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Abstract
Fractional differential equations sufficiently depict the nature in view of the symmetry
properties, which portray physical and biological models. In this paper, we present a
proficient collocation method based on cubic trigonometric B-Splines (CuTBSs) for
time-fractional diffusion equations (TFDEs). The methodology involves discretization
of the Caputo time-fractional derivatives using the typical finite difference scheme
with space derivatives approximated using CuTBSs. A stability analysis is performed to
establish that the errors do not magnify. A convergence analysis is also performed
The numerical solution is obtained as a piecewise sufficiently smooth continuous
curve, so that the solution can be approximated at any point in the given domain.
Numerical tests are efficiently performed to ensure the correctness and viability of the
scheme, and the results contrast with those of some current numerical procedures.
The comparison uncovers that the proposed scheme is very precise and successful.

Keywords: Time-fractional diffusion equation; Cubic trigonometric B-spline
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1 Introduction
The time-fractional diffusion equation (TFDE) is given as

C
a Dγ

t u(s, t) –
∂2

∂s2 u(s, t) = f (s, t), 0 < γ < 1, (1)

subject to the following initial condition (IC) and boundary conditions (BCs):

u(s, 0) = ϕ(s), a ≤ s ≤ b, (2)

u(a, t) = ψ1(t), u(b, t) = ψ2(t), t ≥ 0, (3)
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where the diffusion exponent is denoted by γ , and C
a Dγ

t u(s, t) is the Caputo fractional
derivative (CFD) of order γ given by [1]

C
a Dγ

s f (s) = Jn–γ Dnf (s) =

⎧
⎨

⎩

1
�(n–γ )

∫ s
a

f (n)(ξ )
(s–ξ )γ +1–n dξ , n – 1 < γ < n ∈N,

dn

dsn f (s), γ = n ∈N.
(4)

Note that γ = 0 and γ = 1 correspond to the classical Helmholtz and standard diffusion
equations, respectively.

The fractional calculus [1–3] has gained keenness in numerous fields such as chemistry,
plasma physics, material science, biology, fluid mechanics, and so on. The fractional-order
differential and integral equations are reliable tools to describe physical models of interest
more exactly than their integer-order counterparts. A variety of applications of fractional
calculus and TFDEs can be found in [3–10]. The numerical and approximate solutions play
an important role in exploring applications of fractional partial differential equations. It is
emphasized in many research papers that the fractional derivatives and integrals are more
efficient tools for modeling the hereditary and memory effects of different processes and
materials, in contrast with integer-order models, in which such effects are ignored.

Numerous analytical schemes are available for TFDEs [1, 11–13]. Numerical techniques
are developed continuously because exact solutions are available in very few cases. Nu-
merous numerical procedures for solving TFDEs have been developed recently. Esmaeili
and Garrappa [14] obtained numerical solutions of TFDEs by a pseudospectral scheme.
Mustapha et al. [15] presented a discontinuous Petrov–Galerkin method for TFDEs.
Zhuang and Liu [16] obtained implicit difference approximations for TFDEs. Karatay et al.
[17] used the Crank–Nicholson approach to construct a scheme for TFDEs. A weighted
average and explicit finite difference schemes were developed in [18, 19] for TFDEs. Murio
[20] presented an unconditionally stable implicit scheme for TFDEs on a finite slab. Tas-
bozan et al. [21] introduced a numerical scheme using B-spline basis functions for space
fractional subdiffusion equations. Huang et al. [22] presented a fully discrete discontinu-
ous Galerkin method for TFDEs. Chen et al. [23] used the Fourier method to find approx-
imate solutions of the fractional diffusion equation describing subdiffusion. Gao and Sun
[24] presented a compact finite difference scheme for fractional subdiffusion equations
using a compact finite difference scheme.

In this paper, we present a cubic trigonometric B-spline collocation method to obtain
numerical solutions of TFDEs. The main motivation behind using B-splines is that the
solutions are obtained in the form of piecewise continuous sufficiently smooth functions,
enabling us to approximate the solution at any desired location in the domain. The sta-
bility and convergence analysis are also discussed to establish that the scheme does not
propagate errors. Numerical tests are performed to affirm the feasibility and applicability
of the method. The results are compared with those presented in [22, 23].

The rest of the paper is organized as follows. In Sect. 2, we derive a numerical proce-
dure. The stability and convergence analysis of the scheme are presented in Sects. 3 and 4,
respectively. In Sect. 5, we show a contrast of our numerical results with those of [22, 23].
Section 6 contains the outcomes of this study.
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2 Materials and methods
2.1 Space discretization
Let the solution domain be [a, b] × [0, T]. For given positive integers M and N , let τ = T

N
be the temporal and h = b–a

M the spatial step sizes, respectively. The space interval [a, b]
is uniformly partitioned as a = s0 < s1 < · · · < sM = b, where si = a + ih, i = 0, . . . , M. In this
partition, the CuTBS function TB4

i (x) [25] is defined as

TB4
i (s) =

1
β

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 3(si),

s ∈ [si, si+1],

σ (si)(σ (si)ϕ(si+2) + ϕ(si+3)σ (si+1)) + ϕ(si+4)σ 2(si+1),

s ∈ [si+1, si+2],

ϕ(si+4)(σ (si+1)ϕ(si+3) + ϕ(si+4)σ (si+2)) + σ (si)ϕ2(si+3),

s ∈ [si+2, si+3],

ϕ3(si+4),

s ∈ [si+3, si+4],

(5)

where

σ (si) = sin

(
s – si

2

)

, ϕ(si) = sin

(
si – s

2

)

, β = sin

(
h
2

)

sin(h) sin

(
3h
2

)

.

