
Salamooni and Pawar Advances in Difference Equations        (2021) 2021:198 
https://doi.org/10.1186/s13662-021-03358-0

R E S E A R C H Open Access

Existence and uniqueness of nonlocal
boundary conditions for
Hilfer–Hadamard-type fractional differential
equations
Ahmad Y.A. Salamooni1* and D.D. Pawar2

*Correspondence:
ayousss83@gmail.com
1Department of Mathematics,
Faculty of Education Zabid,
Hodeidah University, Al-Hodeidah,
Yemen
Full list of author information is
available at the end of the article

Abstract
In this paper, we use some fixed point theorems in Banach space for studying the
existence and uniqueness results for Hilfer–Hadamard-type fractional differential
equations

HD
α,βx(t) + f (t, x(t)) = 0

on the interval (1, e] with nonlinear boundary conditions

x(1 + ε) =
n–2∑

i=1

νix(ζi), HD
1,1x(e) =

n–2∑

i=1

σi HD
1,1x(ζi).
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Keywords: Existence; Uniqueness; Nonlinear boundary value problems;
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1 Introduction
In this paper, we discuss the existence and uniqueness of the solutions for the n-point non-
linear boundary value problems for Hilfer–Hadamard-type fractional differential equa-
tions of the form

⎧
⎨

⎩
HDα,βx(t) + f (t, x(t)) = 0, t ∈ J := (1, e],

x(1 + ε) =
∑n–2

i=1 νix(ζi), HD1,1x(e) =
∑n–2

i=1 σi HD1,1x(ζi),
(1.1)

where HDα,β is the Hilfer–Hadamard fractional derivative of order 1 < α ≤ 2 and type
β ∈ [0, 1], f : J × R → R is a continuous function, 0 < ε < 1, ζi ∈ (1, e), νi,σi ∈ R for all
i = 1, 2, . . . , n – 2, ζ1 < ζ2 < · · · < ζn–2, and HD1,1 = t d

dt .
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The fractional differential equations appear as more appropriate models for describ-
ing real world problems. Indeed, these problems cannot be described using the classical
integer-order differential equations. In the past years, the theory of fractional differential
equations has received much attention from the authors and has become an important
field of investigation due to existing applications in engineering, biology, chemistry, eco-
nomics, and numerous branches of physics [20, 27, 33, 40]. For example, the fractional
differential equations are applied to describe the abundant phenomena such as flow in
nonlinear electric circuits [15, 16, 20], properties of viscoelastic and dielectric materials
[20, 21, 32], nonlinear oscillations of an earthquake [28], mechanics [35], aerodynamics,
regular variations in thermodynamics [18], etc.

Fractional derivatives can be of several kinds, one of them is the Hadamard fractional
derivative innovated by Hadamard in 1892 [17]. It differs from the preceding Riemann–
Liouville- and Caputo-type fractional derivatives [33] in the sense that the kernel of the
integral contains the logarithmic function of an arbitrary exponent. The properties of
Hadamard fractional integral and derivative can be found in [26, 27]. Recently, scholars
have studied the Hadamard-, Caputo–Hadamard- and Hilfer–Hadamard-type fractional
derivatives by using the fixed point theorems with the boundary value problems and have
given results of the existence and uniqueness of solutions, see [1–13, 22–25, 30, 31, 34, 36–
39, 41, 43–45] and the references mentioned therein.

In this paper, we find a variety of results for the boundary value problem (1.1) by using
traditional fixed point theorems. The first result is Theorem 3.2, which depends on Banach
contraction mapping principle and presents the existence and uniqueness result for the
solution of problem (1.1). In Theorem 3.3, we prove the second result of the existence and
uniqueness through a fixed point theorem and for nonlinear contractions due to Boyd and
Wong. In Theorem 3.4, we prove the third existence result by using Krasnoselskii’s fixed
point theorem. By using Leray–Schauder type of nonlinear alternative for single-valued
maps, we prove the last result of existence, which is Theorem 3.5. Examples are included
to illustrative our main results.

2 Preliminaries
In this section, we introduce some notations and definitions of Hilfer–Hadamard-type
fractional calculus.

Definition 2.1 (Riemann–Liouville fractional integral, [27, 40]) The Riemann–Liouville
fractional integral of order α > 0 of a function ϕ : [1,∞) →R is defined by

(
Iαϕ

)
(t) =

1
	(α)

∫ t

1

ϕ(τ ) dτ

(t – τ )1–α
(t > 1).

Here, 	(α) is the Euler’s Gamma function defined by

	(α) =
∫ ∞

0
τα–1e–τ dτ .
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Definition 2.2 (Riemann–Liouville fractional derivative, [27, 40]) The Riemann–
Liouville fractional derivative of order α > 0 of a function ϕ : [1,∞) →R is defined by

(
Dαϕ

)
(t) :=

(
d
dt

)n(
In–αϕ

)
(t)

=
1

	(n – α)
dn

dtn

∫ t

1

ϕ(τ ) dτ

(t – τ )α–n+1

(
n = [α] + 1; t > 1

)
,

where [α] is the integer part of α.

Definition 2.3 (Hadamard fractional integral, [27]) The Hadamard fractional integral of
order α ∈R

+ for a function ϕ : [1,∞) →R is defined as

HIαϕ(t) =
1

	(α)

∫ t

1

(
log

t
τ

)α–1
ϕ(τ )
τ

dτ (t > 1),

where log(·) = loge(·).

Definition 2.4 (Hadamard fractional derivative, [27]) The Hadamard fractional deriva-
tive of order α applied to the function ϕ : [1,∞) →R is defined as

HDαϕ(t) = δn(
HIn–αϕ(t)

)
, n – 1 < α < n, n = [α] + 1,

where δn = (t d
dt )n and [α] denotes the integer part of the real number α.

