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Abstract
In this paper, we discuss the existence and approximation of solutions for a
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1 Introduction
In this paper, we are concerned with the existence and approximation of solutions for the
fourth-order nonlinear boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

x(4)(t) = f (t, x(t)), t ∈ I,

x′(0) = A, x′(1) = B,

x′′′(0) = C, x′′′(1) = D,

(1.1)

where I = [0, 1], f : I ×R →R is continuous, and A, B, C, D ∈R.
The quasilinearization method is one of important tools to deal with nonlinear bound-

ary value problems, see [1–5] and the references therein. In [6], Khan studied the second
order nonlinear Neumann problem

⎧
⎨

⎩

–x′′(t) = f (t, x(t)), t ∈ I,

x′(0) = A, x′(1) = B,
(1.2)

where f : I ×R →R is continuous and A, B ∈R. By using the quasilinearization technique,
the author obtained the existence and approximation of solutions of (1.2) in the presence
of a lower solution α and an upper solution β in the reverse order α ≥ β . For the case that
a lower solution α is not greater than an upper solution β , we also refer the reader to the
papers [7–10].

There are a few papers which studied fourth-order boundary value problems with the
help of the quasilinearization technique, see [11–14]. In [13], Ma, Zhang, and Fu discussed
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a fourth-order boundary value problem

⎧
⎨

⎩

x(4)(t) = g(t, x(t), x′′(t)), t ∈ I,

x(0) = x(1) = x′′(0) = x′′(1) = 0,
(1.3)

where g : I ×R×R → R is continuous. They showed the existence of solutions between
a lower solution α and an upper solution β without any growth restriction on g by means
of the monotonicity method. Li [14] obtained the existence and uniqueness result for (1.3)
by the method of lower and upper solutions in the presence of a lower solution α and an
upper solution β with α ≤ β .

Inspired by [6, 14], in this paper, we study the existence of solution for (1.1) in the pres-
ence of a lower solution α and an upper solution β in the reverse order α ≥ β .

The paper is organized as follows. In Sect. 2, we establish a comparison principle related
to problem (1.1). In Sect. 3, the concept of a lower and upper solution of (1.1) is introduced
and the method of a lower and upper solution is mentioned. In Sect. 4, using the approach
of quasilinearization, we obtain the existence result of (extreme) solution for (1.1), and we
also discuss the quadratic convergence of the approximate sequence.

2 Comparison principle
Consider the linear problems

⎧
⎨

⎩

–x′′(t) + Mx(t) = σ (t), t ∈ I,

x′(0) = a, x′(1) = b
(2.1)

and

⎧
⎪⎪⎨

⎪⎪⎩

x(4)(t) – λ4x(t) = h(t), t ∈ I,

x′(0) = A, x′(1) = B,

x′′′(0) = C, x′′′(1) = D,

(2.2)

where M,λ, a, b, A, B, C, D ∈ R, σ , h ∈ C(I).
From [6], if M �= –n2π2, (2.1) has a unique solution of the form

x(t) = PM
(a,b)(t) +

∫ 1

0
GM(t, s)σ (s) ds, (2.3)

where

PM
(a,b)(t) =

⎧
⎨

⎩

1
λ sinλ

(a cosλ(1 – t) – b cosλt), M = –λ2,λ > 0,
1

λ sinhλ
(b coshλt – a coshλ(1 – t)), M = λ2,λ > 0,

if M = –λ2 < 0, GM(t, s) = –
1

λ sinλ

⎧
⎨

⎩

cosλ(1 – s) cosλt, 0 ≤ t ≤ s ≤ 1,

cosλ(1 – t) cosλs, 0 ≤ s ≤ t ≤ 1,

if M = λ2 > 0, GM(t, s) =
1

λ sinhλ

⎧
⎨

⎩

coshλ(1 – s) coshλt, 0 ≤ t ≤ s ≤ 1,

coshλ(1 – t) coshλs, 0 ≤ s ≤ t ≤ 1.
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Lemma 2.1 ([6]) (i) Let – π2

4 ≤ M < 0. If a ≤ 0 ≤ b and σ (t) ≥ 0, then x(t) ≤ 0 for all t ∈ I .
If b ≤ 0 ≤ a and σ (t) ≤ 0, then x(t) ≥ 0 for all t ∈ I .

