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Abstract
In this study, we investigate a new fourth-order integrable nonlinear equation. Firstly,
by means of the efficient Hirota bilinear approach, we establish novel types of
solutions which include breather, rogue, and three-wave solutions. Secondly, with the
aid of Lie symmetry method, we report the invariance properties of the studied
equation such as the group of transformations, commutator and adjoint
representation tables. A differential substitution is found by nonlinear self-adjointness
(NSA) and thereafter the associated conservation laws are established. We show some
dynamical characteristics of the obtained solutions through via the 3-dimensional
and contour graphs.
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1 Introduction
In differential equation (DE) concepts, Cauchy problem (CP) is considered as one of the
most fundamental problems to analyze a solution of a DE which satisfies initial data. Clas-
sical methods, like the Laplace and Fourier transformation methods, have been introduce
to solve CPs for linear partial and ordinary DEs. The isomonodromic and inverse scat-
tering approaches were created to handle CPs for nonlinear partial and ordinary DEs,
respectively [1–3]. A captivating and excellent field of study is the analysis of the exact
solutions (ESs) and the problems of constructing solutions for an expansive range of non-
linear equations.

The ESs for partial DEs describe important physical and mathematical aspects. A soli-
ton solution is an ES that is investigated by exponentially located functions that move in
all directions in both time and space. Also, a lump solution can be regarded as an ex-
act solution of a partial DE, obtained by taking long wave limits from soliton theory [3].
Nonetheless, only in space, a lump solution can be localized in all directions. Additionally,
it is well known that more nonlinear phenomena can be described by interaction solutions
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between lump and soliton solutions. Nevertheless, the properties of the interaction are
seldom debated, as the mathematical calculation involved is much more complex.

Over the last two decades, several researchers have studied solitary solutions, lump solu-
tions, and other types of integrable equation solutions. This includes the Ishimori-I equa-
tion [4], the Davey–Stewarton equation II [3], the BKP equation [5, 6], three-dimensional
three-wave resonant interaction [7], and self-consistent KP equation [8]. Many noninte-
grable equations do have lump solutions, such as the generalized KP and Sawada–Kotera
equations [9–12]. Through important properties of lump solutions, it can be understood
that amplitudes, shapes, speeds of solitons will be preserved after collision with another
soliton, and this is the elastic property of a collision. Moreover, interactions between rouge,
breather, three-wave, and kink solitary wave solutions have been established in [13–15]. In
addition, various researches demonstrate the existence of interaction solutions between
lumps and other types of specific solutions to a nonlinear integrable equation [16–19].
Furthermore, in order to justify the existence and uniqueness, some important internal
properties, as well as the integrability of a DE, computing conservation laws and symme-
tries are some of the best aspects many scientists employ to do the job [20–26]. Therefore,
establishing lumps solutions, their interactions, as well as the conservation laws for vari-
ous types of DE, are of humongous importance.

This study is aimed at using the Hirota bilinear approach [14] to construct some novel
breather, rogue, and three-wave solutions to a new integrable fourth-order nonlinear
equation. On the other hand, the Lie symmetry analysis [27] is going to be used to generate
the conservation laws for this nonlinear equation.

The new integrable fourth-order nonlinear equation is given by [28]

�tt + �txxx + α(�x�t)x = 0, (1)

where α is the coefficient of the nonlinear term (�x�t)x. Nonlinearity arises when the
change of the output is not proportional to the change of the input [29].

2 Lump interaction phenomena
In this section, we construct some novel breather, rogue, and three-wave solutions to
Eq. (1).