Definition 2.5 (Caputo–Hadamard fractional derivative, [17]) The Caputo–Hadamard
fractional derivative of order α applied to the function ϕ ∈ ACn

δ [a, b] is defined as

HCDαϕ(t) =
(

HIn–αδnϕ
)
(t), n = [α] + 1,

where ϕ ∈ ACn
δ [a, b] = {ϕ : [a, b] →C : δ(n–1)ϕ ∈ AC[a, b], δ = t d

dt }.

Definition 2.6 (Hilfer fractional derivative, [20, 22]) Let n – 1 < α < n, 0 ≤ β ≤ 1, ϕ ∈
L1(a, b). The Hilfer fractional derivative Dα,β of order α and type β of ϕ is defined as

(
Dα,βϕ

)
(t) =

(
Iβ(n–α)

(
d
dt

)n

I(n–α)(1–β)ϕ

)
(t)

=
(

Iβ(n–α)
(

d
dt

)n

In–γ ϕ

)
(t); γ = α + nβ – αβ

=
(
Iβ(n–α)Dγ ϕ

)
(t),

where I(·) and D(·) are the Riemann–Liouville fractional integral and derivative defined by
Definitions 2.1 and 2.2, respectively.
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In particular, if 0 < α < 1, then

(
Dα,βϕ

)
(t) =

(
Iβ(1–α) d

dt
I(1–α)(1–β)ϕ

)
(t)

=
(

Iβ(1–α) d
dt

I1–γ ϕ

)
(t); γ = α + β – αβ

=
(
Iβ(1–α)Dγ ϕ

)
(t).

Proposition 2.7 ([22, 34]) Let 0 < α < 1, 0 ≤ β ≤ 1, γ = α + β – αβ , and ϕ ∈ L1(a, b). If
Dγ ϕ exists and is in L1(a, b), then

Iα
a+

(
Dα,β

a+ ϕ
)
(t) = Iγ

a+
(
Dγ

a+ϕ
)
(t) = ϕ(t) –

(I1–γ
a+ ϕ)(a)
	(γ )

(t – a)γ –1.

Definition 2.8 (Hilfer–Hadamard fractional derivative, [12, 21]) Let 0 < α < 1, 0 ≤ β ≤ 1,
ϕ ∈ L1(a, b). The Hilfer–Hadamard fractional derivative HDα,β of order α and type β of ϕ

is defined as

(
HDα,βϕ

)
(t) =

(
HIβ(1–α)δ HI(1–α)(1–β)ϕ

)
(t)

=
(

HIβ(1–α)δ HI1–γ ϕ
)
(t); γ = α + β – αβ

=
(

HIβ(1–α)
HDγ ϕ

)
(t),

where HI(·) and HD(·) are the Hadamard fractional integral and derivative defined by Defi-
nitions 2.3 and 2.4, respectively.

Theorem 2.9 ([17, 27]) Let �(α) > 0, n = [�(α)] + 1, and 0 < a < b < ∞. If ϕ ∈ L1(a, b) and
(HIn–α

a+ ϕ)(t) ∈ ACn
δ [a, b], then

(
HIα

a+ HDα
a+ϕ

)
(t) = ϕ(t) –

n–1∑

j=0

(δ(n–j–1)(HIn–α
a+ ϕ))(a)

	(α – j)

(
log

t
a

)α–j–1

.

Theorem 2.10 ([17]) Let ϕ(t) ∈ ACn
δ [a, b] or ϕ(t) ∈ Cn

δ [a, b], and α ∈C, then

(
HIα

a+HCDα
a+ϕ

)
(t) = ϕ(t) –

n–1∑

K=0

δKϕ(a)
	(K + 1)

(
log

t
a

)K

.

Definition 2.11 ([45]) Let E be a Banach space and let F : E → E be a mapping. Then F
is said to be a nonlinear contraction if there exists a continuous nondecreasing function
ψ : R+ →R

+ such that ψ(0) = 0 and ψ(φ) < φ for all φ > 0 with the property

‖Fx – Fy‖ ≤ ψ
(‖x – y‖), x, y ∈ E.

Lemma 2.12 ([14]) Let E be a Banach space and let F : E → E be a nonlinear contraction.
Then, F has a unique fixed point in E.

Theorem 2.13 (Krasnoselskii’s fixed point theorem, [29]) Let M be a closed, bounded,
convex, and nonempty subset of a Banach space X. Let A, B be the operators such that
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(a) Ax + By ∈ M, whenever x, y ∈ M;
(b) A is compact and continuous;
(c) B is a contraction mapping.

Then, there exists z ∈ M such that z = Az + Bz.

Theorem 2.14 (Nonlinear alternative for single-valued maps, [19, 42]) Let E be a Banach
space, C a closed, convex subset of E, U an open subset of C, and 0 ∈ U . Suppose that
F : U → C is a continuous, compact (i.e., F(U) is a relatively compact subset of C) map.
Then, either

(i) F has a fixed point in U or
(ii) there is a u ∈ ∂U (the boundary of U in C) and λ̄ ∈ (0, 1) with u = λ̄F(u).

Definition 2.15 (Hilfer–Hadamard fractional derivative, [38]) Let n – 1 < α < n, 0 ≤ β ≤
1, ϕ ∈ L1(a, b). The Hilfer–Hadamard fractional derivative HDα,β of order α and type β of
ϕ is defined as

(
HDα,βϕ

)
(t) =

(
HIβ(n–α)(δ)n

HI(n–α)(1–β)ϕ
)
(t)

=
(

HIβ(n–α)(δ)n
HIn–γ ϕ

)
(t); γ = α + nβ – αβ

=
(

HIβ(n–α)
HDγ ϕ

)
(t),

where HI(·) and HD(·) are the Hadamard fractional integral and derivative defined by Defi-
nitions 2.3 and 2.4, respectively.