(ii) Let M > 0. If a ≤ 0 ≤ b and σ (t) ≥ 0, then x(t) ≥ 0 for all t ∈ I . If b ≤ 0 ≤ a and
σ (t) ≤ 0, then x(t) ≤ 0 for all t ∈ I .

Lemma 2.2 Let 0 < λ ≤ π
2 . Then (2.2) has a unique solution x̃(t). Moreover, x̃(t) ≥ 0 for all

t ∈ I if B ≤ 0 ≤ A, C + λ2A ≤ 0 ≤ D + λ2B and h(t) ≤ 0; x̃(t) ≤ 0 for all t ∈ I if A ≤ 0 ≤ B,
D + λ2B ≤ 0 ≤ C + λ2A, h(t) ≥ 0.

Proof Letting y(t) = –x′′(t) – λ2x(t), we get

⎧
⎨

⎩

–y′′(t) + λ2y(t) = h(t), t ∈ I,

y′(0) = –C – λ2A, y′(1) = –D – λ2B
(2.4)

and
⎧
⎨

⎩

–x′′(t) – λ2x(t) = y(t), t ∈ I,

x′(0) = A, x′(1) = B.
(2.5)

Hence

x̃(t) = P–λ2
(A,B)(t) +

∫ 1

0
G–λ2 (t, s)y(s) ds

is a solution of (2.2), where

y(t) = Pλ2

(–C–λ2A,–D–λ2B)(t) +
∫ 1

0
Gλ2 (t, s)h(s) ds.

Clearly, the solution of (2.2) is unique since the solution of (2.4) or (2.5) is unique.
If C + λ2A ≤ 0 ≤ D + λ2B and h(t) ≤ 0, using (ii) of Lemma 2.1, we get that y(t) ≤ 0.

Together with B ≤ 0 ≤ A, we obtain that x̃(t) ≥ 0 by (i) of Lemma 2.1. Similarly, x̃(t) ≤ 0 if
A ≤ 0 ≤ B, D + λ2B ≤ 0 ≤ C + λ2A, h(t) ≥ 0. This completes the proof. �

3 Lower and upper solutions
Definition 3.1 Function α ∈ C4(I) is called a lower solution of (1.1) if

⎧
⎪⎪⎨

⎪⎪⎩

α(4)(t) ≤ f (t,α(t)), t ∈ I,

α′(0) = A, α′(1) = B,

α′′′(0) ≤ C, α′′′(1) ≥ D.

An upper solution β ∈ C4(I) of (1.1) is defined similarly by reversing the inequalities.

Theorem 3.1 Let 0 < λ ≤ π
2 . Suppose that α and β are respectively lower and upper so-

lutions of (1.1) such that α(t) ≥ β(t), t ∈ I . If f (t, x) – λ4x is nonincreasing in x, then there
exists a solution x ∈ C4(I) of (1.1) such that

β(t) ≤ x(t) ≤ α(t), t ∈ I.
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Proof Define p(α(t), x,β(t)) = min{α(t), max{x,β(t)}}. Then p(α(t), x,β(t)) is continuous
and satisfies β(t) ≤ p(α(t), x,β(t)) ≤ α(t) for all x ∈ R, t ∈ I . Consider the boundary value
problem

⎧
⎪⎪⎨

⎪⎪⎩

x(4)(t) – λ4x(t) = ψ(t, x(t)), t ∈ I,

x′(0) = A, x′(1) = B,

x′′′(0) = C, x′′′(1) = D,

(3.1)

where ψ(t, x) = f (t, p(α(t), x,β(t))) – λ4p(α(t), x,β(t)). Problem (3.1) is equivalent to the
integral equation

x = Tx,

(Tx)(t) := P–λ2
(A,B)(t) +

∫ 1

0
G–λ2 (t, τ )

{

Pλ2

(–C–λ2A,–D–λ2B)(τ )

+
∫ 1

0
Gλ2 (τ , s)ψ

(
s, x(s)

)
ds

}

dτ .

