
Zhang and Lv Advances in Difference Equations        (2021) 2021:203 
https://doi.org/10.1186/s13662-021-03353-5

R E S E A R C H Open Access

A note on two-term exponential sum and
the reciprocal of the quartic Gauss sums
Wenpeng Zhang1 and Xingxing Lv1*

*Correspondence:
lvxingxing@stumail.nwu.edu.cn
1School of Mathematics, Northwest
University, Xi’an, Shaanxi, P.R. China

Abstract
The main purpose of this article is by using the properties of the fourth character
modulo a prime p and the analytic methods to study the calculating problem of a
certain hybrid power mean involving the two-term exponential sums and the
reciprocal of quartic Gauss sums, and to give some interesting calculating formulae of
them.

MSC: 11L05

Keywords: Reciprocal of the quartic Gauss sums; Two-term exponential sums;
Hybrid power means; Analytic methods

1 Introduction
Let q ≥ 3 be a fixed integer. For any integers k and m with k ≥ 2 and (m, q) = 1, the kth
Gauss sums G(m, k; q) and the two-term exponential sums H(m, k; q) in [1] are defined as

G(m, k; q) =
q–1∑

a=0

e
(

mak

q

)
and H(m, k; q) =

q–1∑

a=0

e
(

mak + a
q

)
,

where e(y) = e2π iy and i2 = –1.
We all know that these sums occupy a very important position in the study of analytic

number theory, and many number theory problems are related to them. Therefore, many
scholars have studied their various properties and obtained a series of meaningful results.
We will not repeat it here. Interested readers can refer to references [1–14].

Recently, Zhang Wenpeng and Chen Zhuoyu [1] studied the hybrid power mean involv-
ing H(m, 3; p) and the reciprocal of the quartic Gauss sums G(m, 4; p), and they obtained
two interesting results as follows.

If p is a prime with p ≡ 5(mod8), then one has the identity

p–1∑

m=1

∣∣∣∣
H(m, 3; p)
G(m, 4; p)

∣∣∣∣
2

=

⎧
⎨

⎩

3p(p–2)–2√pα

9p–4α2 if 3 | (p – 1),
3p2+2√pα

9p–4α2 if 3 � (p – 1);
(1)
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If p is a prime with p ≡ 5(mod8) for any real number k ≥ 0, then one has

p–1∑

m=1

1
|G(m, 4; p)|2k =

p – 1
2

· (3√p + 2α)k + (3√p – 2α)k

p k
2 · (9p – 4α2)k

, (2)

where α = α(p) =
∑ p–1

2
a=1 ( a+a

p ) is an integer, ( ∗
p ) denotes the Legendre symbol modp, and a

denotes the solution of the equation ax ≡ 1(modp).
These results are significant, because dealing with the reciprocal of the trigonometric

sums is not common to us. But the methods in their article cannot handle the case of
p ≡ 1(mod8), thus leaving it as an open problem.

Of course, the integer α = α(p) in (1) and (2) is closely related to p. In fact, if p ≡ 1(mod

4), then we have (see Theorems 4–11 in [15])

p = α2 + β2,

where β =
∑ p–1

2
b=1 ( b+r·b

p ), and r is any quadratic non-residue modulo p.
In this paper, we consider a generalized problem: For any prime p with p ≡ 1(mod8)

and number-theoretic function F(m), whether there is an exact calculating formula for
the hybrid power mean

Vk(p) =
p–1∑

m=1

F(m)
Gk(m, 4; p)

, (3)

where k ≥ 0 is an integer.
We use the analytic methods and the properties of the fourth character modulo p to give

an interesting fourth-order linear recursive formula for Vk(p).

Theorem 1 Let p be a prime with p ≡ 1(mod8). Then, for any number-theoretic function
F(m), we have the fourth-order linear recursive formula

Vk(p) =
8α

p – 4α2 · Vk–1(p) +
6

p – 4α2 · Vk–2(p) –
1

p(p – 4α2)
· Vk–4(p).

For all integers k ≥ 4 with the initial values

Vj(p) =
p–1∑

m=1

F(m)
Gj(m, 4; p)

, j = 0, 1, 2, 3.