Applying the Cole–Hopf transformation [28, 30]

�(x, t) =
6
α

(
ln f (x, t)

)
x (2)

to Eq. (1) yields the following bilinear form:

3fxtfxx – 3fxfxxxt – ft(ft + fxxx) + f (ftt + fxxxt) = 0. (3)

2.1 Breather waves
In this subsection, we construct the breather wave solutions to Eq. (1).

Consider the following test function [31–33] as a solution to the bilinear equation (3):

f (x, t) = eξ1 + m1 cos(ξ2) + m2eξ3 , (4)

where ξ1 = –p1(a0t + x), ξ2 = p0(b0t + x), and ξ3 = p1(a0t + x).
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Substituting Eq. (4) into Eq. (3) gives a polynomial in the powers of trigonometric and
exponential functions. Collecting the coefficients of the same power and equating each
sum to zero yields an algebraic system of equations. We solve this system of equations to
obtain the values of the parameters involved. Substituting the values of the parameters
into Eq. (2) gives the following breather wave solutions to Eq. (1):

Case-1: When

p1 =

√
–8a0b0 + 3a2

0 – 3b2
0√

24a0 + 8b0
, p0 = –

√
3a0 – b0

2
√

2
, m2 = –

b0m2
1(3a0 – b0)

4a0(a0 – 3b0)
,

we get

f1(x, t) = –
b0m2

1(3a0 – b0)e
(

√
–8a0b0+3a2

0–3b2
0(a0t+x)√

24a0+8b0
)

4a0(a0 – 3b0)

+ e
(–

√
–8a0b0+3a2

0–3b2
0(a0t+x)√

24a0+8b0
)

+ m1 cos

(√
3a0 – b0(b0t + x)

2
√

2

)
.

(5)

Thus,

�1(x, t)

=
6(– e–�1

√
–8a0b0+3a2

0–3b2
0√

24a0+8b0
– b0e�1 m2

1(3a0–b0)
√

–8a0b0+3a2
0–3b2

0
4a0(a0–3b0)

√
24a0+8b0

– m1
√

3a0–b0 sin(�2)
2
√

2 )

α(– b0e�1 m2
1(3a0–b0)

4a0(a0–3b0) + e–�1 + m1 cos(�2))
,

(6)

where

�1 =

√
–8a0b0 + 3a2

0 – 3b2
0(a0t + x)

√
24a0 + 8b0

and

�2 =
√

3a0 – b0(b0t + x)
2
√

2
.

Case-2: When

a0 =
p6

1 – 6p2
0p4

1 + 9p4
0p2

1 – 3
√

–p2
0p2

1(3p2
0 – p2

1)2p2
1 +

√
–p2

0p2
1(3p2

0 – p2
1)2p2

0

2(3p2
0p2

1 – p4
1)

,

b0 =
p4

0 – 3p2
1p2

0 –
√

–9p2
1p6

0 + 6p4
1p4

0 – p6
1p2

0

2p2
0

,

m2 =
(
–7m2

1p8
1 + 55m2

1p2
0p6

1 – 109m2
1p4

0p4
1 + 24m2

1

√
–p2

0p2
1
(
3p2

0 – p2
1
)2p4

1

+ 21m2
1p6

0p2
1 + 24m2

1

√
–p2

0p2
1
(
3p2

0 – p2
1
)2p2

0p2
1
)

/
(
4
(
–49p8

1 + 145p2
0p6

1 + 5p4
0p4

1 + 3p6
0p2

1
))

,
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we get

f2(x, t) = e–�3 + m1 cos(�4)

+
e�3 (–�5 + �6 + 21m2

1p2
1p6

0 – 109m2
1p4

1p4
0 + 55m2

1p6
1p2

0)
4(–49p8

1 + 145p2
0p6

1 + 5p4
0p4

1 + 3p6
0p2

1)
.