Since α, β , ψ , P–λ2
(A,B), Pλ2

(–C–λ2A,–D–λ2B), G–λ2 and Gλ2 are continuous, there exist constants
c1, c2, c3 > 0 such that

∣
∣ψ(t, x)

∣
∣ ≤ c1, t ∈ I, x ∈R,

∣
∣P–λ2

(A,B)(t)
∣
∣ ≤ c2,

∣
∣Pλ2

(–C–λ2A,–D–λ2B)(t)
∣
∣ ≤ c2, t ∈ I,

∣
∣G–λ2 (t, s)

∣
∣ ≤ c3,

∣
∣Gλ2 (t, s)

∣
∣ ≤ c3, t, s ∈ I.

Let ‖u‖ = maxt∈I |u(t)| and 	 = {u ∈ C(I) : ‖u‖ ≤ c2 + c3(c2 + c3c1)}. It is easy to show that
T : 	 → 	 is continuous and compact. Hence, T has a fixed point x ∈ 	 by the Schauder
fixed point theorem. Moreover, x ∈ C4(I) is a solution of (3.1).

Let v(t) = α(t) – x(t), t ∈ I . Then v′(0) = 0 = v′(1) and v′′′(0) +λ2v′(0) ≤ 0 ≤ v′′′(1) +λ2v′(1).
Since f (t, x) – λ4x is nonincreasing in x and p(α(t), x,β(t)) ≤ α(t), t ∈ I , we can see that

v(4)(t) – λ4v(t)

=
(
α(4)(t) – λ4α(t)

)
–

(
x(4)(t) – λ4x(t)

)

≤ (
f
(
t,α(t)

)
– λ4α(t)

)
–

(
f
(
t, p

(
α(t), x(t),β(t)

))
– λ4p

(
α(t), x(t),β(t)

))

≤ 0,

which implies α(t) ≥ x(t), t ∈ I . Similarly, x(t) ≥ β(t), t ∈ I . Hence,

x(4)(t) – λ4x(t) = f
(
t, p

(
α(t), x(t),β(t)

))
– λ4p

(
α(t), x(t),β(t)

)

= f
(
t, x(t)

)
– λ4x(t), t ∈ I,

that is, x is a solution of (1.1). This completes the proof. �
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Theorem 3.2 Assume that α and β are respectively lower and upper solutions of problem
(1.1). If f : I ×R→ R is continuous and for some 0 < λ ≤ π

2 ,

f
(
t,α(t)

)
– λ4α(t) ≤ f

(
t,β(t)

)
– λ4β(t),

then α(t) ≥ β(t), t ∈ I .

Proof Let m(t) = α(t) – β(t), t ∈ I . Then m(t) ∈ C4(I), m′(0) = 0 = m′(1), m′′′(0) ≤ 0 ≤
m′′′(1), and m′′′(0) + λ2m′(0) ≤ 0 ≤ m′′′(1) + λ2m′(1). Using the definition of lower and
upper solutions, we have

m(4)(t) – λ4m(t) =
(
α(4)(t) – λ4α(t)

)
–

(
β (4)(t) – λ4β(t)

)

≤ (
f
(
t,α(t)

)
– λ4α(t)

)
–

(
f
(
t,β(t)

)
– λ4β(t)

)

≤ 0,

which implies that m(t) ≥ 0, t ∈ I by Lemma 2.2. This completes the proof. �

4 Main results
To prove the main theorem, we need the following assumptions:

(H1) The functions α,β ∈ C4(I) are respectively lower and upper solutions of (1.1), and
α(t) ≥ β(t), t ∈ I .

(H2) f ∈ C2(I ×R,R) and 0 < fx(t, x) ≤ ( π
2 )4, fxx(t, x) ≤ 0 for (t, x) ∈ I ×[minβ(t), maxα(t)].

(H3) There exists a constant k ∈ (0, π
2 ] such that

f (t, x1) – f (t, x2) ≤ k4(x1 – x2)

for β(t) ≤ x2 ≤ x1 ≤ α(t), t ∈ I .

Theorem 4.1 Let (H1) and (H2) hold. Then there exists a monotone sequence {ωn} con-
verging uniformly and quadratically to a solution of (1.1).