Lemma 2.16 ([38]) Let �(α) > 0, 0 ≤ β ≤ 1, γ = α + nβ – αβ , n – 1 < γ ≤ n, n = [�(α)] + 1,
and 0 < a < b < ∞. If ϕ ∈ L1(a, b) and (HIn–γ

a+ ϕ)(t) ∈ ACn
δ [a, b], then

HIα
a+

(
HDα,β

a+ ϕ
)
(t) = HIγ

a+
(

HDγ
a+ϕ

)
(t)

= ϕ(t) –
n–1∑

j=0

(δ(n–j–1)(HIn–γ
a+ ϕ))(a)

	(γ – j)

(
log

t
a

)γ –j–1

.

From this lemma, we notice that if β = 0 then the equation reduces to the equation in
Theorem 2.9, and if the β = 1 then the equation reduces to the equation in Theorem 2.10.

3 Main results
Lemma 3.1 For 1 < α ≤ 2, 0 ≤ β ≤ 1, γ = α + 2β – αβ , γ ∈ (1, 2], and ϕ ∈ C([1, e],R), the
problem

⎧
⎨

⎩
HDα,βx(t) + ϕ(t) = 0, t ∈ J , 1 < α ≤ 2, 0 ≤ β ≤ 1,

x(1 + ε) =
∑n–2

i=1 νix(ζi), HD1,1x(e) =
∑n–2

i=1 σi HD1,1x(ζi),
(3.1)

has a unique solution given by

x(t) = –HIαϕ(t) +
(γ – 1)δ1(log t)γ –2 – (γ – 2)δ2(log t)γ –1

λ

×
[

HIαϕ(1 + ε) –
n–2∑

i=1

νi HIαϕ(ζi)

]
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+
μ2(log t)γ –1 – μ1(log t)γ –2

λ

[

HIα–1ϕ(e) –
n–2∑

i=1

σi HIα–1ϕ(ζi)

]
, t ∈ J ,

where

λ = (γ – 1)δ1μ2 – (γ – 2)δ2μ1, with λ �= 0,

μ1 =
(
log(1 + ε)

)γ –1 –
n–2∑

i=1

νi
(
log(ζi)

)γ –1,

μ2 =
(
log(1 + ε)

)γ –2 –
n–2∑

i=1

νi
(
log(ζi)

)γ –2,

δ1 = 1 –
n–2∑

i=1

σi
(
log(ζi)

)γ –2,

δ2 = 1 –
n–2∑

i=1

σi
(
log(ζi)

)γ –3.

Proof In view of Lemma 2.16, the solution of the Hilfer–Hadamard differential equation
(3.1) can be written as

x(t) = –HIαϕ(t) + c0(log t)γ –1 + c1(log t)γ –2, (3.2)

and

HD1,1x(t) = –HIα–1ϕ(t) + (γ – 1)c0(log t)γ –2 + (γ – 2)c1(log t)γ –3. (3.3)

The boundary condition x(1 + ε) =
∑n–2

i=1 νix(ζi) gives

c1 =
1
μ2

[

HIαϕ(1 + ε) –
n–2∑

i=1

νi HIαϕ(ζi) – c0μ1

]
, (3.4)

where

μ1 =
(
log(1 + ε)

)γ –1 –
n–2∑

i=1

νi
(
log(ζi)

)γ –1, μ2 =
(
log(1 + ε)

)γ –2 –
n–2∑

i=1

νi
(
log(ζi)

)γ –2.

In view of the boundary condition HD1,1x(e) =
∑n–2

i=1 σi HD1,1x(ζi) and from equations (3.3)
and (3.4), we have

c0 =
1

(γ – 1)δ1

[
–(γ – 2)c1δ2 + HIα–1ϕ(e) –

n–2∑

i=1

σi HIα–1ϕ(ζi)

]
, (3.5)

where

δ1 = 1 –
n–2∑

i=1

σi
(
log(ζi)

)γ –2, δ2 = 1 –
n–2∑

i=1

σi
(
log(ζi)

)γ –3.
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By using (3.5) in equation (3.4), we have

c1 =
1
λ

[
(γ – 1)δ1

[

HIαϕ(1 + ε) –
n–2∑

i=1

νi HIαϕ(ζi)

]

– μ1

[

HIα–1ϕ(e) –
n–2∑

i=1

σi HIα–1ϕ(ζi)

]]
,

where

λ = (γ – 1)δ1μ2 – (γ – 2)δ2μ1, with λ �= 0.

By substituting the value of c1 into (3.5), we have

c0 =
1
λ

[
–(γ – 2)δ2

[

HIαϕ(1 + ε) –
n–2∑

i=1

νi HIαϕ(ζi)

]

+ μ2

[

HIα–1ϕ(e) –
n–2∑

i=1

σi HIα–1ϕ(ζi)

]]
.

Now, substituting the values of c0 and c1 in (3.2), we obtain the solution of problem (3.1). �

Next, we present the existence and uniqueness of solutions for Hilfer–Hadamard-type
fractional differential equation (1.1). For that, suppose that

K = C
(
[1, e],R

)
(3.6)

is a Banach space of all continuous functions from [1, e] into R equipped with the norm
‖x‖ = supt∈J |x(t)|. From Lemma 3.1, we get an operator ρ : K → K defined as

(ρx)(t) = –HIαf
(
τ , x(τ )

)
(t)

+
(γ – 1)δ1(log t)γ –2 – (γ – 2)δ2(log t)γ –1

λ

[

HIαf
(
τ , x(τ )

)
(1 + ε)

–
n–2∑

i=1

νi HIαf
(
τ , x(τ )

)
(ζi)

]

+
μ2(log t)γ –1 – μ1(log t)γ –2

λ

[

HIα–1f
(
τ , x(τ )

)
(e)

–
n–2∑

i=1

σi HIα–1f
(
τ , x(τ )

)
(ζi)

]
, with λ �= 0. (3.7)

It must be noticed that problem (1.1) has a solution if and only if operator ρ has a fixed
point. The results of existence and uniqueness are based on the Banach contraction map-
ping principle.