(7)

Thus,

�2(x, t) =
6(m1p0(– sin(�4)) – e–�3 p1 + e�3 (–�5+�6+�7)p1

�8
)

α(e–�3 + e�3 (–�5+�6+�7)
�8

+ m1 cos(�4))
, (8)

where

�3 = p1

( (p6
1 – 6p2

0p4
1 + 9p4

0p2
1 – 3

√
–p2

0p2
1(3p2

0 – p2
1)2p2

1 +
√

–p2
0p2

1(3p2
0 – p2

1)2p2
0)t

2(3p2
0p2

1 – p4
1)

+ x
)

,

�4 = p0

( (p4
0 – 3p2

1p2
0 –

√
–9p2

1p6
0 + 6p4

1p4
0 – p6

1p2
0)t

2p2
0

+ x
)

,

�5 = 7m2
1p8

1 – 24m2
1p2

0p2
1

√
–p2

0p2
1
(
3p2

0 – p2
1
)2,

�6 = 24m2
1p4

1

√
–p2

0p2
1
(
3p2

0 – p2
1
)2,

�7 = 21m2
1p2

1p6
0 – 109m2

1p4
1p4

0 + 55m2
1p6

1p2
0,

�8 = 4
(
–49p8

1 + 145p2
0p6

1 + 5p4
0p4

1 + 3p6
0p2

1
)
.

2.2 Rogue waves
In this subsection, we construct the rogue wave solutions to Eq. (1). Consider the following
test function [34] as a solution to the bilinear equation (3):

f (x, t) = ξ 2
1 + ξ 2

2 + b7 + T cosh(ξ3), (9)

where ξ1 = b1t + b2x + b3, ξ2 = b4t + b5x + b6, and ξ3 = T1t + T2x.
Substituting Eq. (9) into Eq. (3) gives a polynomial in the powers of x, t, and hyperbolic

functions. Collecting the coefficients of the same power and equating each sum to zero
yields an algebraic system of equations. We solve this system of equations to obtain the
values of the parameters involved. Putting the values of the parameters into Eq. (2) gives
the following rogue waves solution to Eq. (1):

When

b1 = –
b2

3T2
1

, b4 = –
ib2

3T2
1

, b5 = ib2, b6 =
√

3TT3
1 + 2ib2b3

2b2
, T2 = –T3

1 ,

we have

f1(x, t) =
(

b2t –
b2x
3T2

1
+ b3

)2

+ b7 + �2
10 + T cosh

(
T1x – tT3

1
)
. (10)
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Thus,

�1(x, t) =
6(–

2b2(b2t– b2x
3T2

1
+b3)

3T2
1

– �9 + TT1 sinh(T1x – tT3
1 ))

α((b2t – b2x
3T2

1
+ b3)2 + b7 + �2

10 + T cosh(T1x – tT3
1 ))

, (11)

where

�9 =
2ib2(ib2t +

√
3TT3

1 +2ib2b3
2b2

– ib2x
3T2

1
)

3T2
1

,

�10 = ib2t +
√

3TT3
1 + 2ib2b3

2b2
–

ib2x
3T2

1
.

2.3 Three-wave solutions
In this subsection, the three-wave solutions to Eq. (1) are revealed.

Consider the following test function [35] as a solution to the bilinear equation (3):

f (ξ , z, t) = c1eξ1 + c2e–ξ1 + c3 sin(ξ2) + c4 sinh(ξ3), (12)

where ξ1 = b1x + b2t, ξ2 = b3x + b4t, and ξ3 = b5x + b6t.
Substituting Eq. (12) into Eq. (3) gives a polynomial in the powers of trigonometric,

hyperbolic, and exponential functions. Collecting the coefficients of the same power and
equating each sum to zero provides an algebraic system of equations. We solve this system
of equations to obtain the values of the parameters involved. Putting the values of the
parameters into Eq. (2) produces the following wave solutions to Eq. (1):

Case-1: When

b1 =
√

4
√

3b2
3 – 7b2

3, b4 = 3
√

3b3
3 – 5b3

3, c3 = 2
√

7c1c2 – 4
√

3c1c2, c4 = 0,

b2 =
1
4

(
–
(
(4

√
3 – 7)b2

3
)3/2 – 3

√
(4

√
3 – 7)b2

3b2
3

)
,

we have

f1(x, t) = c1e�11 + c2e–�11 + 2
√

7c1c2 – 4
√

3c1c2 sin(�12). (13)