Proof Taylor’s theorem and condition (H2) imply that

f (t, x) = f (t, y) + fx(t, y)(x – y) +
fxx(t, ζ )

2!
(x – y)2 ≤ f (t, y) + fx(t, y)(x – y),

for (t, x), (t, y) ∈ I × [minβ(t), maxα(t)], where ζ ∈ (min{x, y}, max{x, y}). Define

F(t, x, y) = f (t, y) + fx(t, y)(x – y), x, y ∈R, t ∈ I,

then F(t, x, y) is continuous and satisfies the relations

f (t, x) ≤ F(t, x, y), f (t, x) = F(t, x, x)

for (t, x), (t, y) ∈ I × [minβ(t), maxα(t)].
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Let λ > 0 and λ4 = max{fx(t, x) : (t, x) ∈ I × [minβ(t), maxα(t)]}. Then 0 < λ ≤ π
2 . Put

ϕ ∈ [β ,α] = {x ∈ C4(I) : β(t) ≤ x(t) ≤ α(t), t ∈ I} and consider the problem

⎧
⎨

⎩

x(4)(t) = Hϕ(t, x) := λ4x + F(t, p(α, x,ϕ),ϕ) – λ4p(α, x,ϕ), t ∈ I,

x′(0) = A, x′(1) = B, x′′′(0) = C, x′′′(1) = D.
(4.1)

Clearly,

⎧
⎨

⎩

α(4)(t) ≤ f (t,α) ≤ F(t,α,ϕ) = λ4α + F(t, p(α,α,ϕ),ϕ) – λ4p(α,α,ϕ),

α′(0) = A, α′(1) = B, α′′′(0) ≤ C, α′′′(1) ≥ D,
⎧
⎪⎪⎨

⎪⎪⎩

β (4)(t) ≥ f (t,β) ≥ f (t,ϕ) + λ4(β – ϕ) = F(t,ϕ,ϕ) + λ4β – λ4ϕ

= λ4β(t) + F(t, p(α,β ,ϕ),ϕ) – λ4p(α,β ,ϕ),

β ′(0) = A, β ′(1) = B, β ′′′(0) ≥ C, β ′′′(1) ≤ D,

that is, α and β are respectively lower and upper solutions of (4.1).
On the other hand, the function

Hϕ(t, x) – λ4x = f (t,ϕ) – fx(t,ϕ)ϕ +
(
fx(t,ϕ) – λ4)p(α, x,ϕ)

is nonincreasing in x. From Theorem 3.1, (4.1) has a solution ω1 ∈ [β ,α]. Moreover, ω1 is
an upper solution of (4.1), which implies that

⎧
⎨

⎩

x(4)(t) = Hω1 (t, x),

x′(0) = A, x′(1) = B, x′′′(0) = C, x′′′(1) = D
(4.2)

has a solution ω2 ∈ [ω1,α]. Repeating the process, we obtain a sequence {ωn} satisfying

β(t) ≤ ω1(t) ≤ · · · ≤ ωn(t) ≤ α(t),

ω(4)
n = Hωn–1 (t,ωn) = F(t,ωn,ωn–1),

ω′
n(0) = A, ω′

n(1) = B, ω′′′
n (0) = C, ω′′′

n (1) = D,

and {ωn} is uniformly convergent. Let limn→∞ ωn(t) = x. Since F is continuous, we have

lim
n→∞ F(t,ωn,ωn–1) = F(t, x, x) = f (t, x),

which implies that x is a solution of problem (1.1).
To show that the convergence of the sequence {ωn} is quadratic, we begin by writing

en(t) = x(t) – ωn(t), t ∈ I , n ∈ N
+, where x is a solution of (1.1). It is clear that en ≥ 0 on I

and e′
n(0) = e′

n(1) = e′′′
n (0) = e′′′

n (1) = 0. Let ρ4 = min{fx(t, x) : (t, x) ∈ I × [minβ(t), maxα(t)]}.
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Then 0 < ρ ≤ π
2 . In view of Taylor’s theorem, we obtain

e(4)
n = x(4) – ω(4)

n = f (t, x) – F(t,ωn,ωn–1)

= f (t,ωn–1) + fx(t,ωn–1)(x – ωn–1) +
fxx(t, ξ )

2!
(x – ωn–1)2

–
[
f (t,ωn–1) + fx(t,ωn–1)(ωn – ωn–1)

]

= fx(t,ωn–1)en +
fxx(t, ξ )

2!
e2

n–1

≥ ρ4en +
fxx(t, ξ )

2!
‖en–1‖2, t ∈ I,

where ωn–1(t) < ξ (t) < x(t), t ∈ I . Let γ (t) be the unique solution of the boundary value
problem

⎧
⎪⎪⎨

⎪⎪⎩

γ (4) – ρ4γ = fxx(t,ξ (t))
2! ‖en–1‖2, t ∈ I,

γ ′(0) = 0, γ ′(1) = 0,

γ ′′′(0) = 0, γ ′′′(1) = 0.

