tb + (1 – t)a)
T(t,α)

dt.

Making the change of variables x = tb + (1 – t)a), we obtain

2f ( a+b
2 )

b – a

∫ b

a

g(x)
T( x–a

b–a ,α)
dx

≤ 1
b – a

∫ b

a

g(x)f (a + b – x)
T( x–a

b–a ,α)
dx +

1
b – a

∫ b

a

g(x)f (x)
T( x–a

b–a ,α)
dx

=
1

b – a

∫ b

a

g(a + b – x)f (x)
T( b–x

b–a ,α)
dx +

1
b – a

∫ b

a

g(x)f (x)
T( x–a

b–a ,α)
dx

=
1

b – a

∫ b

a

g(x)f (x)
T( b–x

b–a ,α)
dx +

1
b – a

∫ b

a

g(x)f (x)
T( x–a

b–a ,α)
dx.

This means

2f
(

a + b
2

)

(a,b)Jα
T ,a+(g)(b) ≤ (a,b)Jα

T ,a+(fg)(b) + (a,b)Jα
T ,b–(fg)(a).

Using Lemma 2.1, we obtain the first inequality in (2.1).
To prove the second part of (2.1), we use the convexity of f . We have

f
(
ta + (1 – t)b

)
+ f

(
tb + (1 – t)a

) ≤ f (a) + f (b)
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for any t ∈ [0, 1]. Multiplying the previous inequality by g(tb+(1–t)a)
T(t,α) and integrating on [0, 1],

we obtain, after making the change of variables and considering the symmetry of g , the
following inequality:

(a,b)Jα
T ,a+(fg)(b) + (a,b)Jα

T ,b–(fg)(a) ≤ (
f (a) + f (b)

)
(a,b)Jα

T ,a+(g)(b).

Lemma 2.1 implies the second part of (2.1). This completes the proof of the theorem. �

Remark 2.4 If we consider T(t,α) ≡ 1, inequality (2.1) becomes the classic Hermite–
Hadamard–Fejér inequality (1.2). In case of T(t,α) = t1–α�(α), the previous result be-
comes [9, Theorem 2.2], and if T(t,α) = t1–α�(α) and g(x) ≡ 1, then the above result be-
comes [25, Theorem 2].

Lemma 2.5 Let f : [a, b] →R be a differentiable function on (a, b), a < b, such that Nα
T f ∈

L(a, b). If in addition g : [a, b] → R is integrable and symmetric to a+b
2 , then the following

equality is valid:

Jα
T ,a

{
[
Nα

T f (t)
] ∫ t

a

g(s)
T(b – s,α)

ds
}

(b) + Jα
T ,a

{
–
[
Nα

T f (t)
] ∫ b

t

g(s)
T(s – a,α)

ds
}

(b)

=
f (a) + f (b)

2
[
Jα
T ,a+(g)(b) + Jα

T ,b–(g)(a)
]

–
[
Jα
T ,a+(fg)(b) + Jα

T ,b–(fg)(a)
]
. (2.2)

Proof Using Theorem 1.7, we calculate as follows:

J1 = Jα
T ,a

{[
Nα

T f (t)
]∫ t

a

g(s)
T(b – s,α)

ds
}

(b)

=
[

f (t)
∫ t

a

g(s)
T(b – s,α)

ds
]b

a
– Jα

T ,a

{
f (t)g(t)T(t,α)

T(b – t,α)

}
(b)

= f (b)Jα
T ,a+(g)(b) – Jα

T ,a+(fg)(b)

and

J2 = Jα
T ,a

{
–
[
Nα

T f (t)
] ∫ b

t

g(s)
T(s – a,α)

ds
}

(b)

=
[

–f (t)
∫ b

t

g(s)
T(s – a,α)

ds
]b

a
– Jα

T ,a

{
f (t)g(t)T(t,α)

T(t – a,α)

}
(b)

= f (a)Jα
T ,b–(g)(a) – Jα

T ,b–(fg)(a).