Thus,

�1(x, t) =
(
6
(√

4
√

3b2
3 – 7b2

3c1e�11 –
√

4
√

3b2
3 – 7b2

3c2e–�11

+ 2b3

√
7c1c2 – 4

√
3c1c2 cos(�12)

))

/
(
α(c1e�11 + c2e–�11 + 2

√
7c1c2 – 4

√
3c1c2 sin(�12))

)
,

(14)

where

�11 =
1
4

(
–
(
(4

√
3 – 7)b2

3
)3/2 – 3

√
(4

√
3 – 7)b2

3b2
3

)
t +

√
4
√

3b2
3 – 7b2

3x
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and

�12 =
(
3
√

3b3
3 – 5b3

3
)
t + b3x.

Case-2: When

b1 = – 3√2 3
√

b6 – b5, b2 = b6, c3 = 0, c4 =
2
√

�13√
16b6

5b6 – b3
6

,

we have

f2(x, t) =
2
√

�13 sinh(b6t + b5x)
√

16b6
5b6 – b3

6

+ c1e�14 + c2e–�14 . (15)

Thus,

�2(x, t) =
6((– 3√2 3√b6 – b5)c1e�14 + ( 3√2 3√b6 + b5)c2e–�14 + 2b5

√
�13 cosh(b6t+b5x)√

16b6
5b6–b3

6
)

α( 2
√

�13 sinh(b6t+b5x)√
16b6

5b6–b3
6

+ c1e�14 + c2e–�14 )
, (16)

where

�13 = –48 3√2b5
5b4/3

6 c1c2 – 48 22/3b4
5b5/3

6 c1c2 + 12 3√2b2
5b7/3

6 c1c2

+ 12 22/3b5b8/3
6 c1c2 + 7b3

6c1c2 – 24b3
5b2

6c1c2 – 16b6
5b6c1c2,

�14 = b6t +
(
– 3√2 3

√
b6 – b5

)
x.

3 Numerical simulations
In this section, using suitable values of parameters and different values of the coefficients
of the nonlinear term in the studied equation, we present the dynamics of lump solution
with the periodic and singular periodic wave solutions.

Figure 1 presents the interaction between lump, kink, and singular periodic (breather)
wave solutions. Figure 1 (a,d) and (b,e) display lump-kink shape when α < 0 and Fig. 1
(c,f ) displays lump-kink shape with some singularity when α > 0. Figure 2 presents the
interaction between lump and kink (breather) solutions. Figure 2 (a,d), (b,e), and (c,f ) dis-
play lump-kink solutions throughout the range of values –10 < α < 10. Figure 3 presents
the interaction between lump and periodic (rogue) wave solutions. Throughout the range
of values –10 < α < 10, Figs. 3 (a,d), (b,e), and (c,f ) display the singular bell-type shape.
Figure 4 presents the interaction between the lump and periodic (rogue) wave solutions.
Throughout the range of values –10 < α < 10, Figs. 4 (a,d), (b,e), and (c,f ) display the
lump-kink shape. Figure 5 presents the interaction between the lump and singular pe-
riodic (multiwave) wave solutions. Throughout the range of values –10 < α < 10, Figs. 5
(a,d), (b,e), and (c,f ) display the lump-period shape. Figure 6 presents the interaction be-
tween the lump, kink and periodic (multiwave) wave solutions. Throughout the range of
values –10 < α < 10, Figs. 6 (a,d), (b,e), and (c,f ) display the lump-kink shape.
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Figure 1 The 3D and density profiles of Eq. (6) for a0 = –10, b0 = –0.92,m1 = 6.1

Figure 2 The 3D and density profiles of Eq. (8) for p0 = –7.25, p1 = –0.26,m1 = –7.1
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Figure 3 The 3D and density profiles of imaginary part of Eq. (11) for b2 = 1.23, b3 = 2.04, b7 = 2.19, T1 = 1,
T = 1