The support of the B-spline function TB4
i (s) is assumed to be [si, si+4]. Note that each TB4

i

is piecewise cubic and nonzero over four consecutive subintervals and vanishes otherwise.
Consequently, each subinterval [si, si+1] contains three segments of TB4

i (s). Suppose that
u(s, t) and U(s, t) are the analytic and numerical solutions of the given differential equation.
We seek the approximation U(s, t) to the solution u(s, t) in terms of TB4

i as [26, 27]

u(s, t) � U(s, t) =
M+1∑

i=–1

ci(t)TB4
i (s), (6)

where ci(t) are unknowns, which are to be determined using the collocation method by
utilizing the initial and boundary conditions. Using (5) and (6), the values of U(x, t) and
its necessary derivatives at the nodal points are determined in terms of the parameters ci

as follows:

⎧
⎪⎪⎨

⎪⎪⎩

U(si, t) = �1ci–1(t) + �2ci(t) + �1ci+1(t),

Us(si, t) = –�3ci–1(t) + �3ci+1(t),

Uss(si, t) = �4ci–1(t) + �5ci(t) + �4ci+1(t),

(7)

where

�1 = –
1

2 sin(h) sin( 3h
2 )

(
cos(h) – 1

)
,

�2 = –
2

4 sin2( h
2 ) – 3

,
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�3 =
3

4 sin( 3h
2 )

,

�4 =
3
4

( 3 sin2( h
2 ) – 2

sin2( h
4 ) – sin2( 5h

4 )

)

,

�5 = –
3

(4 cos(h) + 2)(tan2( h
2 ))

.

2.2 Temporal discretization
To discretize the problem in time scale, we take the uniform partition on [0, T] as 0 =
t0 < t1 < t2 < · · · < tN = T with τ = tn+1 – tn for n = 0, 1, . . . , N – 1. Following [28], the CFD
C
a Dγ

t u(s, t) is discretized as

C
a Dγ

t u(s, tn+1) =
n∑

l=0

κl
u(s, tn+1–l) – u(s, tn–l)

�(2 – γ )τ γ
+ rn+1

τ

=
1
α0

(

u(s, tn+1) –
n–1∑

l=0

(κl – κl+1)u(s, tn–l) – κnu(s, t0)

)

+ rn+1
τ

=
1
α0

(

un+1 –
n–1∑

l=0

(κl – κl+1)un–l – κnu0

)

+ rn+1
τ , (8)

where un = u(s, tn), α0 = τ γ �(2 – γ ), κl = (l + 1)1–γ – l1–γ , and rn+1
τ is the truncation error.

Note that

⎧
⎪⎪⎨

⎪⎪⎩

κl > 0, l = 0, 1, 2, . . . , N ,

1 = κ0 > κ1 > κ2 > · · · > κl and κl → 0 as l → ∞,
∑N–1

l=0 (κl – κl+1) + κN = 1.

(9)

It is shown in [29] that rn+1
τ satisfies

rn+1
τ ≤ Cuτ

2–γ ,

where the constant Cu depends on u. Inserting (8) into (1) gives

un+1 –
n–1∑

l=0

(κl – κl+1)un–l – κnu0 – α0
(
un+1)

ss = α0f n+1. (10)

To obtain a full discretization, let cn
i = ci(tn) and Un

i = U(si, tn) for i = 0, 1, . . . , M, n =
0, 1, . . . , N . Now substituting (6) and (7) into (10), we get

(�1 – α0�4)cn+1
i–1 + (�2 – α0�5)cn+1

i + (�1 – α0�4)cn+1
i+1

=
n–1∑

l=0

(κl – κl+1)
(
�1cn–l

i–1 + �2cn–l
i + �1cn–l

i+1
)

+ κn
(
�1c0

i–1 + �2c0
i + �1c0

i+1
)

+ α0f
(
si, tn+1). (11)
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Framework (11) is a system of (M + 1) equations in (M + 3) unknowns. Then we use given
boundary conditions to obtain two additional equations. Consequently, we obtain a con-
sistent diagonal system, which can be solved using any suitable algorithm based on Gaus-
sian elimination.

2.3 Initial vector
The initial vector d0 = [d0

–1, d0
0, . . . , d0

M+1]T is required to commence the iterative process,
which can be obtained using the IC and the derivatives of IC at the two boundaries as
follows [30–38]:

1. (u0
i )s = d

dsϕ(si), i = 0,
2. u0

i = ϕ(si), i = 0, 1, . . . , M,
3. (u0

i )s = d
dsϕ(si), i = M,

which becomes the matrix equation

Ad0 = b, (12)

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

–�3 0 �3 · · · · · · · · · · · · 0

�1 �2 �1
. . .