According to Lemma 2.1, we have

J1 = f (b)
[ Jα

T ,a+(g)(b) + Jα
T ,b–(g)(a)

2

]
– Jα

T ,a+(fg)(b),

J2 = f (a)
[ Jα

T ,a+(g)(b) + Jα
T ,b–(g)(a)

2

]
– Jα

T ,b–(fg)(a),

from where the desired equality is obtained. �
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Remark 2.6 In case of T(t,α) = t1–α�(α), Lemma 2.5 implies [9, Theorem 2.4], and if
T(t,α) = t1–α�(α) and g(x) ≡ 1, then Lemma 2.5 implies [25, Lemma 2].

Theorem 2.7 Let f : [a, b] → R be a differentiable function on (a, b), a < b, such that f ′ ∈
L(a, b), |T–1| ∈ L(0, b – a). If we also assume that |f ′| is convex on [a, b] and g : [a, b] → R

is integrable and symmetric to a+b
2 , then the following inequality holds:

∣∣
∣∣
f (a) + f (b)

2
[
Jα
T ,a+(g)(b) + Jα

T ,b–(g)(a)
]

–
[
Jα
T ,a+(fg)(b) + Jα

T ,b–(fg)(a)
]
∣∣
∣∣

≤ ‖g‖∞
(∣∣f ′(a)

∣∣ +
∣∣f ′(b)

∣∣)
[∫ b–a

b–a
2

T (s) ds –
∫ b–a

2

0
T (s) ds

]
,

where T (s) =
∫ s

0
dt

|T(t,α)| .

Proof Let us see some preliminary details. First, note that (2.2) is equivalent to

∫ b

a

{∫ t

a

g(s)
T(b – s,α)

ds –
∫ b

t

g(s)
T(s – a,α)

ds
}

f ′(t) dt

=
f (a) + f (b)

2
[
Jα
T ,a+(g)(b) + Jα

T ,b–(g)(a)
]

–
[
Jα
T ,a+(fg)(b) + Jα

T ,b–(fg)(a)
]
. (2.3)

Since |f ′| is convex, we have

∣∣f ′(t)
∣∣ =

∣
∣∣
∣f

′
(

b – t
b – a

a +
t – a
b – a

b
)∣

∣∣
∣ ≤ 1

b – a
(
(b – t)

∣∣f ′(a)
∣∣ + (t – a)

∣∣f ′(b)
∣∣) (2.4)

for any t ∈ [a, b]. Using (2.3) and the symmetry of g , we get

∣
∣∣
∣
f (a) + f (b)

2
[
Jα
T ,a+(g)(b) + Jα

T ,b–(g)(a)
]

–
[
Jα
T ,a+(fg)(b) + Jα

T ,b–(fg)(a)
]
∣
∣∣
∣

≤
∫ b

a

∣
∣∣
∣

∫ t

a

g(s)
T(b – s,α)

ds –
∫ b

t

g(s)
T(s – a,α)

ds
∣
∣∣
∣
∣∣f ′(t)

∣∣dt

=
∫ b

a

∣
∣∣
∣

∫ t

a

g(s)
T(b – s,α)

ds –
∫ a+b–t

a

g(s)
T(b – s,α)

ds
∣
∣∣
∣
∣∣f ′(t)

∣∣dt

=
∫ b

a

∣∣f ′(t)
∣∣
∣
∣∣∣

∫ a+b–t

t

g(s)
T(b – s,α)

ds
∣
∣∣∣dt

≤ ‖g‖∞

∫ a+b
2

a

∣
∣f ′(t)

∣
∣
{∫ a+b–t

t

ds
|T(b – s,α)|

}
dt

+ ‖g‖∞

∫ b

a+b
2

∣∣f ′(t)
∣∣
{∫ t

a+b–t

ds
|T(b – s,α)|

}
dt

= ‖g‖∞

∫ a+b
2

a

∣
∣f ′(t)

∣
∣
{∫ b–t

t–a

ds
|T(s,α)|

}
dt

+ ‖g‖∞

∫ b

a+b
2

∣
∣f ′(t)

∣
∣
{∫ t–a

b–t

ds
|T(s,α)|

}
dt,
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from where (2.4) implies

∣∣
∣∣
f (a) + f (b)