Figure 4 The 3D and density profiles of imaginary part of Eq. (11) for b2 = 1.23, b3 = 2.04, b7 = 2.19, T1 = 1,
T = 1
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Figure 5 The 3D and density profiles of imaginary part of Eq. (14) for c1 = 1.04, b3 = 2.62, c2 = 2.38

Figure 6 The 3D and density profiles of imaginary part of Eq. (16) for c1 = 0.74, b6 = –1, b5 = –1, c2 = –1
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4 Invariant analysis
The symmetries of (1) are expressed in the form of a vector field as

X = ξ1(x, t,�)
∂

∂x
+ ξ2(x, t,�)

∂

∂t
+ ξ3(x, t,�)

∂

∂�
. (17)

And the associated infinitesimals are:

ξ1 = c1 – xc3,

ξ2 = c2 – 3tc3,

ξ3 = c4 + �3,

(18)

where ci (i = 1, 2, 3, 4) denote arbitrary constants. Consequently, (1) admits the following
fields:

X1 = ∂x,

X2 = ∂�,

X3 = ∂t ,

X4 = –3t∂t + �∂� – x∂x.

(19)

4.1 Group of transformations
The governing equation can be considered as a submanifold in the jet space J3(R2,R2).
Therefore, to get the group transformations that the infinitesimal generators produce,
η1∂x + η2∂t + η3∂�, the following systems of differential equations must be solved:

dx̄(ε)
dε

= ξ1
(
x̄(ε), t̄(ε), �̄(ε)

)
, x̄(0) = x,

dt̄(ε)
dε

= ξ2
(
x̄(ε), t̄(ε), �̄(ε)

)
, t̄(0) = t,

d�̄(ε)
dε

= ξ3
(
x̄(ε), t̄(ε), �̄(ε)

)
, �̄(0) = u.

(20)

Taking the exponential of the obtained infinitesimal symmetries, the one-parameter
groups Gk(ε) generated by Xk for k = 1, . . . , 3, are given by:

G1 : (x, t,�) → (x + ε, t,�),

G2 : (x, t,�) → (x, t + ε,�),

G3 : (x, t,�) → (x, t,� + ε),

G4 : (x, t,�) → (
e–εx, e–3εt, eε�

)
,

(21)

where entries give the transform point eεXi (x, t,�) = (x̄, t̄, �̄).
Note that in general a family of solutions, called invariant solutions, must refer to each

parameter subgroup of the complete symmetry group of a system. We may therefore state
the following: If � = f (x, t) is a solution for the governing equation, then such are the
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Table 1 The commutation relations of infinitesimal generators X1, X2, X3

[Xi ,Xj] X1 X2 X3 X4

X1 0 0 0 –X1

X2 0 0 0 X2

X3 0 0 0 –3X3

X4 X1 –X2 3X3 0

following functions:

�1 = G1(ε).f (x, t) = f (x + ε, t),

�2 = G2(ε).f (x, t) = f (x, t + ε),

�3 = G3(ε).f (x, t) = f
(
e–εx, e–3εt

)
,

(22)

Now, one can get the general category of symmetries by considering a general linear com-
bination c1X1 + c2X2 + c3X3 + c4X4 of the given vector fields. In particular, if G is the sym-
metry group action near identity, it can be expressed in the form G = eε3X3 ◦ · · · ◦ eε1X1 .

4.2 Commutator table
Writing it in tabular form is the most convenient way of showing the structure of a given
Lie algebra. Suppose that an r-dimensional Lie algebra is g and X1, . . . ,Xr form a basis for
g , then the commutator table for g will be the r × r table whose (i, j)th entry depicts the
Lie bracket [Xi,Xj]. It should be noted that the table will remain skew-symmetric all the
time since [Xi,Xj] = –[Xj,Xi]. Also, the structure constants can easily read off from the
commutator table; namely, Ck

ij is the coefficient of Xk in the (i, j)th entry of Table 1.