...

0 �1 �2 �1
. . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . �1 �2 �1

0 · · · · · · · · · · · · –�3 0 �3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13)

and b = [ϕ′(s0),ϕ(s0), . . . ,ϕ(sM),ϕ′(sM)]T .

3 Stability analysis
Here we test scheme (11) for the stability analysis. The Duhamels principle [39] states
that for an inhomogeneous case, the stability estimates are the same as those of the cor-
responding homogeneous case. So we present the stability analysis only for the case f = 0.
Let ωn

i and ω̃n
i be the growth factor and its approximation, respectively, of a Fourier mode.

Defining �n
i = ωn

i – ω̃n
i , from (11) we get

(�1 – α0�4)�n+1
i–1 + (�2 – α0�5)�n+1

i + (�1 – α0�4)�n+1
i+1

=
n–1∑

l=0

(κl – κl+1)
(
�1�

n–l
i–1 + �2�

n–l
i + �1�

n–l
i+1

)

+ κn
(
�1�

0
i–1 + �2�

0
i + �1�

0
i+1

)
. (14)

The initial and boundary conditions are satisfied as

�0
i = 0, i = 1, 2, . . . , M – 1, (15)
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and

�n
0 = ψ1(tn), �n

M = ψ2(tn), n = 0, 1, . . . , N . (16)

The grid function is defined as

�n(s) =

⎧
⎨

⎩

0, 0 < s ≤ h
2 or (b – a) – h

2 < s ≤ (b – a),

�n
i , si – h

2 < s ≤ si + h
2 , i = 1, . . . , M – 1.

The function �n(s) has the Fourier expansion

�n(s) =
∞∑

m=–∞
ηn(m)e

i2πms
b–a , n = 0, 1, . . . , N ,

where ηn(m) = 1
b–a

∫ b
a �n(s)e

–i2πms
b–a ds. Let �n = [�n

1,�n
2, . . . ,�n

M–1]T and

∥
∥�n∥∥

2 =

(M–1∑

i=1

h
∣
∣�n

i
∣
∣2
) 1

2

=
[∫ b

a

∣
∣�n(s)

∣
∣2 ds

] 1
2

.

Using the Parseval equality, we see that

∫ b

a

∣
∣�n(s)

∣
∣2 ds =

∞∑

m=–∞

∣
∣ηn(m)

∣
∣2,

so that

∥
∥�n∥∥2

2 =
∞∑

m=–∞

∣
∣ηn(m)

∣
∣2. (17)

Suppose that �n
i = ηneIθ is is the solution to system (14)–(15), where I =

√
–1 and θ ∈

[–π ,π ], so that equation (14) reduces to

(�1 – α0�4)ηn+1eIθ (i–1)s + (�2 – α0�5)ηn+1eIθ (i)s + (�1 – α0�4)ηn+1eIθ (i+1)s

=
n–1∑

l=0

(κl – κl+1)
(
�1ηn–leIθ (i–1)s + �2ηn–leIθ (i)s + �1ηn–leIθ (i+1)s)

+ κn
(
�1η0eIθ (i–1)s + �2η0eIθ is + �1η0eIθ (i+1)s). (18)

Dividing (18) by eIθ is, using e–Iθs + eIθs = 2 cos(θs), and gathering like terms, we get

(

1 –
α0(2 cos(θs)�4 + �5)

2�1 cos(θs) + �2

)

ηn+1 =
n–1∑

l=0

(κl – κl+1)ηn–l + κnη0. (19)

Without loss of generality, let θ = 0, so that the last equation reduces to

(

1 –
α0(2�4 + �5)

2�1 + �2

)

ηn+1 =
n–1∑

l=0

(κl – κl+1)ηn–l + κnη0. (20)
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Then

ηn+1 =
1
ζ

n–1∑

l=0

(κl – κl+1)ηn–l +
1
ζ

κnη0, (21)

where ζ = 1 – α0(2�4+�5)
2�1+�2

. Note that α0(2�4+�5)
2�1+�2

= – 3α0
4 tan( h

4 )2 ≤ 0, so that ζ ≥ 1.

Proposition 1 If ηk (k = 0, 1, . . . , N ) is the solution of equation (21), then |ηk| ≤ |η0|.

Proof We use induction on k. For k = 0, equation (21) gives η1 = 1
ζ
η0, so that |η1| = 1

ζ
|η0| ≤

|η0| because ζ ≥ 1. Supposing |ηi| ≤ |η0|, i = 1, 2, . . . , k, from (21) we get

|ηk+1| ≤ 1
ζ

k–1∑

l=0

(κl – κl+1)|ηn–l| +
1
ζ

κk|η0|

≤
k–1∑

l=0

(κl – κl+1)|η0| + κk|η0|

= |η0|
( k–1∑

l=0

(κl – κl+1) + κk

)

= |η0|. (22)
�

Theorem 1 Scheme (11) is unconditionally stable.