Obviously, in order to obtain all values of Vj(p) for any integer k ≥ 0, we need to com-
pute V0(p), V1(p), V2(p), and V3(p), then we can compute all the values of Vk(p) using this
fourth-order linear recursion formula. In general, the first four terms of Vj(p) do not al-
ways get the exact value, but for some special function F(m), we can compute the exact
value of Vj(p) with j = 0, 1, 2, 3, and we can get all the terms of the recursive sequence Vj(p).

Especially for F(m) = 1 and Wk(p) =
∑p–1

m=1
1

Gk (m,4;p) in Theorem 1, we have the following
result.
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Theorem 2 If p is a prime with p ≡ 1(mod8), then we have the fourth-order linear recur-
sive formula

Wk(p) =
8α

p – 4α2 · Wk–1(p) +
6

p – 4α2 · Wk–2(p) –
1

p(p – 4α2)
· Wk–4(p)

for all integers k ≥ 4 with the initial values W0(p) = p – 1; W1(p) = 2(p–1)α
p–4α2 ;

W2(p) =
(p – 1)(3p + 4α2)

(p – 4α2)2 and W3(p) =
4(p – 1)α(9p – 4α2)

(p – 4α2)3 .

If we take F(m) = H2(m, 3; p) and W k(p) =
∑p–1

m=1
H2(m,3;p)
Gk (m,4;p) , we prove the following result.

Theorem 3 If p is a prime with p ≡ 17(mod24), then we have

W k(p) =
8α

p – 4α2 · W k–1(p) +
6

p – 4α2 · W k–2(p) –
1

p(p – 4α2)
· W k–4(p)

for all integer k ≥ 4 with W 0(p) = p2; W 1(p) = 2p2α+2pαβ–p
3
2 β–p

3
2

p–4α2 ;

W 2(p) =
3p3 + 4p2α2 + 8pα2β – 10p 3

2 α + 2p2β – 8p 3
2 αβ + 8p 1

2 α3

(p – 4α2)2

and

W 3(p) =
36p3α – 16p2α3 + 16pα3β – 48p 3

2 α2 + 28p2αβ

(p – 4α2)3

+
48p 1

2 α4 – 48p 3
2 α2β – 5p 5

2 β – 7p 5
2 + 16p 1

2 α4β

(p – 4α2)3 ,

where β = τ (ψ) + τ (ψ), it satisfies the identity β2 = 2√pα + 2p. And ψ denotes any fourth-
order character modulo p.

Theorem 4 If p is a prime with p ≡ 1(mod24), then we have

W k(p) =
8α

p – 4α2 · W k–1(p) +
6

p – 4α2 · W k–2(p) –
1

p(p – 4α2)
· W k–4(p)

for all k ≥ 4 with W 0(p) = p(p – 2); W 1(p) = 2p(p–2)α–2pαβ+p
3
2 β+p

3
2

p–4α2 ;

W 2(p) =
p(p – 2)(3p + 4α2) – 8pα2β + 10p 3

2 α – 2p2β + 8p 3
2 αβ – 8p 1

2 α3

(p – 4α2)2

and

W 3(p) =
4p(p – 2)(9p – 4α2)α – 16pα3β + 48p 3

2 α2 – 28p2αβ

(p – 4α2)3

+
48p 3

2 α2β – 48p 1
2 α4 + 5p 5

2 β + 7p 5
2 – 16p 1

2 α4β

(p – 4α2)3 .
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Taking k = 2 or 4, from these theorems we have the following corollaries.

Corollary 1 If p is a prime with p ≡ 1(mod8), then we have the identity

p–1∑

m=1

∣∣∣∣∣

p–1∑

a=0

e
(

ma4

p

)∣∣∣∣∣

–4

=
p – 1

p(p – 4α2)4 · (17p3 + 252p2α2 – 272pα4 + 64α6).

Corollary 2 If p is a prime with p ≡ 17(mod24), then we have the identity

p–1∑

m=1

H2(m, 3; p)
G2(m, 4; p)

=
p–1∑

m=1

∣∣∣∣

∑p–1
a=0 e( ma3+a

p )
∑p–1

a=0 e( ma4
p )

∣∣∣∣
2

=
3p3 + 4p2α2 + 8pα2β – 10p 3

2 α + 2p2β – 8p 3
2 αβ + 8p 1

2 α3

(p – 4α2)2 .