4.3 Adjoint representation tables
Subsequently, the adjoint representation table is used to generate the adjoint transforma-
tions and to show the conjugacy map structure of the given Lie algebra. In the tabular
form, it is useful to demonstrate conjugation relationships of each subalgebra with each
other subalgebra. Define the adjoint operator as

Ad
(
eεX )

Y ≡ e–εXYeεX . (23)

According to Campbell–Hausdorff [28], we have

Ad
(
eεX )

Y = Y – ε[X ,Y] +
ε2

2
[
Y , [X ,Y]

]
– · · · . (24)

For an n-dimensional Lie algebra Ln, the adjoint representation table is an n × n matrix,
whose (i, j)th entry presents the adjoint action of Xi on Xj as Ad(eεXi )Xj. The adjoint rep-
resentation table is given in Table 2.

5 Adjoint system and conditions for nonlinear self-adjointness
Take into account the following:

Theorem 5.1 Lie–Bäcklund, nonlocal, and Lie point symmetries, given by

X = ξi
∂

∂ x̄i + ηᾱ

∂

∂�̄ᾱ
, (25)
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Table 2 The commutation relations of infinitesimal generators X1, X2, X3

[Xi ,Xj] X1 X2 X3 X4

X1 X1 X2 X3 εX1 +X4

X2 X1 X2 X3 –εX2 +X4

X3 X1 X2 X3 3εX3 +X4

X4 e–εX1 eεX2 e–3εX3 X4

of a nonlinear partial differential equation

Fᾱ(x̄,�, . . . ,�s) = 0, ᾱ = 1, 2, . . . , m̄, (26)

with m dependent variables will have an adjoint equation

F∗
ᾱ (x̄,�, . . . ,�s) =

δ(vβ̄Fβ̄ )
δ�ᾱ

, ᾱ = 1, 2, . . . , m̄, (27)

the Lagrangian is thus

L = Zβ̄Fβ̄ (x̄,�,�(1), . . . ,�(s)), (28)

with Z denotes a new dependent variable.

On account of (1), we have

L = υ
(
α(�x�xt + �t�xx) + �tt + �xxxt

)
. (29)

And the adjoint equation is then obtained as

F∗ =
δL
δ�

= 0, (30)

where

δL
δ�

=
∂L
∂�

– Dt
∂L
∂�t

– Dx
∂L
∂�x

+ (Dx)2 ∂L
∂�xx

– (Dxxx)3 ∂L
∂�xxx

+ (Dx)4 ∂L
∂�xxxx

. (31)

On the basis of (29), we obtain

F∗ = 2α�xtυx + α�xυxt + α�tυxx + υtt + υxxxt = 0. (32)

Definition 5.2 Equation (1) is an NSA only if

F∗|υ=Z(x,t,�) = �F = 0, (33)

such that not all υ = Z(x, t,�) are zero and �i (i = 1, 2, 3) are undetermined coefficients.

Therefore, from the coefficients of �t , �x, �xt , �xx, �xxt , �xxx, we obtain

� = –Z�. (34)
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Consequently, we reach the differential substitution as

H = c1 + tc2. (35)

Hence, (1) is an NSA.

5.1 Conservation laws
Herein, we establish the conservation laws of (1). We recall the following theorem:

Theorem 5.3 Equation (1) with obtained symmetries satisfies the conservation equation

Di
(
Ci)|(1)=0 = 0, (36)

where

Ci = ξiL + W ᾱ

[
∂L
∂�ᾱ

i
– Dj

(
∂L
∂�ᾱ

ij

)
+ DjDk

(
∂L

∂�ᾱ
ijk

)
– · · ·

]

+ Dj
(
W ᾱ

)[ ∂L
∂�ᾱ

ij
– Dk

(
∂L

∂�ᾱ
ijk

)
+ · · ·

]
+ DjDk

(
W ᾱ

)[ ∂L
∂�ᾱ

ijk
+ · · ·

]
,

(37)

and W ᾱ = ηᾱ – ξj�
ᾱ
j . The expression Ci represents the conserved vectors.