Theorem 3.2 Let f : J ×R →R be a continuous function satisfying the assumption
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(Q1) there exists a constant C > 0 such that |f (t, x) – f (t, y)| ≤ C|x – y| for each t ∈ J and
x, y ∈R. If � is such that C� < 1, where

� =

{
1

	(α + 1)
+

(|γ – 1|)|δ1| + (|γ – 2|)|δ2|
|λ|	(α + 1)

×
[
(
log(1 + ε)

)α +
n–2∑

i=1

|νi|
(
log(ζi)

)α

]

+
|μ2| + |μ1|
|λ|	(α)

[
1 +

n–2∑

i=1

|σi|
(
log(ζi)

)α–1
]}

, (3.8)

then the boundary value problem (1.1) has a unique solution on J .

Proof We are using Banach contraction mapping principle to transform the boundary
value problem (1.1) into a fixed point problem x = ρx, where the operator ρ is defined by
(3.7). We will show that ρ has a fixed point, which is a unique solution of problem (1.1).

We put sup |f (τ , 0)| = p < ∞ and choose

r ≥ �P
1 – C�

. (3.9)

Now, assume that Br = {x ∈ K : |x| ≤ r}. We will show that ρBr ⊂ Br .
For any x ∈ Br , we have

‖ρx‖ = sup
t∈J

{∣∣∣∣∣–HIαf
(
τ , x(τ )

)
(t)

+
(γ – 1)δ1(log t)γ –2 – (γ – 2)δ2(log t)γ –1

λ

[

HIαf
(
τ , x(τ )

)
(1 + ε)

–
n–2∑

i=1

νi HIαf
(
τ , x(τ )

)
(ζi)

]

+
μ2(log t)γ –1 – μ1(log t)γ –2

λ

[

HIα–1f
(
τ , x(τ )

)
(e)

–
n–2∑

i=1

σi HIα–1f
(
τ , x(τ )

)
(ζi)

]∣∣∣∣∣

}

≤ sup
t∈J

{

HIα
∣∣f

(
τ , x(τ )

)∣∣(t)

+
(|γ – 1|)|δ1|(log t)γ –2 + (|γ – 2|)|δ2|(log t)γ –1

|λ|

[

HIα
∣∣f

(
τ , x(τ )

)∣∣(1 + ε)

+
n–2∑

i=1

|νi| HIα
∣∣f

(
τ , x(τ )

)∣∣(ζi)

]

+
|μ2|(log t)γ –1 + |μ1|(log t)γ –2

|λ|

[

HIα–1∣∣f
(
τ , x(τ )

)∣∣(e)
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+
n–2∑

i=1

|σi| HIα–1∣∣f
(
τ , x(τ )

)∣∣(ζi)

]}

≤ HIα
(∣∣f

(
τ , x(τ )

)
– f (τ , 0)

∣∣ +
∣∣f (τ , 0)

∣∣)(e)

+
(|γ – 1|)|δ1| + (|γ – 2|)|δ2|

|λ|

[

HIα
(∣∣f

(
τ , x(τ )

)
– f (τ , 0)

∣∣ +
∣∣f (τ , 0)

∣∣)(1 + ε)

+
n–2∑

i=1

|νi| HIα
(∣∣f

(
τ , x(τ )

)
– f (τ , 0)

∣∣ +
∣∣f (τ , 0)

∣∣)(ζi)

]

+
|μ2| + |μ1|

|λ|

[

HIα–1(∣∣f
(
τ , x(τ )

)
– f (τ , 0)

∣∣ +
∣∣f (τ , 0)

∣∣)(e)

+
n–2∑

i=1

|σi| HIα–1(∣∣f
(
τ , x(τ )

)
– f (τ , 0)

∣∣ +
∣∣f (τ , 0)

∣∣)(ζi)

]

≤ (Cr + P)

{
1

	(α + 1)
+

(|γ – 1|)|δ1| + (|γ – 2|)|δ2|
|λ|	(α + 1)

×
[
(
log(1 + ε)

)α +
n–2∑

i=1

|νi|
(
log(ζi)

)α

]

+
|μ2| + |μ1|
|λ|	(α)

[
1 +

n–2∑

i=1

|σi|
(
log(ζi)

)α–1
]}

= (Cr + P)� ≤ r. (3.10)

Thus, we have shown that ρBr ⊂ Br .
Now, for x, y ∈ K and t ∈ J , we have

∣∣(ρx)(t) – (ρy)(t)
∣∣

=

∣∣∣∣∣–HIα
(
f
(
τ , x(τ )

)
– f

(
τ , y(τ )

))
(t)

+
(γ – 1)δ1(log t)γ –2 – (γ – 2)δ2(log t)γ –1

λ

[

HIα
(
f
(
τ , x(τ )

)
– f

(
τ , y(τ )

))
(1 + ε)

–
n–2∑

i=1

νi HIα
(
f
(
τ , x(τ )

)
– f

(
τ , y(τ )

))
(ζi)

]

+
μ2(log t)γ –1 – μ1(log t)γ –2

λ

[

HIα–1(f
(
τ , x(τ )

)
– f

(
τ , y(τ )

))
(e)

–
n–2∑

i=1

σi HIα–1(f
(
τ , x(τ )

)
– f

(
τ , y(τ )

))
(ζi)

]∣∣∣∣∣

≤ HIα
∣∣f

(
τ , x(τ )