Corollary 3 If p is a prime with p ≡ 1(mod24), then we have the identity

p–1∑

m=1

H2(m, 3; p)
G2(m, 4; p)

=
p–1∑

m=1

∣∣∣∣

∑p–1
a=0 e( ma3+a

p )
∑p–1

a=0 e( ma4
p )

∣∣∣∣
2

=
p(p – 2)(3p + 4α2) – 24pα2β + 6p 3

2 α + 2p2β + 8p 3
2 αβ + 8p 1

2 α3

(p – 4α2)2 .

2 Several lemmas
To complete the proofs of our theorems, we need to give some basic lemmas. Of course,
the proofs of these lemmas need some knowledge of elementary and analytic number
theory. They can be found in many number theory books, such as [15–18]. First we have
the following.

Lemma 1 Let p be an odd prime with p ≡ 1(mod4), ψ be any fourth-order character mod

p. Then we have the identity

τ 2(ψ) + τ 2(ψ) =
√

p ·
p–1∑

a=1

(
a + a

p

)
= 2

√
p · α.

Proof This is Lemma 2.2 in [2]. �

Lemma 2 If p is a prime with p ≡ 1(mod8), then we have the identities

p–1∑

m=1

(
m
p

)( p–1∑

a=0

e
(

ma3 + a
p

))2

= –
(

3
p

)
· p

and

p–1∑

m=1

ψ(m)

( p–1∑

a=0

e
(

ma3 + a
p

))2

=
(

3
p

)
· p

3
2 ,

where ( ∗
p ) denotes the Legendre symbol, and ψ is any fourth-order character modp.
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Proof We only prove the second formula in Lemma 2. Similarly, we can deduce the first
one. Let ( ∗

p ) = χ2, note the identities ψ2 = χ2, χ2(–1) = χ2(2) = 1, ψ3 = ψ , τ (χ2) = √p, and
ψ(–1) = 1. From the definition and properties of the classical Gauss sums modp, we have

p–1∑

m=1

ψ(m)

( p–1∑

a=0

e
(

ma3 + a
p

))2

=
p–1∑

m=1

ψ(m)
p–1∑

a=0

e
(

ma3 + a
p

)
+

p–1∑

m=1

ψ(m)
p–1∑

a=0

p–1∑

b=1

e
(

ma3 + mb3 + a + b
p

)

= τ (ψ)
p–1∑

a=1

ψ
3(a)e

(
a
p

)
+ τ (ψ)

p–1∑

a=0

ψ
(
a3 + 1

) p–1∑

b=1

ψ(b)e
(

b(a + 1)
p

)

= τ 2(ψ) + τ 2(ψ)
p–1∑

a=0

ψ
(
a3 + 1

)
ψ(a + 1)

= τ 2(ψ) + τ 2(ψ)
p–1∑

a=1

ψ
(
a3 – 3a2 + 3a

)
ψ(a)

= τ 2(ψ) + τ 2(ψ)
p–1∑

a=1

ψ
(
1 – 3a + 3a2)

= τ 2(ψ) + χ2(2)τ 2(ψ)
p–1∑

a=0

ψ
(
12a2 – 12a + 4

)
– χ2(2)τ 2(ψ)

= τ 2(ψ)
p–1∑

a=0

ψ
(
3(2a – 1)2 + 1

)
= τ 2(ψ)

p–1∑

a=0

ψ
(
3a2 + 1

)
. (4)

Note that τ (ψ)τ (ψ) = p, and for any integer k with (k, p) = 1, we have the identity

p–1∑

a=0

e
(

ka2

p

)
=

(
k
p

)
τ (χ2). (5)

From (5) and the properties of the Gauss sums, we have

p–1∑

a=0

ψ
(
3a2 + 1

)
=

1
τ (ψ)

p–1∑

a=0

p–1∑

b=1

ψ(b)e
(

b(3a2 + 1)
p

)

=
1

τ (ψ)

p–1∑

b=1

ψ(b)e
(

b
p

) p–1∑

a=0

e
(

3ba2

p

)
=

(
3
p

) √p
τ (ψ)

p–1∑

b=1

ψ(b)χ2(b)e
(

b
p

)

=
(

3
p

) √p
τ (ψ)

· τ (ψ) =
(

3
p

)
· τ 2(ψ)√p

. (6)

Combining (4) and (6), we have the identity

p–1∑

m=1

ψ(m) ·
( p–1∑

a=0

e
(

ma3 + a
p

))2

=
(

3
p

)
· p

3
2 .