Similar to (3.1), γ satisfies

γ (t) =
∫ 1

0
G–ρ2 (t, τ )

{∫ 1

0
Gρ2 (τ , s)

fxx(s, ξ (s))
2!

‖en–1‖2 ds
}

dτ ≤ δ‖en–1‖2,

where

δ =
1
2

max

{∣
∣
∣
∣

∫ 1

0
G–ρ2 (t, τ )

∫ 1

0
Gρ2 (τ , s)fxx(s, x) ds dτ

∣
∣
∣
∣ : (t, x) ∈ I × [minβ , maxα]

}

.

Setting Kn(t) = en(t) – γ (t), t ∈ I , we get K ′
n(0) = K ′

n(1) = K ′′′
n (1) = K ′′′

n (0) = 0 and K (4)
n –

ρ4Kn ≥ 0 on I . By Lemma 2.2, we easily obtain en(t) ≤ γ (t), t ∈ I . Thus ‖en‖ ≤ δ‖en–1‖2

and we conclude that the convergence of the sequence {ωn} is quadratic. This completes
the proof. �

Remark 4.1 In (H2), if the assumption fxx(t, x) ≤ 0 is replaced by fxx(t, x) ≥ 0 for (t, x) ∈
I × [minβ(t), maxα(t)], and we let the other assumptions in Theorem 4.1 hold, then

f (t, x) ≥ F(t, x, y), f (t, x) = F(t, x, x)

for x, y ∈ [minβ(t), maxα(t)], t ∈ I . One can obtain a monotonically nonincreasing se-
quence {ωn} of solutions of (4.1) with

β(t) ≤ ωn(t) ≤ · · · ≤ ω1(t) ≤ α(t), t ∈ I,

which converges uniformly and quadratically to a solution of (1.1).

Theorem 4.2 Let (H1) and (H3) hold. Then there exist monotone sequences {αn}, {βn} with
α0 = α, β0 = β such that limn→∞ αn(t) = u(t), limn→∞ βn(t) = r(t) uniformly on I , and r, u
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are the minimal and maximal solutions of (1.1), respectively, such that

β0 ≤ β1 ≤ β2 ≤ · · ·βn ≤ r ≤ x ≤ u ≤ αn ≤ · · · ≤ α2 ≤ α1 ≤ α0

on I , where x is a solution of (1.1) such that β(t) ≤ x(t) ≤ α(t), t ∈ I .

Proof For any φ ∈ [β ,α], we consider the equation

⎧
⎪⎪⎨

⎪⎪⎩

x(4)(t) – k4x(t) = f (t,φ(t)) – k4φ(t), t ∈ I,

x′(0) = A, x′(1) = B,

x′′′(0) = C, x′′′(1) = D.

(4.3)

From (H3), we have

⎧
⎨

⎩

α(4) – k4α ≤ f (t,α) – k4α ≤ f (t,φ) – k4φ, t ∈ I,

α′(0) = A, α′(1) = B, α′′′(0) ≤ C, α′′′(1) ≥ D,
⎧
⎨

⎩

β (4) – k4β ≥ f (t,β) – k4β ≥ f (t,φ) – k4φ, t ∈ I,

β ′(0) = A, β ′(1) = B, β ′′′(0) ≥ C, β ′′′(1) ≤ D.

Hence, α, β are respectively lower and upper solution of (4.3). By Lemma 2.2 and Theo-
rem 3.1, (4.3) has a unique solution x ∈ [β ,α]. We can define an operator Q by x = Qφ and
Q is an operator from [β ,α] to [β ,α]. Thus Qα ≤ α, β ≤ Qβ .