)
– f

(
τ , y(τ )

)∣∣(t)

+
(|γ – 1|)|δ1|(log t)γ –2 + (|γ – 2|)|δ2|(log t)γ –1

|λ|
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×
[

HIα
∣∣f

(
τ , x(τ )

)
– f

(
τ , y(τ )

)∣∣(1 + ε)

+
n–2∑

i=1

|νi| HIα
∣∣f

(
τ , x(τ )

)
– f

(
τ , y(τ )

)∣∣(ζi)

]

+
|μ2|(log t)γ –1 + |μ1|(log t)γ –2

|λ|

[

HIα–1∣∣f
(
τ , x(τ )

)
– f

(
τ , y(τ )

)∣∣(e)

+
n–2∑

i=1

|σi| HIα–1∣∣f
(
τ , x(τ )

)
– f

(
τ , y(τ )

)∣∣(ζi)

]

≤ C‖x – y‖
{

1
	(α + 1)

+
(|γ – 1|)|δ1| + (|γ – 2|)|δ2|

|λ|	(α + 1)

×
[
(
log(1 + ε)

)α +
n–2∑

i=1

|νi|
(
log(ζi)

)α

]

+
|μ2| + |μ1|
|λ|	(α)

[
1 +

n–2∑

i=1

|σi|
(
log(ζi)

)α–1
]}

= C‖x – y‖�. (3.11)

Therefore, it has been shown that ‖(ρx)(t) – (ρy)(t)‖ ≤ C�‖x – y‖, where C� < 1. Hence,
ρ is a contraction. Thus, by Banach contraction mapping principle, problem (1.1) has a
unique solution. �

Theorem 3.3 Let f : J ×R →R be a continuous function satisfying the assumption
(Q2) |f (t, x) – f (t, y)| ≤ ϕ(t)(|x – y|/(P∗ + |x – y|)), t ∈ J , x, y ≥ 0, where ϕ : J → R

+ is
continuous and a constant P∗ is defined by

P∗ = HIαϕ(e) +
(|γ – 1|)|δ1| + (|γ – 2|)|δ2|

|λ|

[

HIαϕ(1 + ε) +
n–2∑

i=1

|νi| HIαϕ(ζi)

]

+
|μ2| + |μ1|

|λ|

[

HIα–1ϕ(e) +
n–2∑

i=1

|σi| HIα–1ϕ(ζi)

]
. (3.12)

Then, the boundary value problem (1.1) has a unique solution on J .

Proof We have the operator ρ : K → K defined by (3.7) and by applying Definition 2.11,
we can define a continuous nondecreasing function � : R+ →R

+ by

�(φ) =
P∗φ

P∗ + φ
, for φ ≥ 0, (3.13)

where the function � satisfies �(0) = 0 and �(φ) < φ for all φ > 0.
For any x, y ∈ K and for each t ∈ J , we have

∣∣(ρx)(t) – (ρy)(t)
∣∣

=

∣∣∣∣∣–HIα
(
f
(
τ , x(τ )

)
– f

(
τ , y(τ )

))
(t)
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+
(γ – 1)δ1(log t)γ –2 – (γ – 2)δ2(log t)γ –1

λ

[

HIα
(
f
(
τ , x(τ )

)
– f

(
τ , y(τ )

))
(1 + ε)

–
n–2∑

i=1

νi HIα
(
f
(
τ , x(τ )

)
– f

(
τ , y(τ )

))
(ζi)

]

+
μ2(log t)γ –1 – μ1(log t)γ –2

λ

[

HIα–1(f
(
τ , x(τ )

)
– f

(
τ , y(τ )

))
(e)

–
n–2∑

i=1

σi HIα–1(f
(
τ , x(τ )

)
– f

(
τ , y(τ )

))
(ζi)

]∣∣∣∣∣

≤ HIα
∣∣f

(
τ , x(τ )

)
– f

(
τ , y(τ )

)∣∣(t)

+
(|γ – 1|)|δ1|(log t)γ –2 + (|γ – 2|)|δ2|(log t)γ –1

|λ|

×
[

HIα
∣∣f

(
τ , x(τ )

)
– f

(
τ , y(τ )

)∣∣(1 + ε)

+
n–2∑

i=1

|νi| HIα
∣∣f

(
τ , x(τ )

)
– f

(
τ , y(τ )

)∣∣(ζi)

]

+
|μ2|(log t)γ –1 + |μ1|(log t)γ –2

|λ|

[

HIα–1∣∣f
(
τ , x(τ )

)
– f

(
τ , y(τ )

)∣∣(e)

+
n–2∑

i=1

|σi| HIα–1∣∣f
(
τ , x(τ )

)
– f

(
τ , y(τ )

)∣∣(ζi)

]

≤ HIα

(
ϕ(τ )

|x(τ ) – y(τ )|
P∗ + |x(τ ) – y(τ )|

)
(e)

+
(|γ – 1|)|δ1| + (|γ – 2|)|δ2|

|λ|

[

HIα

(
ϕ(τ )

|x(τ ) – y(τ )|
P∗ + |x(τ ) – y(τ )|

)
(1 + ε)

+
n–2∑

i=1

|νi| HIα

(
ϕ(τ )

|x(τ ) – y(τ )|
P∗ + |x(τ ) – y(τ )|

)
(ζi)

]

+
|μ2| + |μ1|

|λ|

[

HIα–1
(

ϕ(τ )
|x(τ ) – y(τ )|

P∗ + |x(τ ) – y(τ )|
)

(e)

+
n–2∑

i=1

|σi| HIα–1
(

ϕ(τ )
|x(τ ) – y(τ )|

P∗ + |x(τ ) – y(τ )|
)

(ζi)

]

≤ �(‖x – y‖)
P∗

{

HIαϕ(e) +
(|γ – 1|)|δ1| + (|γ – 2|)|δ2|

|λ|

×
[

HIαϕ(1 + ε) +
n–2∑

i=1

|νi| HIαϕ(ζi)

]

+
|μ2| + |μ1|

|λ|

[

HIα–1ϕ(e) +
n–2∑

i=1

|σi| HIα–1ϕ(ζi)

]}

= �
(‖x – y‖), (3.14)
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which implies that ‖ρx–ρy‖ ≤ �(‖x–y‖). Then, the operator ρ is a nonlinear contraction.
Thus, by Lemma 2.12 (Banach contraction mapping principle) the operator ρ has a unique
fixed point, which is the unique solution of problem (1.1). �

Next, we will give the existence result by using Theorem 2.13 (Krasnoselskii’s fixed point
theorem).