This proves Lemma 2. �
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Lemma 3 If p is a prime with p ≡ 1(mod8), then we have the identity

G4(m, 4; p) = 4pα2 – p2 + 8pαG(m, 4; p) + 6pG2(m, 4; p).

Proof From Lemma 1 and the properties of the Gauss sums, we have

G(m, 4; p) =
p–1∑

a=0

e
(

ma4

p

)
= 1 +

p–1∑

a=1

(
1 + ψ(a) + ψ

(
a2) + ψ

(
a3))e

(
ma
p

)

= χ2(m)
√

p + ψ(m)τ (ψ) + ψ(m)τ (ψ). (7)

Note that ψ2(m) = χ2(m) and τ (ψ)τ (ψ) = p. From (7) we have

G2(m, 4; p) = 3p + 2χ2(m)
√

p
(
ψ(m)τ (ψ) + ψ(m)τ (ψ)

)

+ χ2(m)
(
τ 2(ψ) + τ 2(ψ)

)

= p + 2χ2(m)
√

pα + 2χ2(m)
√

p · G(m, 4; p)

and

(
G2(m, 4; p) – p

)2 = 4p
(
α + G(m, 4; p)

)2,

which implies that

G4(m, 4; p) = 4pα2 – p2 + 8pαG(m, 4; p) + 6pG2(m, 4; p).

This proves Lemma 3. �

Lemma 4 If p is a prime with p ≡ 1(mod8), then we have the identities

p–1∑

m=1

1
G(m, 4; p)

=
2(p – 1)α
p – 4α2 ;

p–1∑

m=1

1
G2(m, 4; p)

=
(p – 1)(3p + 4α2)

(p – 4α2)2

and

p–1∑

m=1

1
G3(m, 4; p)

=
4(p – 1)α(9p – 4α2)

(p – 4α2)3 .

Proof If p = 8k + 1, then from (7) and Lemma 1 we have

G2(m, 4; p) = 3p + 2
√

p
(
ψ(m)τ (ψ) + ψ(m)τ (ψ)

)
+ χ2(m)2

√
pα; (8)

G3(m, 4; p) = 6pα + 7χ2(m)p
3
2 + 6p

(
ψ(m)τ (ψ) + ψ(m)τ (ψ)

)

+ ψ(m)τ 3(ψ) + ψ(m)τ 3(ψ). (9)
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Therefore, from (7)–(9) and the orthogonality of the characters modp, we have

p–1∑

m=1

G(m, 4; p) = 0; (10)

p–1∑

m=1

G2(m, 4; p) = 3p(p – 1) (11)

and

p–1∑

m=1

G3(m, 4; p) = 6p(p – 1)α. (12)

From (10), (12), and Lemma 3 we have the identity

p–1∑

m=1

1
G(m, 4; p)

=
1

4pα2 – p2

p–1∑

m=1

(
G3(m, 4; p) – 8pα – 6pG(m, 4; p)

)

=
1

4pα2 – p2 · (6p(p – 1)α – 8pα(p – 1)
)

=
2(p – 1)α
p – 4α2 . (13)

From (11), (13), and Lemma 3, we have

p–1∑

m=1

1
G2(m, 4; p)

=
1

4pα2 – p2

p–1∑

m=1

(
G2(m, 4; p) –

8pα

G(m, 4; p)
– 6p

)

=
1

4pα2 – p2 ·
(

3p(p – 1) –
16p(p – 1)α2

p – 4α2 – 6p(p – 1)
)

=
(p – 1)(3p + 4α2)

(p – 4α2)2 . (14)