Proof By Proposition 1 and relation (17) we have

∥
∥�k∥∥

2 ≤ ∥
∥�0∥∥

2, k = 0, 1, . . . , N ,

which establishes the unconditional stability. �

4 Convergence analysis
Here we give convergence estimates for the discrete-time problem (10). As in the case of
stability analysis, we present the convergence analysis for the homogeneous problem only.

Theorem 2 Let {u(s, tn)}N–1
n=0 be the exact solution of (1), and let {un}N–1

n=0 be the discrete-
time solution of (10). Then

∥
∥en+1∥∥ ≤ D + Cuτ

2–γ ,

where en+1 = u(s, tn+1) – un+1, and D is a constant.

Proof As before, we give a proof for f = 0 only. Note that the exact solution u also satisfies
the semidiscrete scheme (10), so that we have

u
(
s, tn+1) =

n–1∑

l=0

(κl – κl+1)u
(
s, tn–l) + κnu

(
s, t0) + α0

(
u
(
s, tn+1))

ss (23)
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and

un+1 =
n–1∑

l=0

(κl – κl+1)un–l + κnu0 + α0
(
un+1)

ss. (24)

Subtracting (24) from (23), we obtain

en+1 =
n–1∑

l=0

(κl – κl+1)en–l + κne0 + α0
(
en+1)

ss + rn+1
τ

=
n–1∑

l=0

(κl – κl+1)en–l + α0
(
en+1)

ss + rn+1
τ , (25)

where we have used the fact that e0 = 0. Now taking the inner product of both sides of (25)
with en+1 and using 〈x, x〉 = ‖x‖2 ≥ 0, we get

〈
en+1, en+1〉 =

n–1∑

l=0

(κl – κl+1)
〈
en–l, en+1〉 + α0

〈(
en+1)

ss, en+1〉 +
〈
rn+1
τ , en+1〉

=
n–1∑

l=0

(κl – κl+1)
〈
en–l, en+1〉 – α0

〈(
en+1)

s,
(
en+1)

s

〉
+
〈
rn+1
τ , en+1〉

=
n–1∑

l=0

(κl – κl+1)
〈
en–l, en+1〉 – α0

∥
∥
(
en+1)

s

∥
∥2 +

〈
rn+1
τ , en+1〉

≤
n–1∑

l=0

(κl – κl+1)
〈
en–l, en+1〉 +

〈
rn+1
τ , en+1〉, (26)

where we have used the relations 〈uss, u〉 = –〈us, us〉 and 〈x, x〉 = ‖x‖2. Applying the
Cauchy–Schwarz inequality 〈x, y〉 ≤ ‖x‖‖y‖ in (26), we obtain

∥
∥en+1∥∥2 ≤

n–1∑

l=0

(κl – κl+1)
∥
∥en–l∥∥

∥
∥en+1∥∥ +

∥
∥rn+1

τ

∥
∥
∥
∥en+1∥∥. (27)

Dividing (27) throughout by ‖en+1‖, we obtain

∥
∥en+1∥∥ ≤

n–1∑

l=0

(κl – κl+1)
∥
∥en–l∥∥ +

∥
∥rn+1

τ

∥
∥

≤ Dn

n–1∑

l=0

(κl – κl+1) +
∥
∥rn+1

τ

∥
∥

≤ Dn(1 – κn) +
∥
∥rn+1

τ

∥
∥

≤ D + Cuτ
2–γ , (28)

where Dn = max0≤l≤n–1 ‖en–l‖ and D = max0≤n≤N Dn. We have also used the relation (1 –
κn) < 1. �
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5 Numerical results and discussions
In this section, we present the results of the numerical tests for the TFDE (1) with initial (2)
and boundary conditions (3). We use the following error norms to measure the accuracy
of the method:

L2 =
∥
∥Uexact – UN∥

∥
2 �

√
√
√
√h

M+1∑

j=–1

(∣
∣Uexact

j – UN
j
∣
∣
)2

and

L∞ =
∥
∥Uexact – UN∥

∥∞ � max
–1≤j≤M+1

∣
∣Uexact

j – UN
j
∣
∣|,

where Uexact is the exact solutions, and (UN )j is the approximate one. The order of con-
vergence is given by

OC =
log(Error(M)/ Error(2M))

log(2M/M)
,

where Error(M) and Error(2M) are the L∞ norms at M and 2M, respectively.

Example 1 Consider the TFDE (1) [22] with initial condition u(s, 0) = sin s and boundary
conditions u(0, t) = u(π , t) = 0. This problem has the exact solution u(s, t) = Eγ (–tγ ) sin(s),
where Eγ (z) =

∑∞
m=0

zm

�(γ m+1) is the ML function. The corresponding source term is f = 0.