Theorem 3.4 Let f : J ×R → R be a continuous function satisfying the assumption (Q1).
In addition, assume that

(Q3)
∣∣f (t, x)

∣∣ ≤ g(t), for (t, x) ∈ J ×R and g ∈ C
(
[1, e],R+)

.

If

C	(α + 1) < 1, (3.15)

then the boundary value problem (1.1) has at least one solution on J .

Proof We put supt∈J |g(t)| = ‖g‖ and choose a suitable constant r̂ such that

r̂ ≥ ‖g‖�, (3.16)

where � is defined by (3.8). Moreover, we consider the operators F and G on Br̂ = {x ∈
K : ‖x‖ ≤ r̂} defined as

(Fx)(t) =
(γ – 1)δ1(log t)γ –2 – (γ – 2)δ2(log t)γ –1

λ

[

HIαf
(
τ , x(τ )

)
(1 + ε)

–
n–2∑

i=1

νi HIαf
(
τ , x(τ )

)
(ζi)

]

+
μ2(log t)γ –1 – μ1(log t)γ –2

λ

[

HIα–1f
(
τ , x(τ )

)
(e)

–
n–2∑

i=1

σi HIα–1f
(
τ , x(τ )

)
(ζi)

]
, t ∈ J ;

(G x)(t) = –HIαf
(
τ , x(τ )

)
(t), t ∈ J . (3.17)

For any x, y ∈ Br̂ , we have

‖Fx + G x‖ ≤ ‖g‖
(

1
	(α + 1)

+
(|γ – 1|)|δ1| + (|γ – 2|)|δ2|

|λ|	(α + 1)

×
[
(
log(1 + ε)

)α +
n–2∑

i=1

|νi|
(
log(ζi)

)α

]

+
|μ2| + |μ1|
|λ|	(α)

[
1 +

n–2∑

i=1

|σi|
(
log(ζi)

)α–1
])
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= ‖g‖� ≤ r̂, (3.18)

which implies that Fx + G x ∈ Br̂ . It follows from assumption (Q1), together with (3.15),
that G is a contraction. Furthermore, it is easy to show that the operator F is continuous.
Moreover,

‖Fx‖ ≤ ‖g‖
(

(|γ – 1|)|δ1| + (|γ – 2|)|δ2|
|λ|	(α + 1)

[
(
log(1 + ε)

)α +
n–2∑

i=1

|νi|
(
log(ζi)

)α

]

+
|μ2| + |μ1|
|λ|	(α)

[
1 +

n–2∑

i=1

|σi|
(
log(ζi)

)α–1
])

. (3.19)

Hence, F is uniformly bounded on Br̂ .
Next, we prove that the operator F is compact. For that, we put sup(t,x)∈J×Br̂

|f (t, x)| =
p̄ < ∞.

Consequently, for t1, t2 ∈ J , we get

∣∣(Fx)(t1) – (Fx)(t2)
∣∣

=

∣∣∣∣∣

{
(γ – 1)δ1(log t1)γ –2 – (γ – 2)δ2(log t1)γ –1

λ

[

HIαf
(
τ , x(τ )

)
(1 + ε)

–
n–2∑

i=1

νi HIαf
(
τ , x(τ )

)
(ζi)

]

+
μ2(log t1)γ –1 – μ1(log t1)γ –2

λ

[

HIα–1f
(
τ , x(τ )

)
(e)

–
n–2∑

i=1

σi HIα–1f
(
τ , x(τ )

)
(ζi)

]}

–

{
(γ – 1)δ1(log t2)γ –2 – (γ – 2)δ2(log t2)γ –1

λ

[

HIαf
(
τ , x(τ )

)
(1 + ε)

–
n–2∑

i=1

νi HIαf
(
τ , x(τ )

)
(ζi)

]

+
μ2(log t2)γ –1 – μ1(log t2)γ –2

λ

[

HIα–1f
(
τ , x(τ )

)
(e)

–
n–2∑

i=1

σi HIα–1f
(
τ , x(τ )

)
(ζi)

]}∣∣∣∣∣

≤ p̄
(|γ – 1|)|δ1||(log t2)γ –2 – log t1)γ –2| + (|γ – 2|)|δ2||(log t2)γ –1 – (log t1)γ –1|

|λ|	(α + 1)

×
[
(
log(1 + ε)

)α +
n–2∑

i=1

|νi|
(
log(ζi)

)α

]

+ p̄
|μ2||(log t2)γ –1 – log t1)γ –1| + |μ1||(log t2)γ –2 – (log t1)γ –2|

|λ|	(α)
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×
[

1 +
n–2∑

i=1

|σi|
(
log(ζi)

)α–1
]

,

which is independent of x and tends to zero as t2 → t1. Thus, F is equicontinuous. Hence,
F is relatively compact on Br̂ . Therefore, by the Arzelà–Ascoli theorem, F is compact
on Br̂ . Thus, by Theorem 2.13, the boundary value problem (1.1) has at least one solution
on J . �

Now, the final existence result is based on Theorem 2.14 (nonlinear alternative for
single-valued maps).