Now, we prove that Q is nondecreasing in [β ,α]. Let β ≤ μ1 ≤ μ2 ≤ α and η = Qμ1 –
Qμ2. Then, by (H3), we have

η(4) – k4η = f (t,μ1) – k4μ1 – f (t,μ2) + k4μ2 ≥ 0,

η′(0) = η′(1) = η′′′(0) = η′′′(1) = 0.

By Lemma 2.2, η(t) ≤ 0, which implies Qμ1 ≤ Qμ2.
Define the sequences {αn}, {βn} with α0 = α, β0 = β such that αn+1 = Qαn, βn+1 = Qβn for

n = 0, 1, 2, . . . From the fact that Qα ≤ α, β ≤ Qβ and the monotonicity of Q, we have

β0 ≤ β1 ≤ β2 ≤ · · · ≤ βn ≤ αn ≤ · · · ≤ α2 ≤ α1 ≤ α0

on I and

αn(t) = P–k2
(A,B)(t) +

∫ 1

0
G–k2 (t, τ )

{

Pk2

(–C–k2A,–D–k2B)(τ )

+
∫ 1

0
Gk2 (τ , s)

[
f
(
s,αn–1(s)

)
– k4αn–1(s)

]
ds

}

dτ ,

βn(t) = P–k2
(A,B)(t) +

∫ 1

0
G–k2 (t, τ )

{

Pk2

(–C–k2A,–D–k2B)(τ )

+
∫ 1

0
Gk2 (τ , s)

[
f
(
s,βn–1(s)

)
– k4βn–1(s)

]
ds

}

dτ .
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Therefore limn→∞ αn(t) = u(t), limn→∞ βn(t) = r(t) uniformly on I . Clearly, u, r are solu-
tions of (1.1).

Finally, we prove that if x ∈ [β ,α] is a solution of (1.1), then r ≤ x ≤ u on I . To this end,
we assume that, without loss of generality, βn(t) ≤ x(t) ≤ αn(t) for some n. We also know
that βn+1 ≤ x ≤ αn+1 on I from the monotonicity of Q. Since β0 ≤ x ≤ α0 on I , we can
conclude that

βn(t) ≤ x(t) ≤ αn(t), t ∈ I, for all n.

Passing to the limit as n → ∞, we obtain that r ≤ x ≤ u. This completes the proof. �

Example 4.1 Consider the following problem:
⎧
⎨

⎩

x(4)(t) = f (t, x(t)) := 1
10 (x2(t) – 3

√
t+1

3 + x(t)), t ∈ I,

x′(0) = x′(1) = x′′′(0) = x′′′(1) = 0.
(4.4)

Let α =
√

2 and β = 1
2 . It is easy to check that α, β are respectively lower and upper

solutions of (4.4). Moreover, for

fx(t, u) =
1
5

u –
1

30

(
t + 1

3
+ u

)– 2
3

, fxx(t, u) =
1
5

+
1

45

(
t + 1

3
+ u

)– 5
3

,

we can easily check that 0 < fx(t, u) ≤ ( π
2 )4 and fxx(t, u) ≥ 0 for (t, u) ∈ I × [ 1

2 ,
√

2]. By Re-
mark 4.1, there exists a monotonically nonincreasing sequence {ωn} which converges uni-
formly and quadratically to a solution of (4.4).

Example 4.2 Consider the following problem:
⎧
⎨

⎩

x(4)(t) = f (t, x(t)) := c(4 + x2(t))[ 1+t
4 – arctan 1

(x(t)–t)2+c ], t ∈ I,

x′(0) = x′(1) = 1, x′′′(0) = x′′′(1) = 0,
(4.5)

where c > 0 is sufficiently small.
Let α(t) = A+t and β(t) = t –c (t–t2)2

24 , t ∈ I , here A >
√

(tan 0.25)–1. We have α′(0) = α′(1) =
1, α′′′(0) = α′′′(1) = 0,

f (t,α) = c
(
4 + α2)

(
1 + t

4
– arctan

1
A2 + c

)

≥ c
(
4 + α2)

(
1
4

– arctan
1

A2

)

> 0 = α(4)(t),

which means that α is a lower solution of (4.5).
Moreover, β ′(0) = β ′(1) = 1, β ′′′(0) = c

2 > 0, β ′′′(1) = – c
2 < 0, and

f (t,β) = c
(
4 + β2)

{
1 + t

4
– arctan

1
c[c( t–t2

24 )2 + 1]

}

.