We apply the proposed algorithm (11) to the problem. The approximate solutions when
τ = 0.01, h = π

20 , and γ = 0.5 at t = 0.5 and t = 1 are given by

U(s, 0.5) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.4361 cos( s
2 ) – 0.1707 cos3( s

2 ) – 0.0618 sin3( s
2 )

+ sin( s
2 )(0.0762 + 0.2560 sin(s))

+ 0.0464 csc( s
2 ) sin2(s), s ∈ [0, π

20 ],

0.0009 cos( s
2 ) – 0.0009 cos3( s

2 ) – 0.1355 sin3( s
2 )

+ sin( s
2 )(0.6433 + 0.0014 sin(s))

+ 0.1016 csc( s
2 ) sin2(s), s ∈ [ π

20 , π
10 ],

0.0047 cos( s
2 ) – 0.0046 cos3( s

2 ) – 0.1426 sin3( s
2 )

+ sin( s
2 )(0.6197 + 0.0068 sin(s))

+ 0.1070 csc( s
2 ) sin2(s), s ∈ [ π

10 , 3π
20 ],

...

0.6197 cos( s
2 ) – 0.1426 cos3( s

2 ) – 0.0046 sin3( s
2 )

+ sin( s
2 )(0.0047 + 0.2140 sin(s))

+ 0.0034 csc( s
2 ) sin2(s), s ∈ [ 17π

20 , 9π
10 ],

0.6433 cos( s
2 ) – 0.1355 cos3( s

2 ) – 0.0009 sin3( s
2 )

+ sin( s
2 )(0.0009 + 0.2033 sin(s)) + 0.0007 csc( s

2 ) sin2(s), s ∈ [ 9π
10 , 19π

20 ],

0.6554 cos( s
2 ) – 0.1316 cos3( s

2 ) + 1.9984 × 10–15 sin3( s
2 )

+ 0.1974 sin( s
2 ) sin(s) – 1.3323 × 10–15 csc( s

2 ) sin2(s), s ∈ [ 19π
20 ,π ],
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and

U(s, 1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4.4409 × 10–16 cos( s
2 ) – 1.6653 × 10–16 cos3( s

2 )

– 0.1075 sin3( s
2 )

+ sin( s
2 )(0.5352 + 1.1102 × 10–16 sin(s))

+ 0.0806 csc( s
2 ) sin2(s), s ∈ [0, π

20 ],

0.0008 cos( s
2 ) – 0.0008 cos3( s

2 ) – 0.1107 sin3( s
2 )

+ sin( s
2 )(0.5254 + 0.0012 sin(s))

+ 0.0830 csc( s
2 ) sin2(s), s ∈ [ π

20 , π
10 ],

0.0038 cos( s
2 ) – 0.0037 cos3( s

2 ) – 0.1165 sin3( s
2 )

+ sin( s
2 )(0.5060 + 0.0056 sin(s))

+ 0.0874 csc( s
2 ) sin2(s), s ∈ [ π

10 , 3π
20 ],

...

0.5061 cos( s
2 ) – 0.1165 cos3( s

2 ) – 0.0037 sin3( s
2 )

+ sin( s
2 )(0.0038 + 0.1747 sin(s))

+ 0.0028 csc( s
2 ) sin2(s), s ∈ [ 17π

20 , 9π
10 ],

0.5254 cos( s
2 ) – 0.1107 cos3( s

2 ) – 0.0008 sin3( s
2 )

+ sin( s
2 )(0.0008 + 0.1660 sin(s))

+ 0.0006 csc( s
2 ) sin2(s), s ∈ [ 9π

10 , 19π
20 ],

0.5352 cos( s
2 ) – 0.1075 cos3( s

2 ) + 1.3322 × 10–15 sin3( s
2 )

+ 0.1612 sin( s
2 ) sin(s) – 8.8818 × 10–16 csc( s

2 ) sin2(s), s ∈ [ 19π
20 ,π ],

respectively. Figure 1 displays the behavior of the numerical and exact solutions at different
times. The graphs are in excellent affirmation. In Fig. 2 the absolute errors are presented in
2D and 3D at t = 0.5. Figure 3 demonstrates an excellent 3D contrast between the exact and
numerical solutions at time step t = 1. In Table 1, a comparison of the error norms with
those obtained in [22] is tabulated. Our methodology gives better precision for bigger
τ over that obtained in [22]. The order of convergence is tabulated for the L∞ norm in
Table 2.

Figure 1 The exact (lines) and numerical (rectangles, stars, bullets) solutions for Example 1 when τ = 0.01,
h = π

80 at various time levels
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Figure 2 2D and 3D absolute error profiles when τ = 0.001, h = π
60 , t = 0.5 for Example 1

Figure 3 The exact (right) and numerical (left) solutions when τ = 0.001, h = π
60 , t = 0.5 for Example 1

Table 1 Comparison of error norms when γ = 0.8, h = π
M for Example 1

M GMMP Scheme [22] (τ = 1
9 ×10–3) Present Method (τ = 10–3)

L2 Norm L∞ Norm L2 Norm L∞ Norm CPU Time (s)