Theorem 3.5 Let f : J ×R →R be a continuous function, and assume that:
(Q4) there exists a continuous nondecreasing function ϑ : R+ →R

+\{0} such that

∣∣f (t, x)
∣∣ ≤ q(t)ϑ

(|x|) for each (t, x) ∈ J ×R, (3.20)

where q ∈ C([1, e],R+) is a function;
(Q5) there exists a constant L > 0 such that

L
‖q‖ϑ(L)�

> 1, (3.21)

where � is defined by (3.8). Then, the boundary value problem (1.1) has at least one
solution on J .

Proof We have the operator ρ defined by (3.7). Firstly, we will show that ρ maps bounded
sets (balls) into bounded sets in K . For that, let r̄ be a positive number, and Br̄ = {x ∈ K :
‖x‖ ≤ r̄} be a bounded ball in K , where K is defined by (3.6). For t ∈ J , we have

∣∣ρx(t)
∣∣ ≤ HIα

∣∣f
(
τ , x(τ )

)∣∣(e)

+
(|γ – 1|)|δ1| + (|γ – 2|)|δ2|

|λ|

[

HIα
∣∣f

(
τ , x(τ )

)∣∣(1 + ε)

+
n–2∑

i=1

|νi| HIα
∣∣f

(
τ , x(τ )

)∣∣(ζi)

]

+
|μ2| + |μ1|

|λ|

[

HIα–1∣∣f
(
τ , x(τ )

)∣∣(e)

+
n–2∑

i=1

|σi| HIα–1∣∣f
(
τ , x(τ )

)∣∣(ζi)

]

≤ ‖q‖ϑ(‖x‖) 1
	(α + 1)

+ ‖q‖ϑ(‖x‖) (|γ – 1|)|δ1| + (|γ – 2|)|δ2|
|λ|	(α + 1)

[
(
log(1 + ε)

)α +
n–2∑

i=1

|νi|
(
log(ζi)

)α

]

+ ‖q‖ϑ(‖x‖) |μ2| + |μ1|
|λ|	(α)

[
1 +

n–2∑

i=1

|σi|
(
log(ζi)

)α–1
]
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≤ ‖q‖ϑ(r̄)

{
1

	(α + 1)
+

(|γ – 1|)|δ1| + (|γ – 2|)|δ2|
|λ|	(α + 1)

×
[
(
log(1 + ε)

)α +
n–2∑

i=1

|νi|
(
log(ζi)

)α

]

+
|μ2| + |μ1|
|λ|	(α)

[
1 +

n–2∑

i=1

|σi|
(
log(ζi)

)α–1
]}

:= C1, (3.22)

which implies that ‖ρx‖ ≤ C1.
Now, we will show that ρ maps bounded sets into equicontinuous sets of K . For that, let

sup(t,x)∈J×Br̄ |f (t, x)| = p� < ∞, where ω1,ω2 ∈ J , with ω1 < ω2 and x ∈ Br̄ . Hence, we have

∣∣(ρx)(ω1) – (ρx)(ω2)
∣∣

=

∣∣∣∣∣

{
–HIαf

(
τ , x(τ )

)
(ω1) +

(γ – 1)δ1(logω1)γ –2 – (γ – 2)δ2(logω1)γ –1

λ

×
[

HIαf
(
τ , x(τ )

)
(1 + ε) –

n–2∑

i=1

νi HIαf
(
τ , x(τ )

)
(ζi)

]

+
μ2(logω1)γ –1 – μ1(logω1)γ –2

λ

[

HIα–1f
(
τ , x(τ )

)
(e)

–
n–2∑

i=1

σi HIα–1f
(
τ , x(τ )

)
(ζi)

]}

–

{
–HIαf

(
τ , x(τ )

)
(ω2) +

(γ – 1)δ1(logω2)γ –2 – (γ – 2)δ2(logω2)γ –1

λ

×
[

HIαf
(
τ , x(τ )

)
(1 + ε) –

n–2∑

i=1

νi HIαf
(
τ , x(τ )

)
(ζi)

]

+
μ2(log t2)γ –1 – μ1(log t2)γ –2

λ

[

HIα–1f
(
τ , x(τ )

)
(e)

–
n–2∑

i=1

σi HIα–1f
(
τ , x(τ )

)
(ζi)

]}∣∣∣∣∣

≤ p� |(logω2)α – logω1)α|
	(α + 1)

+ p� (|γ – 1|)|δ1||(logω2)γ –2 – logω1)γ –2| + (|γ – 2|)|δ2||(logω2)γ –1 – (logω1)γ –1|
|λ|	(α + 1)

×
[
(
log(1 + ε)

)α +
n–2∑

i=1

|νi|
(
log(ζi)

)α

]

+ p� |μ2||(logω2)γ –1 – logω1)γ –1| + |μ1||(logω2)γ –2 – (logω1)γ –2|
|λ|	(α)

×
[

1 +
n–2∑

i=1

|σi|
(
log(ζi)

)α–1
]

.
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Clearly, as ω2 → ω1, the right-hand side of the latter inequality tends to zero, which
happens independently of x ∈ Br̄ . Thus, by the Arzelà–Ascoli theorem, it follows that
ρ : K → K is completely continuous.

Finally, let x be a solution. So, for t ∈ J , following similar computations as in the first
step, we have

‖x‖ ≤ ‖q‖ϑ(‖x‖) 1
	(α + 1)

+ ‖q‖ϑ(‖x‖) (|γ – 1|)|δ1| + (|γ – 2|)|δ2|
|λ|	(α + 1)

[
(
log(1 + ε)

)α +
n–2∑

i=1

|νi|
(
log(ζi)

)α

]

+ ‖q‖ϑ(‖x‖) |μ2| + |μ1|
|λ|	(α)

[
1 +

n–2∑

i=1

|σi|
(
log(ζi)

)α–1
]

= ‖q‖ϑ(‖x‖)�.