From (10), (13), (14), and Lemma 3, we have

p–1∑

m=1

1
G3(m, 4; p)

=
1

4pα2 – p2

p–1∑

m=1

(
G(m, 4; p) –

8pα

G2(m, 4; p)
–

6p
G(m, 4; p)

)

=
1

p – 4α2 ·
(

8α(p – 1)(3p + 4α2)
(p – 4α2)2 +

12(p – 1)α
p – 4α2

)

=
4(p – 1)α(9p – 4α2)

(p – 4α2)3 . (15)

Now Lemma 4 follows from (13), (14), and (15). �

Lemma 5 If p is a prime with p ≡ 1(mod8), then we have the identity

p–1∑

m=1

H2(m, 3; p)
G(m, 4; p)

=

⎧
⎪⎨

⎪⎩

2p(p–2)α–2pαβ+p
3
2 β+p

3
2

p–4α2 , if p ≡ 1(mod24);

2p2α+2pαβ–p
3
2 β–p

3
2

p–4α2 , if p ≡ 17(mod24),

where β = τ (ψ) + τ (ψ) and β2 = 2√pα + 2p, ψ is any fourth-order character modp.
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Proof From (7) and Lemma 2, we have the identity

p–1∑

m=1

G(m, 4; p) · H2(m, 3; p)

=
√

p
p–1∑

m=1

χ2(m) · H2(m, 3; p)

+
p–1∑

m=1

(
ψ(m)τ (ψ) + ψ(m)τ (ψ)

) · H2(m, 3; p)

= –
(

3
p

)
· p

3
2 +

(
3
p

)
· p

3
2
(
τ (ψ) + τ (ψ)

)
, (16)

p–1∑

m=1

G2(m, 4; p) · H2(m, 3; p)

= 2
√

pα

p–1∑

m=1

χ2(m) · H2(m, 3; p)

+ 3p
p–1∑

m=1

H2(m, 3; p) + 2
√

p
p–1∑

m=1

(
ψ(m)τ (ψ) + ψ(m)τ (ψ)

) · H2(m, 3; p)

= 2
(

3
p

)
p2(τ (ψ) + τ (ψ)

)
– 2

(
3
p

)
p

3
2 α + 3p

p–1∑

m=1

H2(m, 3; p). (17)

From Lemma 1 we have the identity

2
√

pα
(
τ (ψ) + τ (ψ)

)
=

(
τ 2(ψ) + τ 2(ψ)

)(
τ (ψ) + τ (ψ)

)

= τ 3(ψ) + τ 3(ψ) + p
(
τ (ψ) + τ (ψ)

)
.

Applying (9), Lemma 1, and Lemma 2, we have

p–1∑

m=1

G3(m, 4; p) · H2(m, 3; p)

= 6pα

p–1∑

m=1

H2(m, 3; p)

+ 7p
3
2

p–1∑

m=1

χ2(m)H2(m, 3; p) + 6p
p–1∑

m=1

(
ψ(m)τ (ψ) + ψ(m)τ (ψ)

)
H2(m, 3; p)

+
p–1∑

m=1

(
ψ(m)τ 3(ψ) + ψ(m)τ 3(ψ)

) · H2(m, 3; p)

= –7
(

3
p

)
p

5
2 + 6

(
3
p

)
p

5
2
(
τ (ψ) + τ (ψ)

)
+

(
3
p

)
p

3
2
(
τ 3(ψ) + τ 3(ψ)

)

+ 6pα

p–1∑

m=1

H2(m, 3; p)
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= –7
(

3
p

)
p

5
2 +

(
3
p

)
p2(2α + 5

√
p)

(
τ (ψ) + τ (ψ)

)

+ 6pα

p–1∑

m=1

H2(m, 3; p). (18)

From the trigonometrical identity

p–1∑

a=0

e
(

na
p

)
=

⎧
⎨

⎩
0 if p � n,

p if p | n,
(19)

we can deduce that

p–1∑

m=1

( p–1∑

a=0

e
(

ma3 + a
p

))2

=

⎧
⎨

⎩
p2 if 3 � (p – 1),

p2 – 2p if 3 | (p – 1).
(20)