2
[
Jα
T ,a+(g)(b) + Jα

T ,b–(g)(a)
]

–
[
Jα
T ,a+(fg)(b) + Jα

T ,b–(fg)(a)
]
∣∣
∣∣

≤ ‖g‖∞
b – a

∫ a+b
2

a

(
(b – t)

∣∣f ′(a)
∣∣ + (t – a)

∣∣f ′(b)
∣∣)(T (b – t) – T (t – a)

)
dt

+
‖g‖∞
b – a

∫ b

a+b
2

(
(b – t)

∣∣f ′(a)
∣∣ + (t – a)

∣∣f ′(b)
∣∣)(T (t – a) – T (b – t)

)
dt

=
‖g‖∞
b – a

∣
∣f ′(a)

∣
∣
[∫ a+b

2

a
(b – t)T (b – t) dt +

∫ b

a+b
2

(b – t)T (t – a) dt
]

–
‖g‖∞
b – a

∣
∣f ′(a)

∣
∣
[∫ a+b

2

a
(b – t)T (t – a) dt +

∫ b

a+b
2

(b – t)T (b – t) dt
]

+
‖g‖∞
b – a

∣∣f ′(b)
∣∣
[∫ a+b

2

a
(t – a)T (b – t) dt +

∫ b

a+b
2

(t – a)T (t – a) dt
]

–
‖g‖∞
b – a

∣∣f ′(b)
∣∣
[∫ a+b

2

a
(t – a)T (t – a) dt +

∫ b

a+b
2

(t – a)T (b – t) dt
]

=
‖g‖∞
b – a

∣
∣f ′(a)

∣
∣
[∫ b–a

b–a
2

sT (s) ds +
∫ b–a

b–a
2

(b – a – s)T (s) ds
]

–
‖g‖∞
b – a

∣∣f ′(a)
∣∣
[∫ b–a

2

0
(b – a – s)T (s) ds +

∫ b–a
2

0
sT (s) ds

]

+
‖g‖∞
b – a

∣
∣f ′(b)

∣
∣
[∫ b–a

b–a
2

(b – a – s)T (s) ds +
∫ b–a

b–a
2

sT (s) ds
]

–
‖g‖∞
b – a

∣∣f ′(b)
∣∣
[∫ b–a

2

0
sT (s) ds +

∫ b–a
2

0
(b – a – s)T (s) ds

]
.

Adding up the members on the right-hand side of the last inequality immediately gives
the desired inequality. �

Remark 2.8 In case of T(t,α) = t1–α�(α), α > 0, Theorem 2.7 implies [9, Theorem 2.4].

In a similar way the following result can be proved.

Theorem 2.9 Let f : [a, b] →R be a differentiable function on (a, b), a < b, such that |f ′|q ∈
L(a, b), q > 1, |T–1| ∈ L(0, b – a). If we also assume that |f ′|q is convex on [a, b] and g :
[a, b] →R is integrable and symmetric to a+b

2 , then

∣∣
∣∣
f (a) + f (b)

2
[
Jα
T ,a+(g)(b) + Jα

T ,b–(g)(a)
]

–
[
Jα
T ,a+(fg)(b) + Jα

T ,b–(fg)(a)
]
∣∣
∣∣

≤ 21–1/q‖g‖∞
(∣∣f ′(a)

∣
∣q +

∣
∣f ′(b)

∣
∣q)1/q

[∫ b–a

b–a
2

T (s) ds –
∫ b–a

2

0
T (s) ds

]
,

where T (s) =
∫ s

0
dt

|T(t,α)| .
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Proof Using (2.3) and Hölder’s inequality, we get

∣
∣∣∣
f (a) + f (b)

2
[
Jα
T ,a+(g)(b) + Jα

T ,b–(g)(a)
]

–
[
Jα
T ,a+(fg)(b) + Jα

T ,b–(fg)(a)
]
∣
∣∣∣

≤
[∫ b

a

∣∣∣
∣

∫ a+b–t

t

g(s)
T(b – s,α)

ds
∣∣∣
∣dt

]1–1/q

·
[∫ b

a

∣∣f ′(t)
∣∣q

∣∣∣
∣

∫ a+b–t

t

g(s)
T(b – s,α)

ds
∣∣∣
∣dt

]1/q

= I1 · I2.