Thus, we have

‖x‖
‖q‖ϑ(‖x‖)�

≤ 1.

In view of (Q5), there exists L such that ‖x‖ �= L. Let us set

V =
{

x ∈ K : ‖x‖ < L
}

.

Note that the operator ρ : V → K is continuous and completely continuous. From the
choice of V , there is no x ∈ ∂V such that x = λ̄ρx for some λ̄ ∈ (0, 1). Thus, by Theo-
rem 2.14, the operator ρ has a fixed point in V , which is a solution of the boundary value
problem (1.1). �

4 Example
Example 4.1 Consider the following boundary value problem for Hilfer–Hadamard-type
fractional differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

HD3/2,1/2x(t) + f (t, x(t)) = 0, t ∈ J := (1, e],

x(1.3) = 1
2 x(3/2) – 3

4 x(7/4),

HD1,1x(e) = 2
3 HD1,1x(3/2) + 4

3 HD1,1x(7/4).

(4.1)

Here, α = 3/2, β = 1/2, γ = 7/4, ν1 = 1/2, ν2 = –3/4, σ1 = 2/3, σ2 = 4/3, ζ1 = 3/2, ζ2 = 7/4,
ε = 0.3, 1 + ε = 1.3, and

f
(
t, x(t)

)
=

(
√

t + log t2)
2et(3 + t)2

( |x(t)|
2 + |x(t)|

)
.

Clearly,

∣∣f (t, x) – f (t, y)
∣∣ ≤ 3

64e
(|x – y|).
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Hence, (Q1) is satisfied with C = 3
64e . We can show that

μ1 =
(
log(1 + ε)

)γ –1 –
n–2∑

i=1

νi
(
log(ζi)

)γ –1 ≈ 0.59779,

μ2 =
(
log(1 + ε)

)γ –2 –
n–2∑

i=1

νi
(
log(ζi)

)γ –2 ≈ 1.63780,

δ1 = 1 –
n–2∑

i=1

σi
(
log(ζi)

)γ –2 ≈ –1.37703,

δ2 = 1 –
n–2∑

i=1

σi
(
log(ζi)

)γ –3 ≈ –3.81518,

λ = (γ – 1)δ1μ2 – (γ – 2)δ2μ1 ≈ –2.26164,

� =
1

	(α + 1)
+

(|γ – 1|)|δ1| + (|γ – 2|)|δ2|
|λ|	(α + 1)

[
(
log(1 + ε)

)α +
n–2∑

i=1

|νi|
(
log(ζi)

)α

]

+
|μ2| + |μ1|
|λ|	(α)

[
1 +

n–2∑

i=1

|σi|
(
log(ζi)

)α–1
]

≈ 3.835201,

C� =
3

64e
(3.835201) ≈ 0.06613554378 < 1.

Therefore, by Theorem 3.2, the boundary value problem (4.1) has a unique solution on J .

Example 4.2 Consider the following boundary value problem for Hilfer–Hadamard-type
fractional differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

HD3/2,2/3x(t) + f (t, x(t)) = 0, t ∈ J := (1, e],

x(1.5) = 2x(4/3) – 1
2 x(2) + 5

3 x(9/7),

HD1,1x(e) = –HD1,1x(4/3) + 3D1,1x(2) – 11
3 HD1,1x(9/7).

(4.2)

Here, α = 3/2, β = 2/3, γ = 11/6, ν1 = 2, ν2 = –1/2, ν3 = 5/3, σ1 = –1, σ2 = 3, σ3 = –11/3,
ζ1 = 4/3, ζ2 = 2, ζ2 = 9/7, ε = 0.5, 1 + ε = 1.5, and

f
(
t, x(t)

)
=

(1 + log t)
(t + 1)2

( |x(t)| + 1
3 + |x(t)|

)
.

Clearly,

∣∣f (t, x)
∣∣ ≤

∣∣∣∣
(1 + log t)

(t + 1)2

( |x(t)| + 1
3 + |x(t)|

)∣∣∣∣

≤
∣∣∣∣(1 + log t)

( |x(t)| + 1
12

)∣∣∣∣.
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We choose q(t) = 1 + log t and ϑ(|x|) = (|x(t)| + 1)/12. Then, we can show that

μ1 =
(
log(1 + ε)

)γ –1 –
n–2∑

i=1

νi
(
log(ζi)

)γ –1 ≈ –0.395713,

μ2 =
(
log(1 + ε)

)γ –2 –
n–2∑

i=1

νi
(
log(ζi)

)γ –2 ≈ –2.865742,

δ1 = 1 –
n–2∑

i=1

σi
(
log(ζi)

)γ –2 ≈ 3.65750,

δ2 = 1 –
n–2∑

i=1

σi
(
log(ζi)

)γ –3 ≈ 19.04369,

λ = (γ – 1)δ1μ2 – (γ – 2)δ2μ1 ≈ –9.990516,

� =
1

	(α + 1)
+

(|γ – 1|)|δ1| + (|γ – 2|)|δ2|
|λ|	(α + 1)

[
(
log(1 + ε)

)α +
n–2∑

i=1

|νi|
(
log(ζi)

)α

]

+
|μ2| + |μ1|
|λ|	(α)

[
1 +

n–2∑

i=1

|σi|
(
log(ζi)

)α–1
]

≈ 3.414437455.

Now, by (Q5) we have

L
(2)((L + 1)/12)(3.414437455)

> 1.

Hence, L > 1.320578171. Therefore, by Theorem 3.5, the boundary value problem (4.2)
has at least one solution on J .
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