4 3.640e–02 5.426e–04 2.105e–02 1.679e–02 43.20
6 1.616e–02 4.331e–02 9.048e–03 7.219e–03 55.55
8 9.075e–03 1.136e–02 5.092e–03 4.063e–03 69.92
10 5.797e–03 7.304e–03 3.301e–03 2.634e–03 87.69
12 4.016e–03 5.080e–03 2.338e–03 1.865e–03 109.06
14 2.942e–03 3.732e–03 1.761e–03 1.405e–03 135.91
16 2.245e–03 2.854e–03 1.387e–03 1.107e–03 155.25
18 1.768e–03 2.252e–03 1.132e–03 9.032e–04 166.62
20 1.426e–03 1.820e–03 9.496e–04 7.577e–04 221.91
22 1.173e–03 1.500e–03 8.149e–04 6.502e–04 223.73
24 9.807e–04 1.257e–03 7.125e–04 5.684e–04 242.34
26 8.310e–04 1.067e–03 6.328e–04 5.049e–04 263.88
28 7.123e–04 9.169e–04 5.697e–04 4.545e–04 298.72
30 6.165e–04 7.955e–04 8.790e–05 4.139e–04 344.34
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Table 2 Order of convergence for various values of M when τ = 0.001, γ = 0.8 for Example 1

M L∞ Norm OC CPU Time (s)

2 9.253e–02 – 35.38
4 1.679e–02 2.462 43.20
8 4.063e–03 2.047 69.92
16 1.107e–03 1.876 155.25
32 3.810e–04 1.539 423.86

Example 2 Consider the nonhomogenous TFDE [22]

C
a D0.9

t u(s, t) –
∂2

∂s2 u(s, t)

=
2

�(2.1)
t1.1 sin(2πs)

+ 4π2t2 sin(2πs), s ∈ [0, 1], t ∈ [0, T], (29)

with zero initial and boundary conditions. This problem has the exact solution
u(s, t) = t2 sin(2πs).

We solve (29) by using the proposed scheme (11). The approximate solutions when τ =
0.01 and h = 1

20 at t = 0.5 and t = 1 are given by

U(s, 0.5) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3.5527 × 10–15 cos( s
2 ) – 20.2482 sin3( s

2 )

+ sin( s
2 )(–57.6234 – 7.1054 × 10–15 sin(s))

+ 15.1861 csc( s
2 ) sin2(s), s ∈ [0, 1

20 ],

–0.1401 cos( s
2 ) + 0.1310 cos3( s

2 )

– 18.3852 sin3( s
2 )

+ sin( s
2 )(–52.0206 – 0.20997 sin(s))

+ 13.7889 csc( s
2 ) sin2(s), s ∈ [ 1

20 , 1
10 ],

–0.6729 cos( s
2 ) + 0.67101 cos3( s

2 )

– 14.8716 sin3( s
2 )

+ sin( s
2 )(–41.3734 – 1.0065 sin(s))

+ 11.1537 csc( s
2 ) sin2(s), s ∈ [ 1

10 , 3
20 ],

...

1.0159 cos( s
2 ) + 0.6104 cos3( s

2 ) + 5.7332 sin3( s
2 )

+ sin( s
2 )(10.1455 – 0.9156 sin(s))

– 4.2910 csc( s
2 ) sin2(s), s ∈ [ 17

20 , 9
10 ],

25.0629 cos( s
2 ) – 18.3491 cos3 –1.1608 sin3( s

2 )

+ sin( s
2 )(–45.5852 + 27.5236 sin(s))

+ 0.8707 csc( s
2 ) sin2(s), s ∈ [ 9

10 , 19
20 ],

27.6261 cos( s
2 ) – 20.1974 cos3( s

2 ) – 1.4323 sin3( s
2 )

+ sin( s
2 )(–50.5693 + 30.2961 sin(s))

+ 1.0742 csc( s
2 ) sin2(s), s ∈ [ 19

20 , 1],
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and

U(s, 1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–1.4211 × 10–14 cos( s
2 ) + 3.5527 × 10–14 cos3( s

2 )

– 80.9352 sin3( s
2 )

+ sin( s
2 )(–230.33 – 2.8422 × 10–14 sin(s))

+ 60.7014 csc( s
2 ) sin2(s), s ∈ [0, 1

20 ],

–0.5600 cos( s
2 ) + 0.5595 cos3( s

2 ) – 73.4887 sin3( s
2 )

+ sin( s
2 )(–207.935 – 0.8393 sin(s))

+ 55.1165 csc( s
2 ) sin2(s), s ∈ [ 1

20 , 1
10 ],

–2.6897 cos( s
2 ) + 2.6821 cos3( s

2 ) – 59.4443 sin3( s
2 )

+ sin( s
2 )(–165.376 – 4.0232 sin(s))

+ 44.5832 csc( s
2 ) sin2(s), s ∈ [ 1

10 , 3
20 ],

...