Analogously as in the proof of Theorem 2.7, we obtain

I2 ≤ ‖g‖1/q
∞

(∣∣f ′(a)
∣
∣q +

∣
∣f ′(b)

∣
∣q)1/q

[∫ b–a

b–a
2

T (s) ds –
∫ b–a

2

0
T (s) ds

]1/q

.

By similar calculation,

I1 ≤ ‖g‖1–1/q
∞

[∫ a+b
2

a

{∫ b–t

t–a

ds
|T(s,α)|

}
dt +

∫ b

a+b
2

{∫ t–a

b–t

ds
|T(s,α)|

}
dt

]1–1/q

= ‖g‖1–1/q
∞

[∫ a+b
2

a
T (b – t) – T (t – a) dt +

∫ b

a+b
2

T (t – a) – T (b – t) dt
]1–1/q

= ‖g‖1–1/q
∞

[∫ b–a

b–a
2

T (s) ds –
∫ b–a

2

0
T (s) ds +

∫ b–a

b–a
2

T (s) ds –
∫ b–a

2

0
T (s) ds

]1–1/q

,

from where a multiplication gives the desired inequality. �

Remark 2.10 In case of T(t,α) = t1–α�(α), α > 0, under the conditions of Theorem 2.7, we
have

∣∣∣
∣
f (a) + f (b)

2
[RLJα

a+ (g)(b) + RLJα
b– (g)(a)

]
–

[RLJα
a+ (fg)(b) + RLJα

b– (fg)(a)
]
∣∣∣
∣

≤ 2(b – a)α+1‖g‖∞
�(α + 2)

(
1 –

1
2α

)( |f ′(a)|q + |f ′(b)|q
2

)1/q

that corrects the result of [9, Theorem 2.8].

Remark 2.11 If we consider q > 1 and 1
p + 1

q = 1, we can obtain other inequalities.

3 Conclusions
In this article we study new inequalities of the Hermite–Hadamard–Fejér type for func-
tions with derivatives of special type via convexity. The results obtained allow to extend
known results in the literature with an appropriate choice of the kernel, since we use gen-
eral fractional integrals. For example, let us take T(t,α) = k�k(α)t1–α/k , α > 0, and there-
fore consider the Riemann–Liouville k-fractional integrals of order α > 0 defined by (see
[1, 17])

RLJα,k
a+ f (t) =

1
k�k(α)

∫ t

a
(t – s)α/k–1f (s) ds, t > a,
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RLJα,k
b– f (t) =

1
k�k(α)

∫ b

t
(s – t)α/k–1f (s) ds, t < b.

Under the conditions of Theorem 2.7, we have

∣
∣∣
∣
f (a) + f (b)

2
[RLJα,k

a+ (g)(b) + RLJα,k
b– (g)(a)

]
–

[RLJα,k
a+ (fg)(b) + RLJα,k

b– (fg)(a)
]
∣
∣∣
∣

≤ (b – a)α/k+1‖g‖∞
�k(α + k)( α

k + 1)

(
1 –

1
2α/k

)(∣∣f ′(a)
∣
∣ +

∣
∣f ′(b)

∣
∣),

while under the conditions of Theorem 2.9,

∣∣∣
∣
f (a) + f (b)

2
[RLJα,k

a+ (g)(b) + RLJα,k
b– (g)(a)

]
–

[RLJα,k
a+ (fg)(b) + RLJα,k

b– (fg)(a)
]
∣∣∣
∣

≤ 2(b – a)α/k+1‖g‖∞
�k(α + k)( α

k + 1)

(
1 –

1
2α/k

)( |f ′(a)|q + |f ′(b)|q
2

)1/q

.

The results obtained also open the door to the generalization study with other types
of integral inequalities such as Ostrowski, Grüss, Jensen among others, as well as for
functions with other types of generalized convexity such as strongly convex, m-convex,
s-convex, relative convex among others. Finally, our results can also be extended to func-
tions of various variables using convexity in coordinates.
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