If p = 24k + 1, then ( 3
p ) = 1. From (16), (17), (18), (20), and Lemma 3, we have

p–1∑

m=1

H2(m, 3; p)
G(m, 4; p)

=
1

4pα2 – p2

p–1∑

m=1

(
G3(m, 4; p) – 8pα – 6pG(m, 4; p)

) · H2(m, 3; p)

=
1

4pα2 – p2

(
–7p

5
2 + p2(2α + 5

√
p)β + 6p

(
p2 – 2p

)
α
)

–
1

4pα2 – p2

(
8pα

(
p2 – 2p

)
– 6p

5
2 + 6p

5
2 β

)

=
2p(p – 2)α – 2pαβ + p 3

2 β + p 3
2

p – 4α2 . (21)

If p = 24k + 17, then ( 3
p ) = –1. From (16), (17), (18), (20), and Lemma 3, we have

p–1∑

m=1

H2(m, 3; p)
G(m, 4; p)

=
1

4pα2 – p2

p–1∑

m=1

(
G3(m, 4; p) – 8pα – 6pG(m, 4; p)

) · H2(m, 3; p)

=
1

4pα2 – p2

(
7p

5
2 – p2(2α + 5

√
p)β + 6p3α – 8p3α – 6p

5
2 + 6p

5
2 β

)

=
2p2α + 2pαβ – p 3

2 β – p 3
2

p – 4α2 . (22)

Now Lemma 5 follows from (21) and (22). �
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Lemma 6 If p is a prime with p ≡ 17(mod24), then we have

W 2(p) =
p–1∑

m=1

H2(m, 3; p)
G2(m, 4; p)

=
3p3 + 4p2α2 + 8pα2β – 10p 3

2 α + 2p2β – 8p 3
2 αβ + 8p 1

2 α3

(p – 4α2)2 ;

If p is a prime with p ≡ 1(mod24), then we have

W 2(p) =
p–1∑

m=1

H2(m, 3; p)
G2(m, 4; p)

=
p(p – 2)(3p + 4α2) – 8pα2β + 10p 3

2 α – 2p2β + 8p 3
2 αβ – 8p 1

2 α3

(p – 4α2)2 .

Proof If p is a prime with p ≡ 17(mod24), then note that ( 3
p ) = –1, from (17), (22), and

Lemma 3, we have the identity

W 2(p) =
p–1∑

m=1

H2(m, 3; p)
G2(m, 4; p)

=
1

4pα2 – p2

p–1∑

m=1

(
G2(m, 4; p) –

8pα

G(m, 4; p)
– 6p

)
· H2(m, 3; p)

=
1

4pα2 – p2

(
3p3 – 2p2β + 2p

3
2 α – 6p3) –

8pα

4pα2 – p2

p–1∑

m=1

H2(m, 3; p)
G(m, 4; p)

=
3p2 + 2pβ – 2√pα

p – 4α2 +
8α

p – 4α2 · 2p2α + 2pαβ – p 3
2 β – p 3

2

p – 4α2

=
3p3 + 4p2α2 + 8pα2β – 10p 3

2 α + 2p2β – 8p 3
2 αβ + 8p 1

2 α3

(p – 4α2)2 .

This proves the first formula in Lemma 6.
Similarly, if p = 24k + 1, then ( 3

p ) = 1. From (17), (21), and Lemma 3, we can also deduce
the second formula. �

Lemma 7 If p is a prime with p ≡ 17(mod24), then we have the identity

W 3(p) =
p–1∑

m=1

H2(m, 3; p)
G3(m, 4; p)

=
36p3α – 16p2α3 + 16pα3β – 48p 3

2 α2

(p – 4α2)3

+
28p2αβ – 48p 3

2 α2β + 48p 1
2 α4 – 5p 5

2 β – 7p 5
2 + 16p 1

2 α4β

(p – 4α2)3 .
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Proof Since p ≡ 17(mod24), so we have ( 3
p ) = –1. From (16), Lemma 3, Lemma 5,

Lemma 6, and the complex calculations, we can get identity

W 3(p) =
p–1∑

m=1

H2(m, 3; p)
G3(m, 4; p)

=
1

4pα2 – p2

p–1∑

m=1

(
G(m, 4; p) –

8pα

G2(m, 4; p)
–

6p
G(m, 4; p)