81.6459 cos( s
2 ) – 59.4851 cos3( s

2 ) – 1.5295 sin3( s
2 )

+ sin( s
2 )(–143.842 + 89.2276 sin(s))

+ 1.1471 csc( s
2 ) sin2(s), s ∈ [ 17

20 , 9
10 ],

100.181 cos( s
2 ) – 73.3442 cos3 –4.6402 sin3( s

2 )

+ sin( s
2 )(–182.211 + 110.016 sin(s))

+ 3.4802 csc( s
2 ) sin2(s), s ∈ [ 9

10 , 19
20 ],

110.426 cos( s
2 ) – 80.7324 cos3( s

2 ) – 5.7251 sin3( s
2 )

+ sin( s
2 )(–202.134 + 121.099 sin(s))

+ 4.2938 csc( s
2 ) sin2(s), s ∈ [ 19

20 , 1],

respectively. We get the numerical results by utilizing the proposed scheme. A close com-
parison between the exact and numerical solutions at different times is shown in Fig. 4. In
Fig. 5 the 2D and 3D error profiles are displayed at t = 0.5. Figure 6 deals with 3D compar-
ison between the exact and approximate solutions. Table 3 reports a comparison of the
error norms with those obtained in [22]. Although we have chosen a larger time step than
that of [22], we still obtained a better accuracy. Table 4 records the convergence orders for
the L∞ norm.

Figure 4 The exact (lines) and numerical (rectangles, stars, bullets) solutions when τ = 0.01, h = 1
80 at various

time levels for Example 2
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Figure 5 2D and 3D absolute error profiles when τ = 0.001, h = 1
60 , t = 0.5 for Example 2

Figure 6 The exact (right) and numerical (left) solutions when τ = 0.001, h = 1
60 , t = 0.5 for Example 2

Table 3 Comparison of error norms when γ = 0.9, h = 1
M for Example 2

M GMMP Scheme [22] (τ = 1
12 ×10–3) Present Method (τ = 10–3)

L2 Norm L∞ Norm L2 Norm L∞ Norm CPU Time (s)

8 4.060e–02 9.248e–02 3.589e–02 4.339e–02 88.66
12 1.803e–02 4.303e–02 1.312e–02 1.935e–02 112.30
16 1.014e–02 2.459e–02 6.387e–03 1.086e–02 146.45
20 6.486e–03 1.585e–02 3.652e–03 6.947e–03 187.38
24 4.502e–03 1.104e–02 2.319e–03 4.831e–03 237.31

Table 4 Order of convergence for various values of M when τ = 0.01, γ = 0.9 for Example 2

M L∞ Norm OC CPU Time (s)

8 4.460e–02 – 0.422
16 1.127e–02 1.9846 0.703
32 2.726e–03 2.0476 1.266
64 5.774e–04 2.2391 2.219
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Example 3 Consider the TFDE describing subdiffusion [23]

∂u(s, t)
∂t

= 0D1–γ
t

[
∂2u(s, t)

∂s2

]

+ es
[

(1 + γ )tγ –
�(2 + γ )
�(1 + 2γ )

t2γ

]

, 0 < t ≤ 1, 0 < x < 1, (30)

with initial condition

u(s, 0) = 0, 0 ≤ s ≤ 1,

and boundary conditions

u(0, t) = t1+γ , u(1, t) = et1+γ , 0 ≤ t ≤ 1.

This problem has the exact solution u(s, t) = est1+γ .

Following [24], equation (30) can be equivalently written as

C
0 Dγ

t u(s, t) =
∂2u(s, t)

∂s2 + es[�(2 + γ )t – t1+γ
]
, 0 < t ≤ 1, 0 < s < 1, (31)

with same initial and boundary conditions. We apply scheme (11) to (30). The approximate
solutions when τ = 0.01, h = 1

20 , and γ = 0.5 when t = 0.5 and t = 1 are given by

U(s, 0.5) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5744 cos( s
2 ) – 0.2208 cos3( s

2 ) + 0.1593 sin3( s
2 )

+ sin( s
2 )(1.1850 + 0.3313 sin(s))

– 0.1195 csc( s
2 ) sin2(s), s ∈ [0, 1

20 ],

0.5725 cos( s
2 ) – 0.2190 cos3( s

2 ) + 0.1844 sin3( s
2 )

+ sin( s
2 )(1.2605 + 0.3284 sin(s))

– 0.1383 csc( s
2 ) sin2(s), s ∈ [ 1

20 , 1
10 ],

0.5685 cos( s
2 ) – 0.2150 cos3( s

2 ) + 0.2106 sin3( s
2 )

+ sin( s
2 )(1.3398 + 0.3225 sin(s))

– 0.1579 csc( s
2 ) sin2(s), s ∈ [ 1

10 , 3
20 ],

...

0.0807 cos( s
2 ) + 0.2062 cos3( s

2 ) + 0.6030 sin3( s
2 )

+ sin( s
2 )(3.0809 – 0.3093 sin(s))

– 0.4522 csc( s
2 ) sin2(s), s ∈ [ 17

20 , 9
10 ],

0.0039 cos( s
2 ) + 0.2637 cos3( s

2 ) + 0.6159 sin3( s
2 )

+ sin( s
2 )(3.2400 – 0.3956 sin(s))

– 0.4619 csc( s
2 ) sin2(s), s ∈ [ 9

10 , 19
20 ],

–0.0811 cos( s
2 ) + 0.3250 cos3( s

2 ) + 0.6249 sin3( s
2 )

+ sin( s
2 )(3.4052 – 0.4874 sin(s))