There exist a constant c∗ > 0 such that arctan 1
c > π

4 if c ∈ (0, c∗). For such c ∈ (0, c∗),

f (t,β) < 4c
(

1
2

–
π

4

)

= c(2 – π ) < –c = β (4)(t),

hence β is an upper solution of (4.5) and (H1) is satisfied.
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On the other hand, for ∀(t, u) ∈ I × [minβ(t), maxα(t)], we have

∣
∣fx(t, u)

∣
∣ ≤ 1

2
√

c
(
A2 + 4A + 7

)
.

Hence (H3) is satisfied for c > 0 sufficiently small. By Theorem 4.2, (4.5) has the maximal
and minimal solutions on [β ,α].

Acknowledgements
The author would like to express her sincere thanks to the referees for the careful reading and their important comments
which helped improve the original paper.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The author declares that she has no competing interests.

Authors’ contributions
The author read and approved the final manuscript.

Authors’ information
Mingzhu Huang received B.S. degree at the Department of Mathematics, Hunan University of Science and Technology.
Now she is a Master’s student and her research direction is differential equations.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 5 January 2021 Accepted: 24 March 2021

References
1. Mohamed, E.G., Donal, O.R.: A quasilinearization method for a class of second order singular nonlinear differential

equations with nonlinear boundary conditions. Nonlinear Anal., Real World Appl. 8(1), 174–186 (2007)
2. Korman, P.: A maximum principle for fourth order ordinary differential equations. Appl. Anal. 33(3–4), 267–273 (1989)
3. Sreedhar, C.V., Devi, J.V.: Generalized quasilinearization using coupled lower and upper solutions for periodic

boundary value problem of an integro differential equation. Eur. J. Pure Appl. Math. 12(4), 1662–1675 (2019)
4. Lakshmikantham, V., Vatsala, A.S.: Generalized Quasilinearization for Nonlinear Problems. Springer, New York (1998)
5. Wang, W.B., Shen, J.H., Luo, Z.G.: Multi-point boundary value problems for second-order functional differential

equations. Comput. Math. Appl. 56(8), 2065–2072 (2008)
6. Khan, R.A.: Existence and approximation of solutions of second order nonlinear Neumann problems. Electron. J.

Differ. Equ. 2005, 3 (2005)
7. Ahmad, B., Khan, R.A., Eloe, P.W.: Generalized quasilinearization method for a second order three point

boundary-value problem with nonlinear boundary conditions. Electron. J. Differ. Equ. 2002, 90 (2002)
8. Ahmad, B., Khan, R.A., Sivasundaram, S.: Generalized quasilinearization method for nonlinear functional differential

equations. J. Appl. Math. Stoch. Anal. 16(1), 33–43 (2003)
9. Nieto, J.J.: Generalized quasilinearization method for a second order ordinary differential equation with Dirichlet

boundary conditions. Proc. Am. Math. Soc. 125(9), 2599–2604 (1997)
10. Wang, W.L., Tian, J.F.: Generalized monotone iterative method for nonlinear boundary value problems with causal

operators. Bound. Value Probl. 2014(1), 192 (2014)
11. Li, F.F., Sun, J.T., Jia, M.: Monotone iterative method for the second-order three-point boundary value problem with

upper and lower solutions in the reversed order. Appl. Math. Comput. 217(9), 4840–4847 (2011)
12. Yang, J., Song, N.N., Jin, Y.: Upper and lower solution method for a fourth-order four-point boundary value problem

on time scales. Math. Pract. Theory 43(21), 205–211 (2013) (Chinese)
13. Ma, R.Y., Zhang, J.H., Fu, S.M.: The method of lower and upper solutions for fourth-order two-point boundary value

problems. J. Math. Anal. Appl. 215(2), 415–422 (1997)
14. Li, Y.X.: Existence and method of lower and upper solutions for fourth-order nonlinear boundary value problems.

Acta Math. Sci. Ser. A Chin. Ed. 23(2), 245–252 (2003)


	Existence of solutions for fourth-order nonlinear boundary value problems
	Abstract
	Keywords

	Introduction
	Comparison principle
	Lower and upper solutions
	Main results
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Authors' information
	Publisher's Note
	References