Now, we compute the conservation laws for (1) using the obtained symmetries.
• The symmetry X1 = ∂x admits the conserved vectors:

Cx
1 =

1
4
(
(c1 + c2t)(4α�x�xt + 4�tt + �xxxt) + c2

(
2α�2

x + �xxx
))

,

Ct
1 = ux

(
c2 – α(c1 + c2t)�xx

)
–

1
4

(c1 + c2t)(4�xt + �xxxx).

• The symmetry X2 = ∂� admits the conserved vectors

Cx
2 = –

1
2
α
(
(c1 + c2t)�xt + c2�x

)
,

Ct
2 =

1
2
α(c1 + c2t)�xx – c2.

(38)

• The symmetry X3 = ∂t admits the conserved vectors

Cx
3 =

1
4
(
�t

(
2αc2�x – 2α(c1 + c2t)�xt

)

– (c1 + c2t)(2α�tt�x + 3�xxtt) + c2�xxt
)
,

Ct
3 =

1
4
(
2�t

(
α(c1 + c2t)�xx + 2c2

)
+ (c1 + c2t)(2α�x�xt + 3�xxxt)

)
.

(39)
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• The symmetry X4 = –3t∂t + �∂� – x∂x admits the conserved vectors

Cx
4 =

1
4
(
–2α(3t�t + x�x + u)

(
(c1 + c2t)�xt + c2�x

)

+ 2α(c1 + c2t)�1(4�t + 3t�tt + x�xt)

+ 4α(c1 + c2t)�t(2�x + 3t�xt + x�xx)

– 4x(c1 + c2t)(α�x�xt + α�t�xx + �tt + �xxxt)

+ 3(c1 + c2t)(6�xxt + 3t�xxtt + x�xxxt) – c2(3�xx + 3t�xxt + x�xxx)
)
,

Ct
4 =

1
4
(
2α(c1 + c2t)�x(2�x + 3t�xt + x�xx)

– (3t�t + x�x + �)
(
4c2 – 2α(c1 + c2t)�xx

)

– 12t(c1 + c2t)(α�x�xt + α�t�xx + �tt + �xxxt)

+ 4(c1 + c2t)(4�t + 3t�tt + x�xt)

+ (c1 + c2t)(4�xxx + 3t�xxxt + x�xxxx)
)
.

(40)

6 Concluding remarks
In this research, we investigated a new fourth-order integrable nonlinear equation by
means of the efficient Hirota bilinear and Lie symmetry approaches. Consequently, we
established novel types of solutions, such as breather, rogue and three-wave solutions.
Wazwaz [28] investigated this new fourth-order integrable nonlinear equation. Multiple
soliton solutions were reported using direct substitution. By using the tanh–coth method,
topological and singular soliton solutions were constructed. On the other hand, using the
tanh–coth method, singular periodic solutions were successfully reported. Comparing our
solutions with the results presented in [28], one can observe that our results are new. To
the best of our knowledge, the results reported in this paper have not been published, yet.
Moreover, the reported solutions in this study have some physical meanings, for instance,
the hyperbolic sine arises in the gravitational potential of a cylinder and the calculation of
the Roche limit. The hyperbolic cosine function is the shape of a hanging cable (the so-
called catenary) [36]. On the other hand, invariance properties, such as the group of trans-
formations, as well as commutator and adjoint representation tables, have been reported.
A differential substitution has been found via nonlinear self-adjointness and the associated
conservation laws have been established. Using suitable values of parameters, the dynami-
cal characteristics of the obtained solutions have been depicted via the 3-dimensional and
contour graphs. To the best of our knowledge, the results and analysis presented in this
study have not appeared in the literature before.
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