– 0.4686 csc( s
2 ) sin2(s), s ∈ [ 19

20 , 1],
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and

U(s, 1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.6249 cos( s
2 ) – 0.6249 cos3( s

2 ) + 0.4508 sin3( s
2 )

+ sin( s
2 )(3.3515 + 0.9374 sin(s))

– 0.3381 csc( s
2 ) sin2(s), s ∈ [0, 1

20 ],

1.6196 cos( s
2 ) – 0.6196 cos3( s

2 ) + 0.5218 sin3( s
2 )

+ sin( s
2 )(3.5652 + 0.9294 sin(s))

– 0.3914 csc( s
2 ) sin2(s), s ∈ [ 1

20 , 1
10 ],

1.6083 cos( s
2 ) – 0.6084 cos3( s

2 ) + 0.5959 sin3( s
2 )

+ sin( s
2 )(3.7896 + 0.9126 sin(s))

– 0.4469 csc( s
2 ) sin2(s), s ∈ [ 1

10 , 3
20 ],

...

0.2280 cos( s
2 ) + 0.5835 cos3( s

2 ) + 1.7062 sin3( s
2 )

+ sin( s
2 )(8.7160 – 0.8753 sin(s))

– 1.2796 csc( s
2 ) sin2(s), s ∈ [ 17

20 , 9
10 ],

0.01057 cos( s
2 ) + 0.7461 cos3( s

2 ) + 1.7427 sin3( s
2 )

+ sin( s
2 )(9.1663 – 1.1192 sin(s))

– 1.3070 csc( s
2 ) sin2(s), s ∈ [ 9

10 , 19
20 ],

–0.2298 cos( s
2 ) + 0.9195 cos3( s

2 ) + 1.7682 sin3( s
2 )

+ sin( s
2 )(9.6338 – 1.3793 sin(s))

– 1.3261 csc( s
2 ) sin2(s), s ∈ [ 19

20 , 1],

respectively. Figure 7 analyzes the graphs of the exact and approximate solutions when
τ = 0.01 h = 1

80 , and γ = 0.5. Figure 8 depicts the 2D and 3D error profiles, which exhibit
exactness of the method. Figure 9 shows exceptionally close comparison of 3D graphs of
approximate and exact solutions using τ = 0.01, h = 1

60 , and γ = 0.5. In Tables 5–8 the
maximum errors contrast with those presented in [23] for various values of τ and h to
show that the present scheme is increasingly precise and gives better precision.

Figure 7 The exact (solid) and approximate solutions (stars, bullets, triangles) for Example 3 when τ = 0.01,
h = 1

80 , and γ = 0.5 at various time levels



Yaseen et al. Advances in Difference Equations        (2021) 2021:210 Page 17 of 19

Figure 8 2D and 3D absolute error profiles when τ = 0.01, h = 1
60 , t = 1 for Example 3

Figure 9 The exact (left) and numerical (right) solutions for Example 3 when τ = 0.01, h = 1
60 , and γ = 0.5

Table 5 The maximum errors when τ = 1
64 , h =

1
8 for Example 3

γ IDAS [23] L1-approximation [23] Present Method CPU Time (s)

0.4 0.9774769e–03 0.1812220e–02 0.959963e–03 0.230
0.5 0.1314691e–02 0.2103329e–02 0.908529e–03 0.239
0.6 0.1640956e–02 0.2363563e–02 0.803949e–03 0.220

Table 6 The maximum errors when τ = 1
1024 , h =

1
32 for Example 3

γ IDAS [23] L1-approximation [23] Present Method CPU Time(s)

0.4 0.1204014e–03 0.2110046e–03 0.616098e–04 415.454
0.5 0.9040628e–04 0.01107985e–03 0.602786e–04 387.603
0.6 0.2180338e–03 0.2259971e–03 0.573334e–04 369.890

Table 7 The maximum errors when τ = h = 1
8 for Example 3

γ IDAS [23] Present Method CPU Time (s)

0.4 0.5480236e–02 0.185967e–03 0.036
0.5 0.8357003e–02 0.639436e–03 0.037
0.6 0.1132181e–01 0.208645e–02 0.046
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Table 8 The maximum errors when τ = h = 1
32 for Example 3

γ IDAS [23] Present Method CPU Time (s)

0.4 0.1792436e–02 0.267127e–04 0.156
0.5 0.2493483e–02 0.142246e–03 0.156
0.6 0.3179647e–02 0.379025e–03 0.156

6 Conclusions
In this study, we developed a cubic trigonometric B-spline collocation method for numer-
ical approximation of time-fractional diffusion equations. The time discretization is done
using the typical finite difference method, whereas the derivatives in space are approxi-
mated by utilizing the trigonometric B-splines. The approximate solution is obtained as a
piecewise continuous function, so that the solution can be approximated at any desired lo-
cation in the domain of interest. We also presented a stability and convergence analysis of
the scheme to affirm that the errors do not propagate. The obtained numerical results con-
trast with those of some current numerical procedures. We infer that the present scheme
is more precise and provides better accuracy.
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