)
· H2(m, 3; p)

=
1

4pα2 – p2

p–1∑

m=1

G(m, 4; p) · H2(m, 3; p) –
8pα

4pα2 – p2

p–1∑

m=1

H2(m, 3; p)
G2(m, 4; p)

–
6p

4pα2 – p2 ·
p–1∑

m=1

H2(m, 3; p)
G(m, 4; p)

=
36p3α – 16p2α3 + 16pα3β – 48p 3

2 α2 + +28p2αβ – 48p 3
2 α2β

(p – 4α2)3

+
48p 1

2 α4 – 5p 5
2 β – 7p 5

2 + 16p 1
2 α4β

(p – 4α2)3 .

This proves Lemma 7. �

Lemma 8 If p is a prime with p ≡ 1(mod24), then we have the identity

W 3(p) =
p–1∑

m=1

H2(m, 3; p)
G3(m, 4; p)

=
4p(p – 2)(9p – 4α2)α – 16pα3β + 48p 3

2 α2 – 28p2αβ

(p – 4α2)3

+
48p 3

2 α2β – 48p 1
2 α4 + 5p 5

2 β + 7p 5
2 – 16p 1

2 α4β

(p – 4α2)3 .

Proof Note that ( 3
p ) = 1. From (16), Lemma 3, Lemma 5, Lemma 6, and the complex cal-

culations, we can get identity

W 3(p) =
p–1∑

m=1

H2(m, 3; p)
G3(m, 4; p)

=
1

4pα2 – p2

p–1∑

m=1

(
G(m, 4; p) –

8pα

G2(m, 4; p)
–

6p
G(m, 4; p)

)
· H2(m, 3; p)

=
1

4pα2 – p2

p–1∑

m=1

G(m, 4; p) · H2(m, 3; p) –
8pα

4pα2 – p2

p–1∑

m=1

H2(m, 3; p)
G2(m, 4; p)

–
6p

4pα2 – p2 ·
p–1∑

m=1

H2(m, 3; p)
G(m, 4; p)
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=
4p(p – 2)(9p – 4α2)α – 16pα3β + 48p 3

2 α2 – 28p2αβ

(p – 4α2)3

+
48p 3

2 α2β – 48p 1
2 α4 + 5p 5

2 β + 7p 5
2 – 16p 1

2 α4β

(p – 4α2)3 .

This proves Lemma 8. �

3 Proofs of the theorems
Now we prove our theorems. In fact, if p ≡ 1( mod 8), then for any number-theoretic func-
tion F(m) and integer k ≥ 4, from Lemma 3 we have

1
G4(m, 4; p)

=
1

4pα2 – p2

(
1 –

8pα

G3(m, 4; p)
–

6p
G2(m, 4; p)

)
. (23)

For any integer k ≥ 4, from formula (23) we have

Vk(p) =
p–1∑

m=1

F(m)
Gk(m, 4; p)

=
p–1∑

m=1

F(m)
Gk–4(m, 4; p)

· 1
G4(m, 4; p)

=
1

4pα2 – p2

p–1∑

m=1

F(m)
Gk–4(m, 4; p)

·
(

1 –
8pα

G3(m, 4; p)
–

6p
G2(m, 4; p)

)

=
8α

p – 4α2 · Vk–1(p) +
6

p – 4α2 · Vk–2(p) –
1

p(p – 4α2)
· Vk–4(p).

This proves Theorem 1.
Note that W0(p) = p – 1, so Theorem 2 follows from Theorem 1 and Lemma 4.
Theorem 3 follows from Lemma 5, Lemma 6, and Lemma 7.
Theorem 4 follows from Lemma 5, Lemma 6, and Lemma 8.
This completes the proofs of our all results.

4 Conclusion
The main purpose of this article is by using the properties of the fourth character modulo
a prime p and the analytic methods to study the calculating problems of a certain hybrid
power mean involving the two-term exponential sums and the reciprocal of quartic Gauss
sums, and to give a series of fourth-order linear recursive formulae. These results not only
give the exact values of some special Gauss sums, but they are also some new contribution
to the research in related fields.
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